Eficiência técnica da agropecuária nas microrregiões brasileiras e seus determinantes

Technical efficiency of agriculture in the regions of Brazil and its determinants

Wescley de Freitas Barbosa Eliane Pinheiro de Sousa Airton Lopes Amorim Daniel Arruda Coronel Sobre os autores

Resumos

Este estudo pretende mensurar os escores de eficiência técnica da atividade agropecuária nas microrregiões brasileiras e verificar seus determinantes. Para atender esses objetivos, empregaram-se os modelos de análise envoltória dos dados (DEA) e de regressão quantílica. Os dados foram obtidos do Censo Agropecuário (2006), publicado pelo Instituto Brasileiro de Geografia e Estatística. Os resultados do modelo DEA indicaram que a maioria das microrregiões brasileiras apresentou baixa eficiência técnica na produção. Quanto ao modelo de regressões quantílicas, verifica-se que assistência técnica, adubação, crédito concedido e mão de obra familiar constituem fatores relevantes na explicação das diferenças de eficiência técnica das microrregiões brasileiras em todos os quantis estimados.

eficiência técnica; agropecuária; microrregiões brasileiras


This study intends to measure the scores of technical efficiency of agriculture and cattle raising activity in the 556 Brazilian microregions and to check their determinants. In order to achieve these goals, the data envelopment analysis models (DEA) and the quantile regression were used. The data were obtained from the Agricultural and Cattle raising Census (2006) published by the Brazilian Geography and Statistics Institute - IBGE. The results of the DEA model indicated low technical efficiency in production. So far as the quantile regression model is concerned, one can observe that technical assistance, fertilization, granted credit and family labor constitute relevant factors in accounting for the differences of technical efficiency of Brazilian microregions in all amounts estimated.

technical efficiency; agriculture and cattle raising; Brazilian microregions


Eficiência técnica da agropecuária nas microrregiões brasileiras e seus determinantes

Technical efficiency of agriculture in the regions of Brazil and its determinants

Wescley de Freitas BarbosaI,1 1 Autor para correspondência. ; Eliane Pinheiro de SousaI; Airton Lopes AmorimII; Daniel Arruda CoronelIII

IDepartamento de Economia, Universidade Regional do Cariri (URCA), 63105-000, Crato, CE, Brasil. E-mail: barbosa.wescley@gmail.com

IIDepartamento de Economia Aplicada, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brasil

IIIDepartamento de Administração, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil

RESUMO

Este estudo pretende mensurar os escores de eficiência técnica da atividade agropecuária nas microrregiões brasileiras e verificar seus determinantes. Para atender esses objetivos, empregaram-se os modelos de análise envoltória dos dados (DEA) e de regressão quantílica. Os dados foram obtidos do Censo Agropecuário (2006), publicado pelo Instituto Brasileiro de Geografia e Estatística. Os resultados do modelo DEA indicaram que a maioria das microrregiões brasileiras apresentou baixa eficiência técnica na produção. Quanto ao modelo de regressões quantílicas, verifica-se que assistência técnica, adubação, crédito concedido e mão de obra familiar constituem fatores relevantes na explicação das diferenças de eficiência técnica das microrregiões brasileiras em todos os quantis estimados.

Palavras-chave: eficiência técnica, agropecuária, microrregiões brasileiras.

ABSTRACT

This study intends to measure the scores of technical efficiency of agriculture and cattle raising activity in the 556 Brazilian microregions and to check their determinants. In order to achieve these goals, the data envelopment analysis models (DEA) and the quantile regression were used. The data were obtained from the Agricultural and Cattle raising Census (2006) published by the Brazilian Geography and Statistics Institute - IBGE. The results of the DEA model indicated low technical efficiency in production. So far as the quantile regression model is concerned, one can observe that technical assistance, fertilization, granted credit and family labor constitute relevant factors in accounting for the differences of technical efficiency of Brazilian microregions in all amounts estimated.

Key words: technical efficiency, agriculture and cattle raising, Brazilian microregions.

INTRODUÇÃO

A atividade agropecuária sempre esteve entre as atividades produtivas mais importantes da economia brasileira. Ao longo dos anos, essa atividade passou por sucessivas transformações que culminaram na melhoria do padrão de produção do setor agropecuário do país. Dentre as principais transformações, pode-se citar o uso mais intensivo de tecnologias no processo produtivo, mais especificamente, o uso de máquinas agrícolas modernas, adequação de novas culturas ao clima e ao solo, e o apoio governamental que levaram a uma significativa ampliação da produtividade nesse setor (SOUSA et al, 2011).

Em 2010, o setor agropecuário foi responsável por 6,8% do Produto Interno Bruto (PIB) brasileiro (que passou de R$ 41,8 bilhões, em 1970, para R$ 51,5 bilhões em 1995, chegando a quase R$ 3,7 trilhões em 2010) e por 31% do total das exportações brasileiras (que passou de US$ 9,5 bilhões, em 1989, para US$ 13,6 bilhões em 1995, chegando a US$ 63,5 bilhões em 2010), conforme o Instituto Brasileiro de Geografia e Estatística (IBGE, 2010) e o Instituto de Pesquisa Econômica Aplicada (IPEA, 2012).

Convém destacar que, como observado por GOMES & BATISTA (2004), ampliações da produtividade e da eficiência na agropecuária de forma mais equitativa entre os estados brasileiros são algumas metas mais importantes que os governos têm perseguido ao longo do tempo. Por meio de aumentos na produtividade e, consequentemente, da produção, os formuladores de políticas públicas buscam manter o homem no campo, aumentar a renda dos produtores rurais e melhorar o saldo da balança comercial. Tendo em vista que a agropecuária é um dos setores da economia que mais gera excedente exportável, torna-se importante avaliar e propor alternativas que possam melhorar a alocação dos recursos disponíveis.

Assim, torna-se relevante analisar se a produção está sendo realizada de forma eficiente em todas as regiões. Estudos dessa natureza, que buscaram avaliar a eficiência técnica da agropecuária nas microrregiões brasileiras, foram desenvolvidos, por exemplo, por NOGUEIRA (2005) e ALMEIDA (2012), sendo que o primeiro empregou os dados do Censo Agropecuário 1995/1996 e utilizou o método de análise envoltória dos dados (DEA). Entretanto os determinantes da eficiência foram identificados por meio do modelo Tobit e não pela regressão quantílica, que capta esses fatores em diferentes quantis, como é o caso do presente estudo. Já o segundo adotou a estimação da fronteira de produção estocástica.

Nesse sentido, o objetivo deste trabalho foi medir a eficiência da agropecuária nas microrregiões brasileiras. Especificamente, pretendeu-se mensurar os escores de eficiência técnica da agropecuária dessas microrregiões e verificar seus determinantes para as microrregiões com diferentes níveis de eficiência.

MATERIAL E MÉTODOS

As áreas de estudo deste trabalho contemplaram 524 das 558 microrregiões brasileiras, seguindo a classificação do Instituto Brasileiro de Geografia e Estatística (IBGE, 2012). Para diferenciar as microrregiões em termos do nível de eficiência, utilizou-se o método não-paramétrico, conhecido como Análise Envoltória de Dados (DEA). A utilização dessa metodologia deve-se, primeiro, ao fato de ela incorporar a característica multi-produto e multi-insumo da agropecuária e, segundo, pela não necessidade de se especificar formas funcionais nem informações sobre preços. Esse método baseia-se no trabalho proposto por FARRELL (1957) e generalizado por CHARNES et al. (1978).

No método DEA, busca-se construir uma fronteira linear por partes a partir de uma amostra de insumos e produtos observados para diferentes unidades tomadoras de decisão (DMUs - Decision Making Units). Utilizando-se de medidas radiais e de distância, avalia-se a eficiência das unidades de produção em relação à distância da fronteira construída com os benchmarks (os mais eficientes). Neste estudo, a DMU representa a microrregião brasileira.

CHARNES et al. (1978) desenvolveram, a princípio, esse modelo, que ficou conhecido na literatura por modelo CCR, em virtude das iniciais de seus nomes, mas também é comumente representado por CRS (Constant Returns to Scale), uma vez que se pressupõem retornos constantes à escala. Para COELLI et al. (1998), o modelo DEA com retornos constantes pode ser expresso pela equação (1):, em que 1 ≤ θ< ∞ corresponde ao escore de eficiência técnica bruto das DMUS. (θ -1) é o aumento proporcional na produção que poderia ser obtido pela i-ésima DMU, mantendo-se constante a utilização dos insumos. O valor médio deste lapso de eficiência técnica das DMU's pode ser obtido pela fórmula (-1) , onde corresponde à média de θ. 1/θ corresponde ao escore de eficiência padronizado de uma DMU, variando de zero a um; y é o produto da DMU e x é o insumo. X é a matriz de insumos (n x k) e Y é a matriz de produtos (n x m); λ é o vetor de constantes que multiplica a matriz de insumos e produtos.

Conforme FERREIRA & GOMES (2009), o pressuposto de retornos constantes de escala possibilita que se represente essa tecnologia empregada por meio de uma isoquanta unitária. Sobre essa fronteira, o escore de eficiência é igual à unidade, indicando que a DMU analisada é completamente eficiente. Sob a orientação insumo, um escore igual a um sinaliza que não é possível manter a produção com uso de menos insumos e sob a orientação produto; um escore igual a um aponta que não se pode aumentar a produção com o mesmo nível de insumos. Neste trabalho, adotou-se a orientação produto, ou seja, buscou-se obter os escores de eficiência considerando o aumento proporcional no valor da produção sem alterar a quantidade utilizada de insumos.

Em 1984, surgiu o modelo BCC, que teve essa denominação baseada nas iniciais de seus formuladores: BANKER et al (1984). Esse modelo considera retornos variáveis, que podem assumir rendimentos crescentes ou decrescentes de escala na fronteira eficiente e também é conhecido como VRS (Variable Returns to scale). Nesse caso, conforme COELLI et al. (1998), o modelo DEA com retornos variáveis pode ser dado pela equação (2):, em N1 que é um vetor (N x 1) de algarismos unitários.

Segundo COELLI et al. (1998), se o escore de eficiência técnica for diferente nos dois modelos, significa que a DMU considerada contém ineficiência de escala. Nesse sentido, conforme FERREIRA & GOMES (2009), a eficiência técnica global das unidades produtivas pode ser constituída por duas formas de eficiência: a pura eficiência técnica e a eficiência de escala, sendo que esta última corresponde ao quociente entre o escore obtido no modelo CRS e o encontrado no modelo VRS.

De acordo com GOMES & BAPTISTA (2004), uma DMU opera com retornos constantes à escala quando o escore de eficiência de escala for igual a um. Entretanto, poderão ocorrer retornos crescentes ou decrescentes quando a medida de eficiência de escala for menor que a unidade. Para identificar a natureza da escala de uma DMU, devem-se comparar os coeficientes de eficiência técnica no modelo com retornos não crescentes e no modelo com retornos variáveis, de modo que, se esses valores forem distintos, a DMU terá retornos crescentes à escala e, se forem iguais, ocorrerá a presença de retornos decrescentes à escala.

As variáveis consideradas foram: área dos estabelecimentos agropecuários, exceto a área que abrange matas e/ou florestas naturais destinadas à preservação permanente ou reserva legal, terras degradadas e inaproveitáveis para agricultura ou pecuária (em hectares); máquinas e implementos agrícolas (expressos em unidades); e pessoal ocupado (número de trabalhadores empregados na atividade agropecuária em 31/12) como inputs do modelo e o valor da produção agropecuária (que corresponde à soma entre o valor da produção animal e vegetal, expressa em mil reais), como output do modelo DEA.

Neste estudo, a operacionalização de tais modelos foi realizada por meio do software DEAP 2.1 (COELLI, 1996). Entretanto, antes de mensurar os escores de eficiência técnica, buscou-se identificar os potenciais outliers, com o intuito de removê-los da análise para que tais resultados não sejam comprometidos e tornem-se mais robustos. A identificação de outliers foi baseada no método Jackstrap, proposto por SOUSA et al. (2005). Essa técnica consiste na combinação do teste Jacknife com o método de reamostragem Bootstrap. O procedimento é construir uma medida de leverage, que mede a influência de cada DMU sobre as demais, sendo que aquelas que tiverem maiores influências devem ser descartadas da análise.

Utilizaram-se bolhas de 83 DMU's, que correspondem a 15% do total em 2000 reamostragens. Para definir o ponto de corte, aplicou-se a função Heaviside, constatando a existência de 34 microrregiões com valores atípicos, sendo excluídas deste estudo. Portanto, foram consideradas 524 microrregiões brasileiras.

Para identificar os fatores que influenciam o nível de eficiência técnica da agropecuária nas microrregiões brasileiras, empregou-se o modelo de regressão quantílica, proposto, a princípio, por KOENKER & BASSETT (1978). Segundo esses autores, a regressão quantílica θ pode ser representada pela equação (3):, em que:ρθ é a função check definida por: P0

Supondo que as variáveis explicativas não influenciam igualmente os diferentes níveis de eficiência técnica da agropecuária brasileira, foram estimadas regressões para os quantis: 0,25; 0,50; e 0,75, com o intuito de verificar os efeitos dos fatores determinantes desses níveis de eficiência técnica ao longo da distribuição, em que o θth refere-se ao quantil condicional do grau de eficiência técnica, podendo ser expresso pela Equação (4):, em que Y1corresponde aos escores de eficiência técnica obtidos no modelo DEA, sob a pressuposição de retornos constantes de escala; X1,X2, X3,X4,X5 e X6 referem-se, respectivamente, à participação relativa de estabelecimentos agropecuários que realizaram adubação em sua terra; que receberam orientação técnica regular; que tiveram acesso ao financiamento; em que o produtor exerce atividades não agropecuárias; que possuem Cadastro Geral de Pessoa Jurídica (CNPJ) com o intuito de captar se tais estabelecimentos são formalizados e a participação relativa da mão de obra familiar em relação à mão de obra total utilizada nos estabelecimentos agropecuários. Esse método foi estimado através do software STATA 11.

Os dados de todas as variáveis utilizadas neste estudo tanto no método DEA quanto no método de regressão quantílica foram obtidos no Censo Agropecuário 2006 (IBGE, 2012).

RESULTADOS E DISCUSSÃO

Com base nos dados pesquisados, constata-se que, no modelo com retornos constantes de escala, as microrregiões brasileiras podem aumentar, em média, 273,8% o valor da produção dos estabelecimentos agropecuários, dados os insumos de que dispõem. Considerando a suposição de retornos variáveis de escala, um crescimento médio de 241,3% do valor da produção faz com que as microrregiões ineficientes passem a fazer parte da fronteira de retornos variáveis. No tocante à eficiência média de escala, pode-se inferir que a agropecuária nas microrregiões em análise pode melhorar significativamente sua produção caso passe a atuar utilizando os insumos na escala correta. A partir dos coeficientes de variação, verifica-se que o setor agropecuário apresenta uma menor heterogeneidade quanto à escala de produção do que em relação ao uso indevido dos insumos.

Os dados contidos na tabela 1 também revelam que 68,7% das microrregiões brasileiras apresentaram medida de eficiência da agropecuária inferior a 0,50, sob a pressuposição de retornos constantes à escala (CRS), enquanto apenas 4,58% das microrregiões, que correspondem a 24, alcançaram a máxima eficiência técnica para esse setor.

Ao se incorporar uma restrição de convexidade, nota-se que 62,6% das microrregiões registraram escores de eficiência técnica da agropecuária menor do que 0,50; ao passo que 6,49% das microrregiões, equivalente a 34, mostraram-se totalmente eficientes. Em outros termos, 10 microrregiões a mais do que no modelo CRS encontram-se na fronteira de retornos variáveis (VRS), porém não estão na fronteira de retornos constantes. Esse resultado indica que essas microrregiões possuem problemas quanto à escala inadequada de produção.

No tocante à eficiência de escala, os dados indicam que das 556 microrregiões estudadas, 121 delas obtiveram o escore máximo de eficiência de escala, sendo que 24 alcançaram o valor unitário, decorrente do fato de terem atingido a máxima eficiência nos modelos com retornos constantes e variáveis de escala, enquanto as demais 97 microrregiões obtiveram esse resultado devido ao fato de terem apresentado o mesmo escore de eficiência técnica, tanto no modelo CRS quanto no modelo VRS. Isso significa dizer que 23,1% das microrregiões brasileiras estão operando seus estabelecimentos agropecuários sem problema de escala. Entretanto, parcela majoritária das microrregiões analisadas (76,9%) apresentou ineficiência de escala, já que obtiveram escore de eficiência de escala menor que a unidade.

Dessa forma, torna-se relevante identificar a natureza dessa ineficiência, ou seja, se pode ser atribuída à presença de retornos crescentes ou decrescentes à escala. Para contemplar essa questão, a tabela 2 mostra as participações absolutas e relativas dos tipos de retornos de escala existentes no setor agropecuário nas microrregiões brasileiras. Esses resultados apontam a predominância de retornos decrescentes à escala em todas as regiões do país, com exceção da região Centro Oeste, que apresenta maior concentração de retornos crescentes à escala. Portanto, pode-se inferir que, excetuando o Centro-Oeste brasileiro, em todas as demais regiões, o aumento da produção ocorre devido aos custos médios crescentes.

Os resultados da estimação de regressão quantílica encontram-se na tabela 3. Observa-se que todas as variáveis consideradas apresentaram coeficientes estatisticamente significantes nos três quantis estudados, variando apenas o nível de significância deles, com exceção da variável formalização do produtor, que não obteve coeficiente estatisticamente significante em nenhum dos quantis estimados e o coeficiente da variável referente à prática de atividades não agropecuárias pelo produtor rural, que se mostrou significante apenas na parte inferior da distribuição.

A prática de adubação pelos produtores nos estabelecimentos agropecuários contribui para a melhoria do grau de eficiência da agropecuária nas microrregiões brasileiras. Essa relação positiva é esperada, uma vez que a utilização da adubação proporciona maior produtividade ao fator terra, garantindo, dessa forma, a ampliação da produção em um mesmo espaço territorial.

O parâmetro da variável acesso à assistência técnica regular apresentou uma relação direta com o nível de eficiência da agropecuária nas microrregiões analisadas em todos os quantis estimados. Essa relação positiva também é verificada por NOGUEIRA (2005), que constata um incremento no índice de eficiência técnica quando há um aumento do número de estabelecimentos agropecuários que recebem assistência técnica. Portanto, é relevante que os produtores agropecuaristas sejam acompanhados e orientados por técnicos de forma contínua e com qualidade para que possam se tornar mais eficientes.

Quanto à participação relativa da utilização da mão de obra familiar em relação à mão de obra total, verifica-se a existência de uma relação negativa com a eficiência técnica da agropecuária na microrregião em análise. Esse resultado permite inferir que, apesar de, comumente, minimizarem-se custos com a adoção de trabalhadores familiares, eles não são tão eficientes como os trabalhadores contratados, que são remunerados para exercer a atividade agropecuária. Dessa forma, o acréscimo de estabelecimentos agropecuários que empreguem mão de obra familiar pode ocasionar uma redução da eficiência técnica.

No tocante ao acesso ao crédito, observa-se que, quanto maior a proporção de estabelecimentos agropecuaristas nas microrregiões brasileiras que tiveram acesso ao crédito, menor será o seu nível de eficiência técnica, tendo em vista o sinal negativo do parâmetro estimado em todos os quantis da tabela 3. Além disso, constata-se que a magnitude do seu efeito aumenta em estabelecimentos mais eficientes. Esse resultado pode ser explicado por conta do acesso ao crédito proporcionar ao produtor maior quantidade de recursos disponíveis, levando muitas vezes a sua aplicação de forma irracional, como, por exemplo, na aquisição excessiva de alguns insumos ou aplicação dos recursos em outras atividades.

A elevação da proporção de agropecuaristas participando em atividades não agropecuárias reduz a eficiência técnica da atividade nas microrregiões estudadas no quantil 0,25. Esse resultado está de acordo com o esperado, haja vista que a participação em tais atividades reduz o nível de dedicação do produtor à atividade agropecuária, prejudicando a administração da alocação dos recursos na gestão da atividade.

A regressão estimada demonstra que a participação relativa de estabelecimentos agropecuaristas formalizados, ou seja, que possuem registro no Cadastro Geral de Pessoa Jurídica (CNPJ), não influencia o seu nível de eficiência técnica, haja vista que o seu parâmetro, estatisticamente, iguala-se a zero.

CONCLUSÃO

Os escores de eficiência técnica obtidos por meio do método de análise envoltória dos dados sob orientação produto sinalizaram que as microrregiões brasileiras podem aumentar, em média, 273,82% o valor da produção dos estabelecimentos agropecuários, sem alterar a quantidade utilizada de insumos, quando se admitem retornos constantes de escala e devem expandir 241,25% seu valor de produção para que tais microrregiões ineficientes passem a fazer parte da fronteira de retornos variáveis.

Em termos de eficiência de escala, os dados indicaram que parcela majoritária das microrregiões analisadas apresentou ineficiência de escala, sendo que, excetuando o Centro- Oeste brasileiro, verificou-se a predominância de retornos decrescentes à escala em todas as regiões do país, permitindo inferir que o aumento da produção pode ser atribuído aos custos médios crescentes.

Do ponto de vista explicativo, pode-se observar que a eficiência técnica da agropecuária das microrregiões brasileiras é influenciada, positivamente, por fatores como adubação da área plantada e assistência técnica e, negativamente, por fatores como mão de obra familiar e acesso ao crédito em todos os quantis analisados. Ademais, a formalização dos estabelecimentos agropecuários não representou uma variável relevante para explicar os distintos graus de eficiência.

Por fim, vale destacar que a baixa eficiência técnica da agropecuária necessita ser equacionada por políticas públicas que incentivem o acesso e utilização da assistência técnica e pela melhoria da estrutura de gestão da produção.

Recebido 03.10.12

Aprovado 31.05.13

Devolvido pelo autor 09.08.13

CR-2012-0934.R1

  • ALMEIDA, P. N. A. Fronteira de produção e eficiência técnica da agropecuária brasileira em 2006 Piracicaba, SP: ESALQ USP, 2012. 205 p. Tese (Doutorado em Economia Aplicada) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 2012.
  • BANKER, R. D. et al. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, v. 30, n. 9, p. 1078-1092, 1984.
  • CHARNES, A., COOPER, W.W., RHODES, E. Measuring the efficiency of decision making units. European Journal of Operational Research, v. 2, n. 6, p. 429-444, 1978.
  • COELLI, T.; RAO, D.S.P.; BATTESE, G. E. An introduction to efficiency and productivity analysis. Norwell: Kluwer Academic, 1998. 331p.
  • COELLI, T. J. A Guide to DEAP Version 2.1: a Data Envelopment Analysis (Computer) Program. Armidale Centre for Efficiency and Productivity Analysis, Department of Econometrics, University of New England, 1996. (Working Papers n. 8/96)
  • FARRELL, M.J. The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A, part III, p. 253-290, 1957.
  • FERREIRA, C. M. C.; GOMES, A. P. Introdução à Análise Envoltória de Dados: Teoria, modelos e aplicações. Viçosa, MG: UFV, 2009. 389p.
  • GOMES, A. P.; BAPTISTA, A. J. M. S. Impactos das ineficiências nas elasticidades de produção dos fatores: uma análise da agropecuária brasileira. In: XLII Congresso da Sociedade Brasileira de Economia e Sociologia Rural, 2004, Cuiabá. Dinâmicas Setoriais e Desenvolvimento Regional. Brasília: SOBER, 2004. v. 1. p. 1-15.
  • GOMES, A. P.; BAPTISTA, A. J. M. S. Análise Envoltória de Dados. In: SANTOS, M. L., VIEIRA, W.C., (ed.) Métodos Quantitativos em Economia Viçosa, MG: UFV, 2004. p. 121-160.
  • IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Censo Agropecuário 2006 Disponível em: <http://www.sidra.ibge.gov.br>. Acesso em: 19 ago. 2012.
  • IPEA - Instituto de Pesquisa Econômica Aplicada. Radar: tecnologia, produção e comércio exterior Brasília. Diretoria de Estudos e Políticas Setoriais, de Inovação, Regulação e Infraestrutura, 2012. (n. 20).
  • KOENKER, R.; BASSET, G. Regression quantiles. Econometrica, v. 46, p.33-50, 1978.
  • NOGUEIRA, M. A. Eficiência técnica na agropecuária das microrregiões brasileiras 2005. 105f. Tese (Doutorado em Economia Aplicada) - Universidade Federal de Viçosa, MG.
  • SOUSA, E. P. et al. A. Análise da eficiência técnica da agropecuária nas microrregiões mineiras. In: Simpósio Brasileiro de Agropecuária Sustentável, 3, 2011. Anais... Viçosa, MG: UFV, 2011. p. 278-281.
  • SOUSA, M. C. S. et al. Explaining DEA technical efficiency scores in an outlier corrected environment: the case of public services in Brazilian municipalities. Brazilian Review of Econometrics, v. 25, n. 2, p. 287-313, 2005.

  • 1
    Autor para correspondência.

Datas de Publicação

  • Publicação nesta coleção
    17 Set 2013
  • Data do Fascículo
    Nov 2013

Histórico

  • Recebido
    03 Out 2012
  • Aceito
    31 Maio 2013
Universidade Federal de Santa Maria Universidade Federal de Santa Maria, Centro de Ciências Rurais , 97105-900 Santa Maria RS Brazil , Tel.: +55 55 3220-8698 , Fax: +55 55 3220-8695 - Santa Maria - RS - Brazil
E-mail: cienciarural@mail.ufsm.br