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INTRODUCTION

For corn to express its productive potential 
there is a high nutritional demand where nitrogen 
is the nutrient needed in large amounts. Nitrogen 
exerts the greatest influence on grain production in 
corn and is the major factor that contributes to the 
expenditure involved in its production (MELO et 
al., 2011).

The next most important element absorbed 
in high quantities by the corn crop is potassium 
(BASTOS et al., 2005). Adding potassium during the 
commercial production of the corn crop is gaining 

significance due to the high yield of the corn cultivars 
in response to the application of a combination of 
potassium and nitrogen (PETTER et al., 2016).

From the findings of several studies, the 
positive and crucial effect of applying nitrogen 
and potassium on corn grain production is clearly 
evident (BASTOS et al., 2005; MELO et al., 2011; 
PETTER et al., 2016). However, the paucity of 
studies continues to hinder an accurate evaluation of 
the nutritional status of the commercial corn crops, 
in terms of the rational and efficient addition of these 
nutrients, based on the plant requirement and levels 
of soil fertility in the regions of production.

1Embrapa Meio-Norte, 64008-780, Teresina, PI, Brasil. E-mail: aderson.andrade@embrapa.br. *Corresponding author. 

ABSTRACT: The objective of this study is to determine the vegetation indices (IV) as a means of identifying the nutritional status of corn, 
with respect to the soil nitrogen and potassium, using the aerial images received through an RGB camera loaded on an unmanned aerial 
vehicle. The images were obtained for an experiment of the nitrogen levels (0, 60, 120 and 180 kg ha-1) and potassium levels (0, 50, 100 and 
150 kg ha-1), in the random block design, with a factorial scheme of 4 x 4, having three repetitions. Ten leaves were plucked per plot during the 
flowering phase to assess the total N (NF) and K+ leaf contents. The Pearson’s correlation analysis, as well as the analyses of variance and 
regression between the IV and the concentrations of N and K2O. NF, K+ and the grain yield, responded only to the soil N levels. A significant 
correlation was observed for the indices of Red Index, Normalized Difference Index and Visible Atmospherically Resistant Index with the NF, 
which endorses them as favorable in identifying the nutritional standing of corn, with respect to the N level. Not even a single one of the indices 
evaluated could detect the nutritional ranking of corn in the context of the potassium level.
Key words: Zea mays L, RGB images, remote sensing, precision agriculture.

RESUMO: O estudo teve como objetivo avaliar índices de vegetação (IV) para detecção do status nutricional do milho com relação ao nitro-
gênio e potássio por meio de imagens aéreas obtidas por câmera RGB embarcada em veículo aéreo não tripulado. As imagens foram adqui-
ridas em ensaio de níveis de nitrogênio (0, 60, 120 e 180 kg ha-1) e potássio (0, 50, 100 e 150 kg ha-1), em blocos ao acaso, fatorial 4 x 4, com 
três repetições. Coletaram-se dez folhas por parcela na fase de florescimento para avaliação do teor foliar de N total (NF) e K+. Efetuou-se 
análise de correlação de Pearson, análise de variância e de regressão entre os IV e os níveis de N e de K2O. NF, K+ e a produtividade de grãos 
responderam apenas aos níveis de N no solo. Houve correlação significativa para os índices Excess Red Index, Normalized Difference Index e 
Visible Atmospherically Resistant Index com o NF, que os credencia como promissores na detecção do status nutricional do milho em relação 
ao N. Nenhum dos índices avaliados foi capaz de detectar o status nutricional do milho com relação ao potássio.
Palavras-chave: Zea mays L, imagens RGB, sensoriamento remoto, agricultura de precisão.
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Proximal remote sensing is an excellent 
and viable tool which enables the nutritional status 
of agricultural crops to be assessed (LI et al., 2014; 
CILIA et al., 2014). The proximal detection method 
is effective in providing possible automation and 
mechanization applications, like aerial images of 
the crops, employing unmanned aerial vehicles 
(UAVs). This enables a substantial reduction in 
the field operation-related costs. The use of UAVs 
provides results in terms of the spatial resolution of 
the images, flexible revisiting time, as well as gives 
high versatility even when the climatic conditions are 
unfavorable (TORRES-SANCHEZ et al., 2015)

Using the spectral reflectance of the 
canopy, the vegetation indices (IV) are simple and 
successful algorithms, helpful in the quantitative and 
qualitative evaluation of the vegetation cover, as well 
as plant vigor and growth dynamics (GITELSON 
et al., 2002). The remote sensing of the vegetation, 
principally connected with acquiring multispectral 
images, can be practically applied. Hence, many IVs 
have been suggested using multispectral images for 
remotely estimating the nutritional status of different 
agricultural crops, particularly from the perspective 
of the soil nitrogen availability (ISLA et al., 2011; 
LI et al., 2014; CILIA et al., 2014; VERGARA-
DÍAZ et al., 2016). However, studies are still in the 
nascent stages in determining the nutritional status 
of potassium (SRIDEVY et al., 2018), and the use of 
RGB (red-green-blue) images received from the less-
expensive cameras (RASMUSSEN et al., 2016).

Thus, this research was performed to 
remotely assess the nutritional status of the corn 
crop, with regard to the soil nitrogen and potassium, 
using the vegetation indices received from the aerial 
images acquired from an RGB camera, loaded on an 
unmanned aerial vehicle (UAV).

MATERIALS   AND   METHODS

The current study was done in a plot in 
Fazenda Weisul Agrícola, in Magalhães de Almeida, 
MA, with the coordinates of 3° 22’9.27’’ S and 42° 17’ 
28.8’’ W at 85 m altitude. The local climatic conditions 
are hot, and sub-humid, with moderate water surplus 
in summer (Aw), annual average temperature of 26 
ºC, and annual precipitation of 1,250 mm, particularly 
between February and May (CORREIA FILHO et al., 
2011). During the experimental period, in the area 
under study, the total precipitation was 1,010 mm, 
recorded using a rain gauge.

In the experimental area the soil is of the 
Latossolo Amarelo Distrocoeso type and of medium 

texture (SANTOS et al., 2018). When the chemical 
and physical characterization of the soil was done 
initially, in the 0.0 - 0.2 m layer, the following 
attributes were recorded: pH in H2O of 5.9; pH in 
CaCl2 of 5.0; 17.2 mmolc dm-3 of potential acidity 
(H+ Al); 0.65 mmolc dm-3 exchangeable aluminum 
content; 2.0 mmolc potassium dm-3 (K+); 11.9 mmolc 
dm-3 of calcium (Ca+

2), 4.1 mmolc dm-3 of magnesium 
(Mg+

2); 11.6 g kg-1 of carbon (C); 18.8 mg dm-3 of 
phosphorus (P) (Mehlich); 35 mmolc dm-3 of cation 
exchange capacity (CTC); 50.5% base saturation 
(V%); 831.9 g kg-1 of the sand fraction; 46.9 g kg-1 of 
the silt fraction; 121.2 g kg-1 of the clay fraction and 
1.65 g cm-3 of soil density. The analyses done adopted 
the recommendations of the Embrapa Manual of the 
analysis of soil, plants and fertilizers (SILVA, 2009).

In the experiment performed regarding the 
nitrogen (N) and potassium (K2O) levels in corn, aerial 
images were acquired (Figure 1). The experiment was 
conducted from February to June 2019, in a rainfed 
regime, adopting a randomized block design with 
treatments done in a 4 x 4 factorial scheme (N levels 
versus K2O levels), including three replications (T1: 0 
N –0 K2O; T2: 0 N - 50 K2O; T3: 0 N - 100 K2O; T4: 
0 N - 150 K2O; T5: 60 N - 0 K2O; T6: 60 N - 50 K2O; 
T7: 60 N - 100 K2O; T8: 60 N - 150 K2O; T9: 120 N - 0 
K2O; T10: 120 N - 50 K2O; T11: 120 N - 100 K2O; T12: 
120 N - 150 K2O; T13: 180 N - 0 K2O; T14: 180 N - 50 
K2O; T15: 180 N - 100 K2O and T16: 180 N - 150 K2O). 
The experimental plot, extending across an area of ​​16.0 
m2, included four rows of plants, each row of 8 m length, 
and the two central lines used for the evaluations (​​8.0 
m2 of useful area). The spacing between the plant rows 
was 0.5 m, and plant density was 5 per meter. The corn 
variety used was the hybrid commercial corn Pioneer 
30F35VYHR, sown on 02/13/2019.

First, sowing was performed in parallel 
furrows at 0.15 m depth and with 0.10 m distance 
between the sowing lines, manually applying 
phosphorus and zinc as fertilizers, using 80 kg ha-1 
of P2O5 and 3 kg ha-1 of Zn, in the forms of triple 
superphosphate (TSP) and zinc sulfate, respectively. 
Fertilization with nitrogen and potassium was 
accomplished by applying half the quantity of N 
and K2O prescribed for each treatment , at the time 
of sowing, and the remainder was added in cover, 
performed via haul, at a distance of 0.10 m from the 
planting line, using moist soil. This was performed 
during the late afternoon, at the time of the opening 
of the 6th leaf. Urea and potassium chloride were 
employed, respectively, as the N and K2O sources.

During the flowering time, ten corn leaves 
were collected at random per plot to assess the total 
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nitrogen and potassium contents of the leaf, using the 
central third of the base leaf of the corn ear, during 
the planting stage (50% of the plants in the plot were 
showing the tassel). The morning (between 8 - 11 am) 
was the best time to collect the leaves on the same 
day as the flight. To evaluate the N and K+ content 
present in the leaves, the semi-micro Kjeldahl method 
(SILVA, 2009) was followed. On 06/26/2019 the corn 
was manually harvested, and the dry grain yield was 
determined at 13% humidity.

To receive the aerial images, a quad-type 
UAV, DJI brand, model Phantom 3 Professional, was 
used, which was provided with a DJI sensor model 
FC300X, (DJI, Nanshan District, Shenzhen, China). 

This operates in the visible region (red: 660-670 
nm, green: 550-560 nm, blue: 470-480 nm), with f / 
2.8 aperture, 3.6 mm focal length, and 4000 x 3000 
pixels resolution. The following configuration was 
used at the time of the flight: ISO 100, opening speed 
1/800 s and white balance of zero. On the day the 
leaves were collected between 11:00 am and 12:00 
am and analyzed for N and K+ analysis (04/09/2019), 
the aircraft was at altitude of 30 m and at speed of 
2.5 m/s, with camera angle at 90°. The planning and 
operation of the flight was done in Pix4D-Capture® 
software (www.pix4d.com). The configuration of the 
camera settings was done using the DJI GO® software 
(www.dji.com).

Figure 1 - Location of the experimental area. A: Magalhães de Almeida, MA, Brazil; B: Weisul Farm and C: Aerial 
image of the experimental area with the disposition of the evaluated treatments.
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To ensure the high-quality creation of 
the orthomosaic, 80% lateral and frontal overlap 
was employed during the flight, providing 30 
aerial photographs in total, to encompass the whole 
experimental region, with 1.5 cm pixel GSD (ground 
sample distance). Processing of the orthomosaic 
of the aerial images was done using the WEB-
OpenDroneMap® software (www.opendronemap.
org) beta version 0.3.1. The standard configuration 
of the software enabled a high spatial orthomosaic 
resolution (2.5 cm / pixel) to be generated.

The orthomosaic was classified under the 
supervision of the Gaussian Mixture Model method 
suggested by LAGRANGE et al. (2017). The plugin 
enabled the mosaic to be to be rasterized into two classes 
(soil and leaves). This facilitated the pixels classified as 
soil to be removed from the mosaic, confirming that the 
estimation of the vegetation index was done using only 
the pixels classified as leaves. This was accomplished 
using the QGIS v “dzetsaka” plugin. 2.18 (QGIS, 2016).

Evaluation was done of 18 vegetation 
indices (IV) (Table 1) estimated from the 

 

Table 1 - RGB vegetation indices evaluated in the study. 
 

Indices Sigla Equation References 

Coloration Index CI =
𝑟𝑟 − 𝑏𝑏
𝑟𝑟

 MANDAL (2016) 

Color Index of Vegetation Extraction CIVE = 18.78745 + (0.44 r) – (0.88 g) 
+ (0.385 b) YANG et al. (2015) 

Carotenoid Reflectance Index 1 CRI-1 = �
1
𝑏𝑏
� − �

1
𝑔𝑔
� GITELSON et al. (2002) 

Carotenoid Reflectance Index 2 CRI-2 = �
1
𝑏𝑏
� − �

1
𝑟𝑟
� GITELSON et al. (2002) 

Excess Green Index EXG = (2𝑔𝑔) − 𝑟𝑟 − 𝑏𝑏 YANG et al. (2015) 

Excess Red Index EXR = (1,4𝑟𝑟) − 𝑔𝑔 BENDIG et al. (2015) 

Excess Green Minus Red Index EXGR = 𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸𝐸𝐸 GITELSON et al. (2002) 

Green Leaf Index GLI =
(2𝑔𝑔 − 𝑟𝑟 − 𝑏𝑏)
(2𝑔𝑔 + 𝑟𝑟 + 𝑏𝑏) GITELSON et al. (2002) 

Modified Green Red Vegetation Index MGRVI =
(𝑔𝑔2 − 𝑟𝑟2)
(𝑔𝑔2 + 𝑟𝑟2) BENDIG et al. (2015) 

Modified Photochemical Reflectance 
Index MPRI =

(𝑔𝑔 − 𝑟𝑟)
(𝑔𝑔 + 𝑟𝑟) BARBOSA et al. (2019) 

Normalized Difference Index NDI = 128 �
(𝑔𝑔 − 𝑟𝑟)
(𝑔𝑔 + 𝑟𝑟) + 1� MEYER & CAMARGO NETO (2008) 

Normalized Green-Blue Difference Index NGBDI =
(𝑔𝑔 − 𝑏𝑏)
(𝑔𝑔 + 𝑏𝑏) BENDIG et al. (2015) 

Red Green Blue Vegetation Index RGBVI =
(𝑔𝑔2 − 𝑟𝑟𝑟𝑟)
(𝑔𝑔2 + 𝑟𝑟𝑟𝑟) BENDIG et al. (2015) 

Red Green Index RGI =
𝑟𝑟
𝑔𝑔

 BENDIG et al. (2015) 

Triangular Greenness Index TGI = 0,5 [(r-b) – (r-g)]– [(r-g) – (r-
b)] BENDIG et al. (2015) 

Visible Atmospherically Resistant Index VARI =
(𝑔𝑔 − 𝑟𝑟)

(𝑔𝑔 + 𝑟𝑟 − 𝑏𝑏) GITELSON et al. (2002) 

Vegetative Index VEG =
𝑔𝑔

(𝑟𝑟0,667𝑏𝑏0,333 ) HAGUE et al. (2006) 

Woebbecke Index WI =
(𝑔𝑔 − 𝑏𝑏)
(𝑟𝑟 − 𝑔𝑔) WOEBBECKE et al. (1995) 

 
r, g e b: normalized RGB bands (equations 1 to 3). 
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orthomosaic RGB bands, employing the QGIS raster 
calculator (QGIS, 2016). First, the extraction of 
the RGB bands was done from the orthomosaic 
and normalized between 0 and 1 (equations 1 to 3) 
(MARCIAL-PABLO et al., 2019).
					                                                                                                         
                                                                                  (1)

                                                                 
                                                                                  (2)

                                                                   
                                                                                  (3)

Where r, g and b: normalized RGB bands; 
Rmax = Gmax = Bmax = 255 in 8-bit color images 
per band.

The values of the vegetation indices were 
extracted using the QGIS v 2.18 zonal statistical 
plugin (QGIS, 2016). For each plot, the zonal statistics 
plugin gives a series of statistical attributes including 
the maximum, minimum, average, and standard 
deviation values. To achieve this, a vector file which 
contained the useful area of the experimental plots 
was used. To create this vector file, the useful area 
of the experimental plot was distinguished into two 
parts, producing six polygons (subplots), each having 
an area of 4.0 m2, which were utilized to statistically 

analyze the data. This step was done using the QGIS 
v 2.18 “divider polygon” (QGIS, 2016).

Pearson’s correlation analysis was done of 
the mean values of the vegetation indices with the N 
and K2O levels present in the soil, as well as the N 
and K+ present in the leaves. The analyses of variance 
and regression were done to assess the response of 
the vegetation indices, N and K+ concentration in the 
leaves and grain yield after the treatment was applied. 
The statistical analysis using the ExpDes.pt package 
from R (FERREIRA et al., 2014) was conducted. For 
those variables which revealed significant interaction 
between the N and K2O levels, the response surfaces 
were produced together with the supplement of Excel 
Real Statistics Resource Pack (ZAIONTZ, 2020) 
and the Surfer® software. In figure 2A the flowchart 
shows the steps of the process.

First, the vegetation indices were adjusted 
to the polynomial regression models, and the degree 
to which this adjustment occurred was evaluated by 
the coefficient of determination (R2), standard error of 
the regression (S) (equation 4), square root of the mean 
square error (RMSE) (equation 5) and the normalized 
percentage of RMSE (nRMSE) (equation 6). The S 
represents the average distance of the recorded values 
with respect to the regression line. The RMSE indicates 
the magnitude of the recorded values versus the values 
determined by the models, while the nRMSE refers to 
the normalized measure of the RMSE, which enabled 
a comparison of the performances of the different 
regression models (LI et al., 2014).

Figure 2 - Flowchart containing the image processing steps.
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                                                                                  (4)
                                                                                       
				  
                                                                                      (5)

                                                                                  (6)

Where n represents the number of 
observations, Yi refers to the observed values of y, 
Yi’ are the values assessed by the regression models, 
Xi includes the observed values of x, Ymax is the 
maximum observed y value, and Ymin is the minimum 
observed y value.

RESULTS   AND   DISCUSSION

The N and K levels in leaves and grain yield
From the analysis of variance, it was 

evident that the N content in the leaves (NF), the K+ 
level in the leaves (KF) and grain yield (PGS) showed a 
response solely to the soil N levels (P < 0.001) (Table 2). 
The results from a few studies revealed that corn shows 
greater response when nitrogen is applied to the soil, 
than to when the potassium is added (CARDOSO et 
al., 2007; MELO et al., 2011). When 165.0 kg ha-1 of 
N was applied to the soil the maximum PGS (8,536.8 
kg ha-1) was obtained (Figure 3). In a study to assess the 
N levels (0, 50, 100, 150 and 200 kg ha-1) and corn 
seeding densities (2.5; 5.0; 7.5 and 10.0 plants m-2), 
using hybrid BR3060, CARDOSO et al., (2007) 
reported maximum grain yield of 8893.0 kg ha-1, 
after applying 160.6 kg ha-1 of N related to a sowing 
density of 7.45 plants m-2, a value which almost 
corresponds to the maximum value observed in the 
current work, with sowing density of 10 plants m-2.

Other studies reported no response in 
the corn from the perspective of grain yield to the 
potassium applied to the soil. In fact, BASTOS et 
al. (2005) observed no productive response in corn, 
hybrid BRS-3123, in their assessment after five levels 
of N (0, 50, 100, 150 and 200 kg ha-1) and five levels 
of K2O (0, 30, 60, 90 and 120 kg ha-1) were applied 
to the soil categorized as Oxisol Yellow-Alic, and 
sandy / medium in texture. In their work, MELO 
et al. (2011) found that potassium fertilization on 
maize gave positive effects which were confirmed 
in sandy soils, as well as in soils having a K+ level 
below 2.3 mmolc dm-3, up to a depth of 0-0.2 m. 
In such conditions, a dosage of up to 60 kg ha-1 of 
K2O induced the best response. In the experimental 
area, the soil contains a K+ level of 2.0 mmolc dm-3, 
in the 0-0.2 m layer, almost within the limit of the 
potassium response.

Regarding the leaf N content, 28.6 g 
kg-1 was the maximum value recorded after 175.0 
kg ha-1 of N was applied to the soil; the maximum 
KF content (29.5 g kg-1) was reached after 122.3 kg 
ha-1 of N was added to the soil. In fact, some studies 
noted that with the rise in the soil N levels a quadratic 
increment was seen in the total nitrogen content of 
the leaves. Another study by MELO et al. (2011) 
reported maximum NF values in corn, (of the simple 
hybrid BRS 1001 variety), of 28.0 g kg-1, after 175.0 
kg ha-1 of N was applied in relation to 7.5 plants m-2, 
concurring with the findings of the current study.

When examining the potassium in the 
leaves, it became evident that the quadratic response 
was induced only due by the soil N levels and not 
by the K2O levels, as mentioned in the literature 
(PETTER et al., 2016). In fact, PETTER et al. (2016) 
in their study on dystrophic Yellow Latosol, having 

 

Table 2 - Analysis of variance (MS) for the nitrogen content of the leaves (NL), potassium in the leaves (K+) (KL) and grain yield (GY) 
as a function of the levels of N and K2O in the soil. 

 

SV DF -------------NL--------------- ------------KL-------------- ---------------GY----------------- 

Blocks 2 3.7950 * 37.420 * 1810519 * 

Nitrogen (N) 3 15.4022 *** 51.866 *** 19439535 *** 

Potassium (K2O) 3 0.7095 ns 15.726 ns 115619 ns 
N versus K2O 9 2.0585 ns 5.943 ns 651722 ns 
Residue 30 0.9200  7.038  440954  
CV (%)  3.47  9.26  11.47  

 
SV: source of variation; N: nitrogen levels in the soil; K2O: potassium levels in the soil; DF: degrees of freedom; CV (%): coefficient of 
variation (%); NF: N content in leaves; KF: K+ content in the leaves; GY: grain yield at 13% humidity. Significance levels by the F test: 
ns p > 0.1; ° p < 0.1; * p < 0.05; **p < 0.01; *** p < 0.001. 
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a sandy-loam texture, noted a significant linear 
rise in the K+ level in the corn leaves, in response 
to increasing the K2O levels added to the soil. A 
maximum K2O level of 120.0 kg ha-1 induced the 
leaves to accumulate 25.4 g kg-1 of K+. However, 
this K+ level rise in the leaves had no effect on 
the relative total chlorophyll content, revealing the 
absence of any direct correlation between the K+ 
concentration in the leaves and chlorophyll synthesis. 
However, in the present study, this trend was not 
observed, likely because the soil K+ concentration 
in the experimental area prevented the expression of 
the K2O levels applied, as emphasized earlier.

Pearson correlation between the N, K+ content in the 
leaves and vegetation indices

The correlation found between the N 
and K+ leaf contents and the N and K2O soil levels 
were r = 0.684 (p < 0.001) and r = 0.284 (p < 0.05), 
respectively, establishing the higher N response in 
terms of the yield performance of corn, as discussed 
prior (Table 2). Regarding the N concentration in 
the leaves, a significant correlation was seen for 
ten indices, particularly on the EXR (r = -0.479; p 
< 0.001), NDI (r = 0.454; p < 0.001) and VARI (r = 
0.412; p < 0.001), which are shown to be the most 
promising in detecting the nutritional status of corn 

in relation to N (Figure 4A). The other indices also 
revealed a significant correlation; however, with the 
r values below 0.4, such as MGRVI, MPRI, GLI, 
RGI, EXG, CIVE and CI (Figure 4A). As for the K+ 
content in the leaves, the RGI index alone showed 
significant correlation (p < 0.05). The r = 0.222 was 
regarded as low, according to the classification of 
HOPKINS (2000), which disqualifies it as a good 
indicator for the detection of the K+ level in the maize 
leaves (Figure 4B).

These vegetation indices are understood to 
offer promise, even if the use of the RGB bands alone 
was sufficient to distinguish between the spectral 
responses of the corn canopy, depending upon the 
N doses added to the soil. Variations in detecting the 
spectral response of the corn canopy via vegetation 
indices with regards to the levels of soil fertility and 
N concentration in the leaves were also noted in the 
research performed by LI et al. (2014), CILIA et al. 
(2014) and VERGARA-DÍAZ et al. (2016).

In fact, VERGARA-DIAZ et al. (2016) 
derived different vegetation indices using the digital 
RGB images at the levels of the leaf and canopy and 
assessed as inexpensive tools in corn fertilization 
management. The effectiveness of the RGB indices 
was compared with that of the other indices that 
employ bands in the near infrared region, like the 

Figure 3 - Regression equations for leaf N content, grain yield and leaf K+ content as a 
function of soil N levels. Magalhães de Almeida, MA, 2019.



8

Ciência Rural, v.51, n.8, 2021.

Junior et al.

NDVI (Normalized Difference Vegetation Index), 
and the leaf chlorophyll concentration (LCC - 
Leaf Chlorophyll Content) during flowering. The 
conclusion drawn by the authors was that the grain 
productivity and N levels in the leaves at the evaluated 
levels of fertilization were emphatically anticipated 
by the majority of the RGB indices (with R2 ± 0.7), 
closely corresponding to the NDVI and LCC.

It was CILIA et al. (2014) who employed 
the vegetation indices of the hyperspectral remote 
sensing images to assess the techniques of mapping 
the nitrogen levels in the corn crop. Based on the 
Nitrogen Nutrition Index (NNI) the nitrogen status 
was determined, interpreted as the ratio between the 
N content of the leaves and the minimum N content 
necessary for the maximum dry biomass yield. 
The best performances were seen by the MCARI 
/ MTVI2 index (Modified Chlorophyll Absorption 
Proportion Index / Modified Triangular Vegetation 
Index 2) in evaluating the N content in the leaves 
(R2 = 0.59) and MTVI2 in determining the dry 
biomass (R2 = 0.80). The NNI map concurred with 
the estimated NNI using field data, employing the 
traditional destructive measurements (R2 = 0.70), 
to confirm the potential of using the remotely detected 
indices in the assessment of the nutritional status of 
corn related to N levels.

In their study, ABRAHÃO et al. (2009) 
estimated the nutritional status of Tanzania grass at 

different levels of soil N (0, 80, 60 and 320 kg ha-1) 
employing RGB vegetation indices. They determined 
that not only did the VARI index best discriminate the 
nitrogen added, at all the times of the evaluation being 
investigated, it also revealed the highest correlation 
with the readings of the chlorophyll and dry mass. 
Later, ISLA et al. (2011) indicated that the GNDVI 
and GRVI indices showed much promise as well, in 
the detection of the nutritional status of corn with 
respect to N, particularly during the developmental 
stages of V6-V8. It was GHOLIZADEH et al. (2011) 
who identified a high degree of correlation between 
the EXR index and N level in the rice leaves induced 
by the soil N levels (0, 85 and 170 kg ha-1).

It was also noteworthy that the Pearson’s 
correlation values of 0.3 to 0.6 were commonly 
identified in works done to assess the nutritional 
status of agricultural crops by the use of RGB 
vegetation indices (LI et al., 2014; CILIA et al., 2014; 
VERGARA-DÍAZ et al., 2016; RASMUSSEN et 
al., 2016).

Vegetation indices in response to soil N and K2O levels
From the analysis of variance, the interaction 

between the N and K2O showed significance for the 
vegetation indices EXR (p < 0.05) and NDI (P < 
0.05), while the VARI (p < 0.001) responded to the 
N application alone (Table 3). It is significant that 
the EXR and NDI indices could detect the spectral 

Figure 4 - Pearson’s correlation between vegetation indices and the content of N and K+ in the leaves in response to the levels of N 
and K2O applied in the soil. A: N content in leaves; B: K+ content in the leaves. Significance levels by the t test: ns p > 0.1; 
° p < 0.1; * p< 0.05; ** p< 0.01; *** p < 0.001.
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response of the interaction between the soil N and 
K2O concentrations; however, this interaction was 
absent with respect to the agronomic response to the 
N and K+ levels in the leaves and grain productivity 
(Table 2).

For the EXR index, the response surface 
was adjusted to a 1st degree polynomial model 
(y = a + bx + by + dxy), with R2 = 0.656, with 
significance at 5% by the F test, with the model 
coefficients showing significance at 0.1% (b) and 10% 
(c and d), by t test, and the standard error of estimate 
equal to 0.0104. The EXR values are lowered as the 
rise in the soil N and K2O levels reach up to 100 kg 
ha-1 of N, following which the decrease in the EXR 
begins to take place by a drop in the soil K2O levels. 
The NDI showed a similar trend which was also 
adjusted to the 1st degree polynomial model, just 
as it was adjusted for the EXR (Figures 5A and 5B). 
A nutritional evaluation work done by VERGARA-
DIAZ et al. (2016) on corn in relation to N (0, 10, 
20, 80 and 160 kg ha-1) using RGB images, found 
that the indices showing promise in identifying the N 
showed sensitivity to the variations in the N content 
of leaves up to the 80 kg ha-1 level of N; however, 
none of them was significantly related to the 160 
kg ha-1 level of N.

The highest EXR (0.146) value was seen 
with the combined lowest doses of N and K2O (0 N 
- 0 K2O); the lowest value (0.104) value was noted 
with 180 kg ha-1 level of N and 0 kg ha-1 level of K2O. 
From the isoquants, the ranges of the EXR and NDI 
values associated with the different levels of N and 
K2O present in the soil can be identified (Figures 
5C and 5D), which facilitates the detection of the 
nutritional status of corn based on these indices. 

When the EXR value is 0.146 it means that the soil 
has both N and K2O in low levels (0 to 20 kg ha-1); 
however, when the EXR is 0.118 it suggests that the 
soil N levels (160 to 180 kg ha-1) and K2O levels (120 
to 140 kg ha-1) are high. With respect to the NDI, a 
value of 134.0 indicates that the soil has low N and 
K2O levels (0 to 20 kg ha-1). When the NDI value is 
138.8 it implies that the soil has high N (160 to 180 kg 
ha-1) and K2O levels (120 to 140 kg ha-1).

High levels of soil N and K2O are indicated 
when the EXR value is 0.117 and the NDI is 138.8. 
This is linked to a high average grain productivity of 
around 8,520.4 kg ha-1, while the values of EXR and 
NDI, 0.146 and 134.0, respectively are linked to low 
average grain production (5,430.2 kg ha-1). This has 
been attributed to the low N and K2O availability in 
the soil (Figure 3). Therefore, for the farmer, the use 
of remote detection of the nutritional status of corn 
through the EXR and NDI indices is very useful in 
helping him to decide whether to increase or decrease 
the application of the nitrogen and / or potassium 
fertilizers, to optimize the grain yield.

The VARI index adjusted to a polynomial 
model of the 1st degree, as a response to the soil N 
levels, shows higher quality of the indicators R2, 
RMSE, nRMSE and S when compared with the 
other models (Figure 6). High VARI values of 0.1283 
suggest high N levels in the soil (180 kg ha-1), which 
induces high grain productivity on average (8,520.4 
kg ha-1) (Figure 3). However, the low VARI values 
(0.097) reveal lowered N levels in the soil, which 
are unfavorable to achieving satisfactory grain yield 
(5,430.2 kg ha-1) (Figure 3).

It was CILIA et al. (2014) and VERGARA-
DÍAZ et al.  (2016) who obtained the linear relationship 

Table 3 - Analysis of variance (MS) for the vegetation indices in response to the levels of N and K2O in the soil. Magalhães de Almeida, 
MA, 2019. 

 

SV DF -------------EXR------------ ---------------NDI-------------- --------------VARI--------------- 

Blocks 2 0.00642 *** 277.850 *** 0.01515 *** 

Nitrogen (N) 3 0.00328 *** 76.426 *** 0.00332 *** 

Potassium (K2O) 3 0.00004 ns 6.714 ns 0.00078 ns 
N versus K2O 9 0.00070 * 16.464 * 0.00068 ns 
Residue 30 0.00024  5.409  0.00050  
CV (%)  12.03  1.72  23.20  

 

SV: source of variation; N: nitrogen levels in the soil; K2O: potassium levels in the soil; DF: degrees of freedom; CV (%): coefficient of 
variation (%); EXR: Excess Green Index; NDI: Normalized Difference Index; VARI: Visible Atmospherically Resistant Index. 
Significance levels by the F test: ns p>0.1; ° p<0.1; * p<0.05; ** p<0.01; *** p<0.001. 
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between the N concentration in the corn leaves and 
vegetation indices. This trend was also noted for the 
N level in the leaves and the grain produced (Figure 
3). In fact, VIÑA et al. (2004) in their assessment of 
the phenological development of corn with the help 
of RGB images, came to understand that the VARI 
index is highly sensitive to the response to the leaf 
chlorophyll content. From these authors it is evident 
that this index may be indicative of an early stress 
phase in the crop because one of the symptoms 
suggestive of stress with respect to N is the drop in 
the leaf chlorophyll content (SRIDEVY et al., 2018).

CONCLUSION

Significant correlation was observed for 
the EXR, NDI and VARI indices with the leaf N 
content, which endorses them as encouraging in the 
identification of the nutritional status of corn with 
respect to N.

The nutritional status of corn could not be 
detected with regards to potassium, by even one of 
the indices assessed. The EXR and NDI indices were 
able to capture the interaction between the N and K2O 
levels in the soil.

Figure 5 - Response surfaces for the EXR (A, C) and NDI (B, D) indices as a function of the levels of N and K2O in the soil. Magalhães 
de Almeida, MA, 2019.
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