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The gut microbiota is a group of over 38 trillion bacterial cells in the human microbiota that plays an important
role in the regulation of human metabolism through its symbiotic relationship with the host. Changes in the gut
microbial ecosystem are associated with increased susceptibility to metabolic disease in humans. However, the
composition of the gut microbiota in those with type 2 diabetes mellitus and in the pathogenesis of metabolic
diseases is not well understood. This article reviews the relationship between environmental factors and the gut
microbiota in individuals with type 2 diabetes mellitus. Finally, we discuss the goal of treating type 2 diabetes
mellitus by modifying the gut microbiota and the challenges that remain in this area.
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’ INTRODUCTION

Diabetes mellitus (DM) is one of the most prevalent
diseases worldwide. Type 2 diabetes mellitus (T2DM) is a
syndrome induced by insufficient insulin secretion or
impaired insulin secretion, which constitutes the majority
of cases; T2DM has become a serious threat to public health
and is a growing burden on global economies (1). This
disease seriously affects people’s quality of life due to several
severe complications (2). It has been estimated that the
number of T2DM patients will increase from 450 million in
2016 to 642 million in 2040 (3). In addition to genetic factors,
T2DM is also affected by environmental factors, which
suggests that diet and obesity, among other factors, are invol-
ved in increasing the risk of diabetes (3-5). These environ-
mental risk factors can also lead to diabetes by changing the
gut bacterial microbiota (6,7).
The bacterial microbiota is the best studied component of

the gut microbiota, which inhabits the host at different con-
centrations. The gut bacterial microbiota shows differences in
the concentration gradient from the mucosa to the lumen
and proximally to distally, showing significant differences
between individuals (8-10). The gut bacterial microbiota
evolves from a poorly differentiated community at birth into
a highly complex community (11,12). Accumulating evidence
supports a view of the gut microbiota in the development of

metabolic diseases, including type 2 diabetes (13-18), illus-
trating the differences between the gut microbiota in T2DM
patients and healthy individuals (18,19). The new evidence
suggests that the adaptive capacity of the gut microbiome
can be used to develop better programmes for the prevention
and treatment of T2DM (20). The relationship between the gut
microbiota and DM has not been systematically reviewed in
the literature, in which data are sometimes contradictory or
one-sided. Therefore, whether changing environmental factors
such as diet and exercise in diabetic patients can change the
gut microbiota to prevent and treat diabetes is a matter of
debate. This review summarizes the relationship between the
gut microbiota and T2DM-related environmental factors.

’ THE GUT MICROBIOTA

The gut microbiota refers to all the parasitic microflora in
the intestine, which include a variety of bacteria, fungi, and
protozoa. The majority of the gut microbiota consists of five
phyla, namely, Bacteroidetes, Firmicutes, Actinobacteria, Pro-
teobacteria, and Verrucomicrobia (21), which play a pivotal
role in protecting the host against pathogenic microbes (22,23);
the gut microbiota has a profound influence on modulating
immunity (24,25) and regulating metabolic processes (26,27).
There are approximately 38 trillion bacterial cells in the

human microbiome, and there are 30 trillion human cells in
the body (28). Three main phyla are colonized in the intes-
tine, namely, Phytoplasma, Bacteroidetes and a small number
of actinomycetes. In humans, studies have shown that an
increase in sclerenchyma and a decrease in Bacteroides are
positively associated with obesity (29,30). Although its
importance has not been fully recognized until recently, the
intestinal tract has a multilevel ability to influence glucose
homeostasis, which is essential for nutrient absorption and
transport to different organs and tissues of the human body
(31). The human gastrointestinal tract constitutes a part of theDOI: 10.6061/clinics/2020/e1277
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body with a particularly high density of immune cells, and
microorganisms colonize the intestine at birth. Influenced by a
variety of environmental factors, the role of microorganisms in
the process of immune system initiation has attracted exten-
sive attention (32,33). More than 70% of microbes live in the
gastrointestinal tract and establish reciprocal relationships
with their hosts, from the gastric cavity to the small intestine
to the rectum, where they reach maximum concentrations.
The microbiota is considered a metabolically active organ (34).
Mainly, the symbiotic intestinal bacteria Bacteroidetes, Firmi-
cutes and Actinomycetes obtain energy from the fermentation
and transformation of undigested food substrates (35). The
microbiota can be regarded as an organ in which ‘‘the new
supersedes the old’’; the microbiota can accurately meet our
physiological needs, and we do not need to evolve to receive
dietary energy from lean-associated microbiomes.
There are more than 1,000 kinds of microorganisms in the

human intestinal tract, representing hundreds of species and
thousands of subspecies. The average human intestinal
microbiome comprises approximately 160 bacterial species
in each individual (21). The microbial community mainly
resides in the gastrointestinal tract, especially in the colon,
which is mainly anaerobic and has a rich nutritional environ-
ment that is the preferred site for intestinal microbial colo-
nization. The microorganisms interact with the host and each
other to affect the host’s physiology and health. The modifi-
cation of the intestinal microflora as a potential treatment
for human and animal diseases has attracted increasing
attention.

’ DIABETES-RELATED ENVIRONMENTAL FACTORS
AND THE GUT MICROBIOTA

Diet, the Gut Microbiota and DM
Diet is one aspect of the environment that directly affects

the gut microbiota (36); this effect occurs because changes in
microbial composition can cause insulin resistance, inflam-
mation, and vascular and metabolic disorders. Diets rich in
carbohydrates and simple sugars lead to the increased pro-
liferation of Firmicutes and Proteobacteria, while diets rich
in saturated fat and animal protein favour the prolifera-
tion of Bacteroidetes and Actinobacteria (37). Some ground-
breaking concepts suggest that non-pathogenic gut bacteria
are more beneficial to human health than other bacteria, and
in 1908, when Elie Metchnikoff proposed that the micro-
biome could extend life and stave off old age and decline, he
recommended the regular consumption of milk artificially
acidified with Lactobacillus delbrueckii subsp. bulgaricus, the
source of the probiotic craze (38,39).
New evidence suggests that altering the intestinal flora

is important for the prevention and treatment of T2DM (7).
A rapid increase in the prevalence of T2DM worldwide is
related to rapid changes in the environment, which have
a negative impact on the risk factors for diabetes; these
environmental changes include changes in dietary habits in
particular, which modulate gut microbiome composition
largely by regulating excessive biological functions (40-42). It
has been found that the best choices of dietary factors play a
critical role in preventing early T2DM and reducing the risk
of lifetime T2DM (43). The gut environment is affected by
diet, including the absorption of micronutrients and nutri-
ents, and changes in pH, which in turn change the balance of
the gut microbiota (44). Intestinal pH plays an important role
in the composition of resident bacteria. For example, at pH

5.5, butyrate-producing Phytophthora accounts for 20% of the
total bacteria, while at pH 6.5, the number of butyrate-
producing Phytophthora decreases, while the number of
acetate- and propionate-producing Phytophthora increases (45).

Several studies have shown that patients with DM demon-
strate increased permeability of butyrate secreted by intest-
inal epithelial cells, and butyrate is the main source of energy
for intestinal epithelial cells (46-50); therefore, impaired
butyrate secretion is one of the reasons for the loss of the
tight barrier function of intestinal epithelial cells (51). The
intestinal microflora can be used to understand individual
responses to dietary interventions (52).

Epidemiological studies have consistently shown a nega-
tive correlation between dietary fibre consumption and the
incidence of T2DM. Dietary fibre and whole grains have
been shown to increase the diversity of the intestinal micro-
flora in humans (53,54). High fibre intake has been shown to
be associated with increased levels of Prevotella bacteria in
several studies (41,42,55), and a high-fat diet (HFD) has been
shown to alter the metabolic activity of the mammalian gut
microbiome (41).

Studies have shown that a HFD can lead to changes in
major intestinal flora, such as Bifidobacterium and Bacteroides,
resulting in an increase in the proportion of Gram-negative
bacteria/Gram-positive bacteria. This significant change is
associated with increased plasma lipopolysaccharide, fat
content and body weight; the accumulation of triglycerides
in the liver; DM; and inflammatory reactions (56). The
clinical effect of gegen decoction in different doses on T2DM
was evaluated. With the increase in the dose of the drugs,
a significant increase in the number of the eubacterium
Hodgsonia, which is closely related to improvement of DM,
was found in the faecal microbiome. The greater the level of
the bacteria, the better the blood sugar control (57).

The microbiome, which is stable and resilient to environ-
mental disturbances (such as changes in the diet or short-term
antibiotic exposure) (58), also plays roles in the epigenetic
regulation of host genes. Recent studies have shown that the
intestinal microflora, as an epigenetic regulator, affect host
metabolism by modifying DNA methylation (59). Therefore,
the effective regulation of the intestinal microflora may be a
promising strategy for the treatment of metabolic disorders,
including DM. One study demonstrated that NLRP12/ mice
fed a HFD as well as sumac were deficient in Clostridium
difficile. The low number of these bacteria has been proposed
as a marker for increased inflammatory bowel disease in
children (60). The influences of diet on the composition of the
microbiota were found to control body weight after bariatric
surgery, regulate plasma glucose and insulin levels, maintain
intestinal epithelial barrier integrity, and reduce the levels of
inflammatory cytokines (61-64).

The effects of diet on the composition of the gut microbiota
and the subsequent pathophysiological changes during DM
progression are illustrated in Figure 1.

Obesity, the Gut Microbiota and DM
The gut microbiota plays an important role in obesity, one

of the main risk factors for metabolic syndrome. The current
global obesity epidemic is increasing, leading to an increase
in the incidence and prevalence of T2DM by reducing
insulin sensitivity in the adipose tissue, liver and skeletal
muscle and subsequently impairing beta-cell function, which
poses a serious challenge to the healthcare system (65,66).
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Unexpectedly, the gut microbiota is strongly correlated with
host metabolism and weight gain and can be a positive
driver of obesity, in which an imbalance is associated with
intestinal inflammation (67-69). In a C57BL/6 mouse study,
in which even when fed a high-fat/high-carbohydrate diet
the mice did not develop obesity due to genes that protect
mice from obesity, the obese mouse microbiota that accumu-
lated in these mice led to a significant increase in body fat;
these mice, despite the reduced food intake, still demon-
strated insulin resistance (70-72). In a double-blind rando-
mized controlled intervention study, probiotics, such as
Lactobacillus bulgaricus, were found to significantly reduce
body weight in overweight and obese subjects (73). In a
study of 18 lean and 18 overweight males with T2DM, while
the bacterial abundance was similar in both groups, the
abundance of Firmicutes bacteria was significantly higher in
controls than in participants with T2DM (74).
Disorders of the gut microbiota are associated with T2DM,

insulin resistance and obesity (75-78). Obesity increases
intestinal permeability and the possibility of organic acids
such as succinic acid being released by intestinal symbiotic
bacteria into circulation (79). Obesity is associated with
changes in the relative abundance of the two dominant
bacterial divisions, Bacteroidetes and Firmicutes (80). A
sterile adult mouse distal intestinal microbial community
was obtained from conventionally bred mice, and the colo-
nization significantly increased body fat in 10-14 days,
although the relative food consumption was reduced (72).
This change was related to several interrelated mechanisms
(the microbial fermentation of dietary polysaccharides can
be performed by the host in the liver, where they are
transformed into more complex lipids and the regulation of
microbes by host genes); these findings lead us to propose
that in obese individuals, specific microorganisms extract

energy from the diet more effectively than a group of micro-
organisms in lean individuals (81). Individuals’ gut microbes
vary in abundance and proportion due to differences in long-
term eating habits (42).
Using a mouse model, Gordon’s team was the first to

identify ways in which the gut microbiota can affect host
metabolism, which may affect obesity (70,72). The compar-
ison between obese mice and lean mice showed that the
number of Gram-negative bacilli in obese mice decreased by
50%, while the number of Gram-positive bacilli increased (70).
The higher the Bacteroides level, the lower the body weight
(30,82). Weight loss in overweight and obese adolescents led
to an increase in Bacteroides (83), which reduced the incidence
of diabetes (84). Bariatric surgery leads to long-term increases
in the protein and bile acids involved in improving glucose
metabolism (7). The mechanism is unknown, but it is likely
due to physiological changes after surgery. The ‘‘lean’’ pheno-
type was transferred by transplanting the patient’s gut
microbiota into germ-free (85). There was a negative correla-
tion between the level of Faecalibacterium prausnitzii and inflam-
matory markers, suggesting that Faecalibacterium prausnitzii
may regulate systemic inflammation in obese diabetic patients
and contribute to the improvement in diabetes mellitus (27).

Relationship between Glucose-Lowering Drugs and
the Gut Microbiota in Type 2 Diabetes Mellitus
Hypoglycaemic agents can affect the composition of the

intestinal microflora, and acarbose increases the relative
abundance of lactic acid bacteria and bifidobacteria in the
intestinal flora and consumes Bacteroides, thus altering the
relative abundance of bacteria related to bile acid metabo-
lism. Faecal samples were transferred from metformin-
treated donors to sterile mice before and after treatment for
4 months. Glucose tolerance was improved in mice receiving
metformin-modified microbiota (86,87). In addition, changes
in the gut microbiota can reduce the adverse reactions to
hypoglycaemic drugs (88).
Metformin mainly accumulates in the intestine, and its

concentration in the intestine is approximately 300 times
higher than that in plasma. Therefore, the intestinal tract is the
main location of its hypoglycaemic action (89,90). Currently,
it is still very difficult to formulate strategies to regulate the
composition of microflora and guide its metabolic effect from
the perspective of diabetes prevention or treatment. Never-
theless, a growing body of literature offers some insights into
the potential use of the microbiota as a therapeutic target for
diabetes. Lactobacillus and Bifidobacterium are the most studied
and used probiotics. Probiotics are defined as ‘‘dietary fibre
with recognized positive effects on intestinal flora’’ (91-93).
They are also used to prevent intestinal flora disorders caused
by antibiotic treatment after infection with Clostridium difficile
(94). The effect of Lactobacillus rhamnosus on glucose and
glucose tolerance in streptozotocin (STZ)-induced diabetic rats
was studied. Glucose intolerance and hyperglycaemia may
be delayed in sick rats treated with Lactobacillus strain GG.
Therefore, bifidobacteria can reduce intestinal fat polysac-
charide levels and improve the function of the intestinal
barrier (95).
A study was conducted with 20 volunteers with T2DM

and a daily intake of 200 mL of synbiotics containing
Lactobacillus acidophilus, Bifidobacterium and fructooligosac-
charides. However, after consuming the synbiotic shake for
one month, the volunteers who had ingested the shake had

Figure 1 - Effects of diet on the composition of the gut
microbiota and subsequent pathophysiological changes during
DM progression.
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significantly higher levels of high-density lipoprotein cho-
lesterol (HDL-c) and significantly lower blood sugar levels
(96). Compared with the microbiota of individuals with non-
metformin-treated DM, the microbiota of individuals with
metformin-treated DM was significantly different only at the
bacterial family level (PERMANOVA FDR o0.1), indicating
the effect of metformin treatment on intestinal microorgan-
isms. Univariate testing of the efficacy of metformin showed
a significant increase in Escherichia spp. and a reduced
abundance of Intestinibacter (20). Microbes that reside in the
human gut are key contributors to host metabolism and are
considered potential sources of novel therapeutics. The
colonization of intestinal microorganisms in the first few
years of life is obviously crucial to the development of host
immune regulation. A disturbance in microbial community
composition or host response may lead to chronic inflamma-
tion (97). Intestinal microbial ecosystems may be out of
balance due to the overgrowth of some microorganisms,
which is defined as intestinal dysbiosis.
Forslund and his colleagues found that there were fewer

butyrate-producing bacteria in T2DM patients who did not
receive metformin treatment than in the control individuals
who did not have diabetes. They also clarified that the
increase in lactic acid bacteria in previously diagnosed T2DM
patients was the result of metformin treatment (20). The
pharmacological effects of metformin include bile acid
recycling and changes in the gut microbiota, which promote
the secretion of glucagon-like polypeptide-1 (GLP-1) (98). It
was found that metformin had a significant effect on the
intestinal flora composition. Patients with T2DM who took
metformin could be identified by changes in intestinal flora
composition (20).
Several treatments are used to treat insulin resistance and

diabetes, but metformin is the most popular first-line drug,
and some of its beneficial effects can be attributed to changes
in the gut microbiota. In addition to improving blood sugar
levels in mice fed a HFD, metformin treatment also increased
the number of mucoprotein-degrading bacteria called Akker-
mansia bacteria. Population studies in Denmark, Sweden and
China confirmed this finding (20,99-101). The gut microbiota
regulates the intestinal barrier and inflammation through
metabolites such as short-chain fatty acids (SCFAs) (36).
Compared with non-diabetic patients, diabetic patients taking
metformin had increased mucosal eosinophils and bacteria
producing SCFAs (99). Experimental studies have shown that
the abundance of mucus Akkermansia and cocleatum in HFD-
fed mice treated with metformin increased significantly (101,
102). The abundance of Intestinibacter spp. in diabetic patients
treated with metformin decreased, while the Escherichia coli
abundance increased (20). Adlercreutzia spp. in the faeces of
diabetic patients treated with metformin alone increased (98).
These results indicate the effect of metformin on intestinal
microorganisms in patients.
As a classic alpha-glucosidase inhibitor, acarbose can

inhibit the enzymes that breakdown oligosaccharides into
monosaccharides and disaccharides in the intestinal tract,
thus delaying the absorption of postprandial glucose (103).
Ninety-five T2DM patients were divided into two groups:
one group was treated with acarbose while the other was not
treated with acarbose; after treatment with acarbose, the
Bifidobacterium content was lower and that of Enterococcus
faecalis was higher (104). These results suggest that acarbose
treatment could alter the gut microbiota. Acarbose regulates
bile acid metabolism by increasing the relative abundance of

lactic acid bacteria and bifidobacteria in the intestinal flora,
which has beneficial effects on host metabolism (86). Glp-1
is known as an intestinal hormone involved in glucose
metabolism, appetite regulation and gastric emptying. The
ability of the gut microbiota to accelerate gastrointestinal
motility is mainly due to the inhibition of gastrointestinal
glp-1 receptor expression (105). Glp-1 sensitivity is regulated
by intestinal-flora-dependent regulation in the intestinal
nervous system (106). The abundance of Akkermansia muci-
niphila was found to be decreased in individuals with obesity
and diabetes mellitus (13). Sitagliptin is a dipeptidyl-4 (dpp-
4) inhibitor that has also been found to improve intestinal
microbial structure, which can be mediated by reducing
intestinal inflammation and maintaining intestinal mucosal
barrier integrity (62). Vildagliptin can significantly reduce the
diversity of the microbiota of diabetic rats and normalize the
Bacteroides-Prevotella ratio (107). These studies are of great
significance for understanding the role of the intestinal
microflora as a new target for diabetes treatment. However,
further research is needed to confirm this hypothesis.

The effects of these drugs on the composition of the gut
microbiota are summarized in Table 1.

’ THE GUT MICROBIOME: CONCLUSIONS AND
FUTURE PERSPECTIVE

We are living with a tremendous number of microorgan-
isms in our guts. In recent years, an increasing number of
studies have shown that the intestinal microflora is directly
related to the occurrence and development of diabetes. The
related topic of the gut microbiota has become a research
hotspot, and the relationship between DM and the intestinal
flora has the potential to promote clinical trials and drug
development and improve the effectiveness of treatment
strategies. An imbalance in the gut microbiota composition
can lead to several diseases. However, there are still some
problems to be further studied, such as the specific molecular
mechanism by which the gut microbiota affects DM and the
treatment of T2DM by altering the gut microbiota.

Regarding the aetiology of DM, many factors have been
clarified in medicine. With the in-depth study of the intes-
tinal flora, people have a new understanding and expansion
of the aetiology, which also provides public guidance for the
better prevention of obesity and diabetes. The intestinal flora
plays an important role in maintaining human health.
Metabolic disorders can lead to intestinal flora imbalance,
which will further aggravate metabolic disorders, thus for-
ming a vicious cycle. Current methods of adjusting intestinal
flora homeostasis include modifying dietary components
using probiotics or probiotics and faecal transplantation. The
relationship between environmental factors involved in DM
and the gut microbiota is not fully understood. Understanding
the influence of environmental factors on intestinal microflora
is of great significance for increasing the understanding of the
aetiology, diagnosis, treatment, adverse reactions and prog-
nosis of metabolic diseases.

With the steady increase in the prevalence of T2DM, new
treatments are needed that can not only temporarily improve
blood glucose control but also change the course of diabetes.
Increasing evidence suggests that the gut microbiota plays an
important role in the pathogenesis of DM. The relationship
between hypoglycaemic agents and the gut microbiota is not
fully understood. The key regulatory role of the gut micro-
biota and its contribution to T2DM were further emphasized
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through the changes in intestinal microbial ecology observed
after environmental factors such as diet, fat and drug inter-
ventions were altered; however, the mechanism that under-
lies the effects on the composition of the intestinal flora is still
unclear. In the future, it is necessary to study the relationship
between the intestinal flora and T2DM from the perspective
of molecular biology and to develop drugs based on the
direct and precise genetic modification of the microbiome to
provide guidance for the better prevention and treatment of
T2DM. Probiotics regulate the imbalance of the intestinal
microbiome composition by increasing the bacterial popu-
lation, intestinal epithelial barrier function, and cytokine
production.
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