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INTRODUCTION

Genomic selection (GS) presents high 
accuracy in predicting genomic breeding values, 
accelerating the process of genetic improvement 
(SINGH et al., 2019; LIU et al., 2019). Statistical 
methodologies generally used for genomic prediction, 
such as RR-BLUP, G-BLUP, Bayes A, and Bayes B 
(MEUWISSEN et al., 2001), are based on errors and; 
consequently, phenotypic values normality assumptions. 

The employment of computational intelligence-based 
methods to predict genomic breeding values is increasing 
(SOUSA et al., 2021; KUJAWA & NIEDBAŁA, 2021). 
Compared to statistical methods for predicting genomic 
values, such methodologies do not require assumptions 
about the model, making them more flexible for a wide 
range of problems (ROSADO et al., 2022). Specifically, 
such flexibility allows one to deal naturally with different 
types of non-additive genetic effects, like dominance 
and epistasis. 
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ABSTRACT: Quantile Random Forest (QRF) is a non-parametric methodology that combines the advantages of Random Forest (RF) and 
Quantile Regression (QR). Specifically, this approach can explore non-linear functions, determining the probability distribution of a response 
variable and extracting information from different quantiles instead of just predicting the mean. This evaluated the performance of the QRF in 
the genomic prediction for complex traits (epistasis and dominance). In addition, compare the accuracies obtained with those derived from the 
G-BLUP. The simulation created an F2 population with 1,000 individuals and genotyped for 4,010 SNP markers. Besides, twelve traits were 
simulated from a model considering additive and non-additive effects, QTL (Quantitative trait loci) numbers ranging from eight to 120, and 
heritability of 0.3, 0.5, or 0.8. For training and validation, the 5-fold cross-validation approach was used. For each fold, the accuracies of all 
the proposed models were calculated: QRF in five different quantiles and three G-BLUP models (additive effect, additive and epistatic effects, 
additive and dominant effects). Finally, the predictive performance of these methodologies was compared. In all scenarios, the QRF accuracies 
were equal to or greater than the methodologies evaluated and proved to be an alternative tool to predict genetic values in complex traits.
Key words: genomic selection, accuracy, epistasis, dominance, prediction.

RESUMO: Quantile Random Forest (QRF) é uma metodologia não paramétrica, que combina as vantagens do Random Forest (RF) e da 
Regressão Quantílica (QR). Especificamente, essa abordagem pode explorar funções não lineares, determinando a distribuição de probabilidade 
de uma variável resposta e extraindo informações de diferentes quantis em vez de apenas prever a média. O objetivo deste trabalho foi avaliar o 
desempenho do QRF em predizer o valor genético genômico para características com arquitetura genética não aditiva (epistasia e dominância). 
Adicionalmente, as acurácias obtidas foram comparadas com aquelas advindas do G-BLUP. A simulação criou uma população F2 com 1.000 
indivíduos genotipados para 4.010 marcadores SNP. Além disso, doze características foram simuladas a partir de um modelo considerando 
efeitos aditivos e não aditivos, com número de QTL (Quantitative trait loci) variando de oito a 120 e herdabilidade de 0,3, 0,5 ou 0,8. Para 
treinamento e validação foi usada a abordagem da validação cruzada 5-fold. Para cada um dos folds foram calculadas as acurácias de todos os 
modelos propostos: QRF em cinco quantis diferentes e três modelos do G-BLUP (com efeito aditivo, aditivo e epistático, aditivo e dominante). 
Por fim, o desempenho preditivo dessas metodologias foi comparado. Em todos os cenários, as acurácias do QRF foram iguais ou superiores às 
metodologias avaliadas e mostrou ser uma ferramenta alternativa para predizer valores genéticos em características complexas. 
Palavras- chave: Seleção genômica, precisão, epistasia, dominância, predição.
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Among computational intelligence 
methodologies, Random Forest (RF) has proven to 
be an interesting alternative for genomic prediction; 
in addition to possibly increasing the predictive 
performance of the method, it reduces, through the 
selection of variables, problems related to correlated 
variables (BREIMAN, 2001). Such methodology 
has been successfully employed to predict genomic 
breeding values, like the study by BARBOSA et al. 
(2021) that used RF in simulated populations with 
different levels of heritability and loci numbers of 
quantitative characteristics (QTL) in the presence of 
dominant and epistatic effects. These authors reported 
that machine-learning methodologies, such as RF, are 
powerful tools to predict genomic breeding values for 
traits that comprise non-additive genetic architecture. 
In addition, SOUSA et al. (2021) successfully applied 
the methodology in predicting rust resistance in 
Coffea arabica. This study has verified that the RF 
presented higher results, in terms of apparent error 
rate, compared to generalized Bayesian LASSO.

Another method used in GS that is 
robust to the break of assumptions and allows 
one to adjust models along the entire probability 
distribution of the characteristic of interest is 
quantile regression (QR) (KOENKER & BASSET, 
1978). The QR allows the investigation of possible 
issues related to asymmetry and heteroscedasticity 
present in data sets (NASCIMENTO et al., 2019). 
Concerning GS, such a method was used by 
NASCIMENTO et al. (2017) that employed QR to 
estimate genomic breeding value from simulated 
data in different asymmetry scenarios and observed 
that the technique provided better results regarding 
accuracy in the presence of asymmetric phenotypic 
values. In addition, OLIVEIRA et al. (2021) 
evaluated the use of QR considering simulated 
data of autogamous plants with oligogenic 
characteristics and observed better or equal results 
to those obtained by RR-BLUP and BLASSO. 

A methodology that seizes qualities from 
both QR and RF is the Quantile Random Forest 
(QRF) (MEINSHAUSEN, 2006). This approach 
combined the best explanation of a phenomenon 
obtained through QR and increases predictive power 
by using the RF.

 The QRF was ranked among those with 
the best performance in the challenge of predicting 
drug sensitivity in cancer treatment (FANG et al., 
2018; LIND & ANDERSON, 2019), efficiently 
predicted heat waves in Pakistan (KHAN et al., 2019) 
and marine flooding (ROHMER et al., 2020). 

Despite its potential, the QRF has not yet 
been used in the context of GS, so this study aimed: 
i) to propose and evaluate the use of QRF in genomic 
prediction for complex characteristics (inclusion of 
dominance and epistasis effects); ii) to compare the 
accuracy of the QRF with those resulting from the 
G-BLUP methodology.

MATERIALS   AND   METHODS

Experimental data
An F2 population of a diploid species (2n 

= 20) was simulated, containing 1,000 individuals. A 
co-dominant 4,010 markers (locus) of bi-allelic single 
nucleotide polymorphisms (SNPs) were considered, 
distributed equally and equidistantly into 10 binding 
groups (chromosomes) with a size of 200 cm each (401 
markers on each chromosome). With the simulated 
genotypic data of the F2 population, 12 scenarios 
(C1 to C12) were considered, with the number of 
controlling genes (QTLs) equal to 8, 40, 80 or 120, 
distributed equally among the first eight linkage groups 
and heritabilities of 0.3, 0.5 or 0.8 (Table 1).

The phenotypic characteristics of the 12 
scenarios were simulated considering the mean (µ) 
equal to 100 and, coefficient of variation of 10%, 
average degree of dominance (di) equal to 0.5 and 
controlled by a model that also includes epistatic effect:

 in which Yi is the 
phenotypic value for the i observation; µ the overall 
mean; αj is the effect of the favorable allele on the j 
locus and assume the values u + ai, u + di and u - ai 
the genotypic values associated with the classes AA, 
Aa, and aa, respectively, with u as the mean between 
the dominant homozygous (AA) and the recessive 
homozygous (aa); αj αj’ represents the interaction 
between favorable alleles in different loci (epistasis). 
For the variance of errors, we have the errors vector 
ɛ ~ N(0, I Vɛ), in which Vɛ = [(1-h2)Vg]/h

2
  with Vɛ as 

the residual variance, Vg the genotypic variance and 
h2 the heritability.

 

Table 1 - Evaluated scenarios. 
 

Heritability (h2) ---number of controlling genes (QTLs)--- 

 8 40 80 120 
0.3 C1 C4 C7 C10 
0.5 C2 C5 C8 C11 
0.8 C3 C6 C9 C12 
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Quantile random forest (QRF) 
For the construction of the QRF, it is 

necessary to obtain T regression trees generated from 
bootstrap samples considering subsets of markers 
under study, i.e., the construction of trees based on 
Random Forest (HASTIE et al., 2008). Later, for 
each generated tree (Tt), conditional distribution 
is obtained by weighting the observed values of 
the studied characteristic. Specifically, given an 
observation, X = X, it is defined for each terminal 
node (adjusted tree leaf), F(X, Ttf), the following 

weighting factor: 
with , I{Xi∈F(xi,Ttf)} an indicator 
variable stating that the observed value (X = X) 
belongs to f-th leaf and #{m: Xm ∈ F(x,Ttf)} represents 
the number of observations on the f-th leaf. 

The prediction of a tree Tt, according to 
MEINSHAUSEN (2006), for a new point, X = Xnew 
is given by the weighted average of the observations, 
that is, . In this 
way, the prediction for a given observation, X 
= X, after the construction of T trees is given 
by: , in which: 

.  Taking into consideration 
that the estimated cumulative distribution function 
is given by:  
in which I{Yi≤y} is an indicator function, the 
predicted value for the -th quantile is given by  

, for        any        τ, 0 < τ < 1.
The main difference between QRF and RF 

is that for each node in each tree, the RF maintains 
only the average of the observations that fall into 
that node and neglects any other information. 
Conversely, the QRF maintains the value of all node 
observations (not just the average) and evaluates 
conditional distribution based on this information 
(MEINSHAUSEN, 2006).

Genomic best linear unbiased predictor (G-BLUP) 
In order to compare the results obtained 

by Quantile Random Forest, the adjustment of three 
G-BLUP models was considered: i. G-BLUP-A (only 
the additive component), ii. G-BLUP-AD (additive 
component and due to the dominance effect); iii. 
G-BLUP-AE (additive component and due to epistasis 
additive x additive). The description of such models 
can be seen in detail in RESENDE et al. (2014). 

Comparison of methodologies
In order to access the prediction quality 

of the evaluated models, accuracy was used. This 
measure is defined as Pearson’s correlation coefficient 
between the individuals’ simulated genetic values and 
those predicted by the adjusted model. The higher the 
accuracy value, the better the model is in terms of 
prediction capacity, and it can be used in the selection 
phase of new individuals. In this research, the accuracy 
of the QRF was calculated in the quantiles 0.1, 0.3, 
0.5, 0.7, and 0.9 and compared to the accuracy of the 
adjusted G-BLUPs models. 

For training and validation, 5-fold cross-
validation was performed. The data set is divided 
into 5 populations. At the k-th fold (k = 1,..,5), the 
k-th population is used as a validation population. 
The remaining populations were used as a validation 
population. For each of the five folds, the accuracy 
of all the proposed genomic selection models was 
calculated: QRF at quantiles 0.1, 0.3, 0.5, 0.7 and 0.9, 
G-BLUP-A, G-BLUP-AD and G-BLUP-AE and at 
the end, the mean and the standard error between the 
folds was estimated. 

Computational resources
Data simulation was performed on the 

Genes software (CRUZ, 2016). All G-BLUP models 
(with additive, additive and epistatic, additive and 
dominant effect) were adjusted using the Genomic 
Land software (AZEVEDO et al., 2019). To run 
the QRF, it was used the “quantreg Forest” package 
(MEINSHAUSEN, 2017) of the R software (R 
Core Team et al., 2020).

RESULTS   AND   DISCUSSION

Overall, among the three evaluated 
G-BLUPs models (Additive - A, Additive and 
Dominant - AD, Additive and Epistatic - AE), those 
that have non-additive effects in their adjustment, i.e., 
GBLUP - AD and GBLUP - AE, were the ones that 
presented the best accuracy values for all evaluated 
scenarios (Figure 1). This result is reasonable since 
the data used in this study consider dominance and 
epistasis effects in its simulation, indicating that the 
adjustment of non-additive effects is an essential 
factor to be considered in the modeling. Similar results 
have been reported in the literature (CALLEJA-
RODRIGUES et al., 2021; YADAV et al., 2021). 
Specifically, CALLEJA-RODRIGUES et al. (2021) 
showed that genomic prediction is more accurate 
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when considering the inclusion of non-additive effects 
in Pinus sylvestris. YADAV et al. (2021) also obtained 
results that indicate the superiority of the adjustment of 
models with non-additive effects in sugarcane.

Another result that can be highlighted 
is that, with the increase in the number of QTLs, 
there was a significant improvement in the accuracy 
of G-BLUPs methods. This result is justified 
once G-BLUP considers the infinitesimal model 
(AZEVEDO et al., 2015), that is, many genes of little 
effect controlling the characteristic. Thus, genomic 
predictions are based on the kinship obtained from all 
markers and, thus, when more markers have a genetic 
effect, the accuracy of the prediction increases 
(WANG et al., 2018; ZHANG et al., 2019) exhibit an 
advantage on dense markers, and offer the flexibility 
of using different priors. In contrast, genomic best 
linear unbiased prediction (gBLUP). 

Considering, as a basis for comparison 
the G-BLUP models with non-additive effects, the 
construction of models based on the QRF showed 
greater accuracy in the scenarios in which the 
characteristics were controlled by 8 and 40 QTLs 
(Figure 1, Scenarios C1 to C6). In the other scenarios, 
in which at least 80 QTLs control the characteristics, the 
adjustment through the QRF presented results similar 
to those obtained by adjusting the G-BLUP models 
considering non-additive effects (Figure 1, Scenarios 
C7 to C12). BARBOSA et al. (2021), considering 
simulated data, observed that for characteristics 
with the lowest number of QTLs, the multiplicative 
effects of the controlling genes (epistasis) may be 
more important since the individual effect of each 
gene is more significant than in the characteristics 
controlled by a larger number of QTLs. In SOUSA 
et al. (2021), machine learning methodologies were 

Figure 1 - Estimation of the accuracy of the QRF’s models  (QRF_0.1, QRF_0.3, QRF_0.5, QRF_0.7 e 
QRF_0.9), G-BLUP-A (only the additive component), G-BLUP-AD (additive component and 
due to the dominance effect); G-BLUP-AE (additive component and due to epistasis additive x 
additive) for combinations of the number of controlling genes (8, 40, 80 and 120) and heritability 
(0.3, 0.5 and 0.8), represented by scenarios C1 to C12. 
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applied for genomic prediction of rust resistance 
in Coffea arabica. Such a study verified that such 
methodologies, including the RF, presented higher 
results concerning apparent error rate compared to 
generalized Bayesian LASSO.

An interesting feature of the QRF is that, 
like QR, this method enables the adjustment of 
models for all parts of the probability distribution of 
the characteristic, allowing the conditional quantile 
that “better” describes the functional relationship 
between dependent and independent variables to be 
used for prediction (Nascimento et al., 2019). 
In addition, QR does not require assumptions as 
to probability distribution and is robust to outliers 
(Oliveira et al., 2021). In the present study, the 
quantiles 0.1, 0.3, 0.5, 0.7, and 0.9 were considered 
for the construction of the models. It was possible to 
observe, especially for a smaller number of QTLs (8 
and 40 QTLs), that the highest accuracy values were 
observed when considering the models QRF_0.3 
(quantile 0.3) and QRF_0.5 (quantile 0.5).

CONCLUSION

The QRF proved to be able to predict 
genetic values with epistatic gene control in 
characteristics with different degrees of heritability 
and different numbers of QTLs. It was equal to or 
superior to the G-BLUP methodology in all evaluated 
scenarios, presenting higher accuracy even when the 
characteristic is of low heritability.
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