Erratum

In the article "Methane emission from a flooded rice field under pre-germinated system" published in Ciência Rural, volume 49, number 11, DOI http://dx.doi.org/10.1590/0103-8478cr20190336.

In the ABSTRACT, where we read:
The study showed high seasonal emission of methane (CH$_4$) for the studied area, probably due to the long flooding period. It was estimated the CH$_4$ emission factor (6.51 kg CH$_4$ ha$^{-1}$ dia$^{-1}$), the partial global warming potential (pGWP, 27.2 Mg CO$_2$eq growing season$^{-1}$ ha$^{-1}$) and the yield-scaled pGWP (YpGWP, 3.9 kg CO$_2$eq kg grain).

Read:
The study showed high seasonal emission of methane (CH$_4$) for the studied area, probably due to the long flooding period. It was estimated the CH$_4$ emission factor (6.2 kg CH$_4$ ha$^{-1}$ dia$^{-1}$), the partial global warming potential (pGWP, 26.2 Mg CO$_2$eq growing season$^{-1}$ ha$^{-1}$) and the yield-scaled pGWP (YpGWP, 3.9 kg CO$_2$eq kg grain).

In the RESUMO, where we read:
Foi estimado o fator de emissão de CH$_4$ (6,51 kg CH$_4$ ha$^{-1}$ dia$^{-1}$), o potencial de aquecimento global parcial (PAGp, 27,2 Mg CO$_2$eq estação de crescimento$^{-1}$ ha$^{-1}$) e o PAGp escalonado pelo rendimento (R) de grãos (PAGpR, 3,9 kg CO$_2$eq kg$^{-1}$ grão).

Read:
Foi estimado o fator de emissão de CH$_4$ (6,2 kg CH$_4$ ha$^{-1}$ dia$^{-1}$), o potencial de aquecimento global parcial (PAGp, 26,2 Mg CO$_2$eq estação de crescimento$^{-1}$ ha$^{-1}$) e o PAGp escalonado pelo rendimento (R) de grãos (PAGpR, 3,9 kg CO$_2$eq kg$^{-1}$ grão).
In the text, where we read:
The mean daily CH\textsubscript{4} emission was estimated as 616 mg of CH\textsubscript{4} m-2 d-1 (CV: 17.15\%) and the accumulated emission during the season was 93.60 g CH\textsubscript{4} m-2 (CV: 17.15\%), corresponding to a CH\textsubscript{4} emission factor of 6.51 kg CH\textsubscript{4} ha-1 d-1, which is five times higher than the average indicated by the IPCC (2006), of 1.30 kg CH\textsubscript{4} ha-1 d-1.

Read:
The mean daily CH\textsubscript{4} emission was estimated as 616 mg of CH\textsubscript{4} m-2 d-1 (CV: 17.15\%) and the accumulated emission during the season was 93.60 g CH\textsubscript{4} m-2 (CV: 17.15\%), corresponding to a CH\textsubscript{4} emission factor of 6.2 kg CH\textsubscript{4} ha-1 d-1, which is five times higher than the average indicated by the IPCC (2006), of 1.30 kg CH\textsubscript{4} ha-1 d-1.

In the text, where we read:
Data of these variables are presented in the Figure 1C. Plant and floodwater height, soil and water pH, and oxide-reduction potential showed no significant correlations with CH\textsubscript{4} emissions. pGWP was evaluated as 26.2 Mg CO\textsubscript{2}eq ha-1 GS-1. Rice production was estimated as 6.8 t ha-1, the value calculated for YpGWP being 3.9 kg CO\textsubscript{2}eq kg-1 of grains, a value much higher than those reported in the literature (Table 2). This study resulted in a CH\textsubscript{4} emission factor (6.5 kg CH\textsubscript{4} ha-1 d-1) for an irrigated rice production system typically used in the state of São Paulo, thus contributing to national and regional databases on CH\textsubscript{4} emission factors, which are critical for improving greenhouse gas emission estimates.

Read:
Data of these variables are presented in the Figure 1C. Plant and floodwater height, soil and water pH, and oxide-reduction potential showed no significant correlations with CH\textsubscript{4} emissions. pGWP was evaluated as 26.2 Mg CO\textsubscript{2}eq ha-1 GS-1. Rice production was estimated as 6.8 t ha-1, the value calculated for YpGWP being 3.9 kg CO\textsubscript{2}eq kg-1 of grains, a value much higher than those reported in the literature (Table 2). This study resulted in a CH\textsubscript{4} emission factor (6.2 kg CH\textsubscript{4} ha-1 d-1) for an irrigated rice production system typically used in the state of São Paulo, thus contributing to national and regional databases on CH\textsubscript{4} emission factors, which are critical for improving greenhouse gas emission estimates.