Acessibilidade / Reportar erro

Infiltration of aluminum salt into sisal to produce alumina fibers

Sisal is a renewable agricultural resource adapted to the hostile climatic and soil conditions particularly encountered in the semi-arid areas of the state of Rio Grande do Norte, located in Northeastern Brazil. Consequently, sisal has played a strategic role in the economy of the region, as one of few options of income available in the semi-arid. Find new options and adding value to products manufactured from sisal are goals that contribute not only to the scientific and technological development of the Northeastern region, but also to the increase of the family income for people that live in the semi-arid areas where sisal is grown. Lignocellulosic fibers are extracted from sisal and commonly used to produce both handcrafted and industrial goods including ropes, mats and carpets. Alternatively, added-value products can be made using sisal to produce alumina fibers (Al2O3) by biotemplating, which consists in the reproduction of the natural fiber-like structure of the starting material. The objective of the study reported herein was to evaluate the conditions necessary to infiltrate aluminum salt (Al2Cl6) into sisal fibers and heat-treat the structure to convert it into alumina fibers. The sisal fibers were pre-treated in NaOH, immersed in a saturated solution of (Al2Cl6) and sintered between 1400 °C and 1650 °C. The resulting fibers were then characterized by X-ray diffraction and scanning electronic microscopy. The results revealed the transformation only of the surface of the fiber into alpha-Al2O3 which yielded limited resistance to handling. Improved infiltration methods have been studied to allow transformation of the bulk structure of sisal into alumina thus increasing the mechanical strength of the resulting alumina fibers.

alumina fibers; sisal; biotemplating


Associação Brasileira de Cerâmica Av. Prof. Almeida Prado, 532 - IPT - Prédio 36 - 2º Andar - Sala 03 , Cidade Universitária - 05508-901 - São Paulo/SP -Brazil, Tel./Fax: +55 (11) 3768-7101 / +55 (11) 3768-4284 - São Paulo - SP - Brazil
E-mail: ceram.abc@gmail.com