

PERSPECTIVES

Malnutrition-related diabetes mellitus: severe food insecurity on international agendas and implications for public health in Brazil

Diabetes mellitus relacionado à desnutrição: a insegurança alimentar grave nas agendas internacionais e suas implicações para a saúde pública no Brasil

Diabetes mellitus relacionada con la desnutrición: la inseguridad alimentaria grave en las agendas internacionales y sus implicaciones para la salud pública en Brasil

Daniel Ferreira da Silva ¹ Dirce Maria Lobo Marchioni ¹

doi: 10.1590/0102-311XEN097125

The role of diet as a central determinant for the occurrence of chronic noncommunicable diseases, especially in endocrine-metabolic conditions related to obesity ¹ and Western dietary patterns ², is well established ³. However, the prevailing logic that exclusively associates excess calories with illness ignores the other side of a complex public health problem: the harmful effects of chronic exposure to severe food insecurity ⁴, recently highlighted by the recognition of malnutrition-related diabetes mellitus (MRDM) by the International Diabetes Federation (IDF) ⁵.

This presentation of the disease has gained prominence, mainly through studies led by Meredith Hawkins, who compared the clinical and metabolic profiles of individuals susceptible to a diagnosis of MRDM with those of patients with type 1 (DM1) and type 2 (DM2) diabetes mellitus ⁶. It was demonstrated that these individuals, who were negative for autoantibodies as well as monogenic and lipoatrophic forms of the disease, had lower pancreatic insulin reserves compared to those with DM2, but higher levels than those found in DM1. Moreover, the subjects had preserved insulin sensitivity, with lower endogenous production and greater peripheral glucose uptake compared to those with DM2, revealing a fundamentally distinct clinical phenotype ⁷.

Severe food insecurity is the recurring experience of hunger resulting from the violation of the human right to adequate food and is a central condition for understanding MRDM. According to the Food and Agriculture Organization of the United Nations (FAO), families in situations of severe food insecurity are likely to go without food, and their members may go a day or more without eating during the reference period ⁸. In Brazil, this condition is measured primarily through the *Brazilian Food Insecurity Scale* (EBIA, acronym in Portuguese), which classifies households as having mild, moderate, or severe food insecurity based on the experiences of family members ⁹.

During the 2025 World Diabetes Congress in Bangkok, Thailand, in addition to officially recognizing the disease as type 5 diabetes mellitus (DM5), the IDF announced the creation of a working group for defining diagnostic criteria, developing therapeutic guidelines, and establishing a global case registry ⁵. The initiative also discussed the development of educational modules for healthcare providers and the promotion of international research collaborations ⁵. This decision reignited debate in the scientific community on this form of presentation of diabetes, described nearly 70 years ago, but still absent from official diagnostic classifications.

MRDM was first described in 1955 by British physician Hugh-Jones, using data from Jamaica ¹⁰. Other descriptions followed, mainly in countries of sub-Saharan Africa and Asia ^{11,12,13,14,15},

¹ Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil.

Correspondence

D. F. Silva
Departamento de Nutrição,
Faculdade de Saúde Pública,
Universidade de São Paulo.
Av. Dr. Arnaldo 715, São
Paulo, SP 01246904, Brasil.
ferreiradaniel@usp.br

with prevalence data showing the DM5 accounted for approximately 23% of all cases of diabetes in India ¹⁶. These patients were generally young and thin, with a low socioeconomic status and a history of chronic malnutrition, manifesting diabetes with clinical characteristics distinct from the classic profiles of the disease ¹⁷. In 1985, the World Health Organization (WHO) ¹⁸ officially recognized this form of presentation, calling it "malnutrition-related diabetes mellitus", which initially fostered proposals for diagnostic criteria ¹⁵. However, the classification was removed from official documents years later due to a lack of studies supporting the differentiation ¹⁹.

There is consistent evidence, however, that populations with severe food insecurity, especially at the beginning of life, have a greater risk of developing metabolic and cardiovascular conditions in adulthood ^{20,21}. This relationship was initially proposed in the pioneering work of David Barker et al. ²², who described the association between low birth weight, which is an indicator of poor nutrition during pregnancy, and heart disease in adulthood. The group led by Barker subsequently expanded on these observations, identifying associations between low birth weight and other conditions, such as glucose intolerance, DM2, systemic arterial hypertension, and dyslipidemia ^{23,24,25}.

This scenario may have even more profound implications in regions historically marked by social inequalities, such as Latin America, where obesity and nutritional deficiencies often coexist in the same person, family, or community, characterizing the double burden of malnutrition ²⁶. In Brazil, for instance, a cross-sectional analysis of the baseline of the *Brazilian Longitudinal Study of Aging* (ELSI-Brazil, acronym in Portuguese) showed that one-quarter of the population 50 years of age or older experienced hunger in childhood, especially those who resided in the North and Northeast regions of the country ²⁷. Such individuals were 20% more likely to develop diabetes in adulthood ²⁷.

The delayed recognition of DM5 may reflect weaknesses in the global commitment to ensure the human right to adequate food by neglecting the fact that hunger can leave profound biological scars. Moreover, one should consider that the clinical phenotype of malnutrition-related diabetes resembles that of DM1 in many respects, affecting young and lean individuals, who are often treated with full insulin therapy ⁶. Thus, many of these cases may be misclassified in populations historically affected by severe food insecurity ⁶. This gives rise to an inevitable question: how many cases of diabetes diagnosed in low- and middle-income countries are clinical manifestations of chronic malnutrition?

Post-COVID-19 pandemic estimates revealed that more than 33 million people faced hunger in Brazil, with 58.7% of families experiencing some degree of hunger and at least 15.5% experiencing severe hunger ²⁸. This context of extreme hunger is linked to another alarming fact: Brazil ranks sixth in the world in terms of the number of cases of diabetes, with estimates from the *Diabetes Atlas* ²⁹ that 16.6 million people lived with the disease in 2024 and that this number could reach 24 million by 2050. The IDF also estimates that between 20 and 25 million people throughout the world are affected by DM5 ⁵. Given this scenario, it is plausible that Brazil's historical and persistent experience with hunger contributes to the increase in statistics on diabetes through cases directly related to malnutrition. Future studies, such as ongoing birth cohorts in Brazil ³⁰, will play a fundamental role in clarifying the impact of severe food insecurity on the prevalence of this form of disease presentation in the country.

Although a complete clinical history should include the patient's social background and life experiences, diagnoses of chronic noncommunicable diseases are based primarily on clinical and laboratory findings, with little or no consideration of socioeconomic factors ³¹. The recognition of MRDM, therefore, constitutes a paradigm shift by proposing that the formulation of the diagnosis should consider social dimensions as an inseparable part of the illness process ⁶.

In Brazil, the use of data on chronic exposure to hunger for the generation of relevant statistics could include information on low birth weight ³², self-reported severe food insecurity in childhood, or short stature in adulthood as a proxy for childhood malnutrition ³³. Moreover, households experiencing food insecurity could be identified early through *Screening Households at Risk of Food Insecurity* (TRIA, acronym in Portuguese) ³⁴, which is a two-item method recently incorporated into the Brazilian Health Information System for Primary Care (SISAB, acronym in Portuguese) to detect situations of food vulnerability in an agile, standardized manner across the services of the Brazilian Unified National Health System (SUS, acronym in Portuguese) ³⁵.

The renewed discussion on MRDM also paves the way for the reformulation of public health policies aimed at the protection of pregnancy and early childhood, as the determinants of this form

of diabetes often begin in utero, when the mother's exposure to food insecurity and malnutrition can compromise fetal development and biologically program greater metabolic vulnerability throughout life 6,20,21. Therefore, strengthening policies that ensure food and nutritional security during pregnancy and in the first years of life is essential to preventing both malnutrition and its long-term repercussions, such as the emergence of atypical forms of diabetes. Interventions in this critical period of life have the potential to break intergenerational cycles of poverty, hunger, and illness, contributing to health equity and addressing the structural social inequalities that mark the Brazilian scenario.

The initiative of the IDF to officially recognize MRDM and create an international working group to define diagnostic and therapeutic criteria constitutes a significant milestone in understanding the multiple determinants of diabetes in different socioeconomic contexts. It also constitutes an important shift in how global public health faces social determinants of endocrine and metabolic diseases.

The inclusion of this topic on global agendas drives a broader understanding of the pathophysiological mechanisms associated with the effects of prolonged hunger, underscoring the need to produce knowledge that is more sensitive to the situations experienced by populations historically marked by deep social inequalities. While there is no consensus on the diagnostic criteria or therapeutic approaches, the inclusion of this topic on the agenda of an international organization such as the IDF paves the way for new studies and revisions, turning greater attention to the disease, especially in low- and middle-income countries, where severe food insecurity and malnutrition are persistent challenges.

Contributors

D. F. Silva contributed with the study conception and writing; and approved the final version. D. M. L. Marchioni contributed with the writing and review; and approved the final version.

Additional information

ORCID: Daniel Ferreira da Silva (0000-0002-2634-8617); Dirce Maria Lobo Marchioni (0000-0002-6810-5779).

Acknowledgments

The authors are grateful to the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES, acronym in Portuguese) for funding in the form of a doctoral grant and Brazilian National Institute of Science and Technology Combatting Hunger (INCT Fome, acronym in Portuguese) for the institutional support.

References

- Park HK, Ahima RS. Endocrine disorders associated with obesity. Best Pract Res Clin Obstet Gynaecol 2023; 90:102394.
- Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 393:1958-72.
- 3. Jayedi A, Soltani S, Abdolshahi A, Shab-Bidar S. Healthy and unhealthy dietary patterns and the risk of chronic disease: an umbrella review of meta-analyses of prospective cohort studies. Br J Nutr 2020; 124:1133-44.
- Gallegos D. Effects of food and nutrition insecurity on global health. N Engl J Med 2025; 392:686-97.
- International Diabetes Federation. IDF launches new type 5 diabetes working group. https://idf.org/news/new-type-5-diabetesworking-group/ (accessed on 22/Apr/2025).
- Wadivkar P, Thomas N, Jebasingh F, Bacot-Davis VR, Maini R, Hawkins M. Undernutrition-associated diabetes mellitus: pathophysiology of a global problem. Physiology (Bethesda) 2025; 40:441-53.
- Lontchi-Yimagou E, Dasgupta R, Anoop S, Kehlenbrink S, Koppaka S, Goyal A, et al. An atypical form of diabetes among individuals with low BMI. Diabetes Care 2022; 45:1428-37.
- Food and Agriculture Organization of the United States. The state of food security and nutrition in the world 2024. Rome: Food and Agriculture Organization of the United States; 2024.
- Segall-Corrêa AM, Marin-León L, Melgar-Quiñonez H, Pérez-Escamilla R. Refinement of the Brazilian Household Food Insecurity Measurement Scale: recommendation for a 14-item EBIA. Rev Nutr 2014; 27:241-51.
- 10. Hugh-Jones P. Diabetes in Jamaica. Lancet 1955; 266:891-7.
- Abdulkadir J, Worku Y, Schheuder GMT, D'Amaro J, Vries RRP, Ottenhoff THM. HLA-DR and -DQ antigens in malnutrition-related diabetes mellitus in Ethiopians: a clue to its etiology? Tissue Antigens 1989; 34:284-9.
- 12. Alemu S, Dessie A, Seid E, Bard E, Lee PT, Trimble ER, et al. Insulin-requiring diabetes in rural Ethiopia: should we reopen the case for malnutrition-related diabetes? Diabetologia 2009; 52:1842-5.
- Huh KB, Lee HC, Kim HM, Cho YW, Kim YL, Lee KW, et al. Immunogenetic and nutritional profile in insulin-using youth-onset diabetics in Korea. Diabetes Res Clin Pract 1992; 16:63-70.
- Chattopadhyay P. Malnutrition related diabetes mellitus (MRDM) in preschool children. J Trop Pediatr 1996; 42:246-7.
- Chattopadhyay PS, Gupta SK, Chattopadhyay R, Kundu PK, Chakraborti R. Malnutritionrelated diabetes mellitus (MRDM), not diabetes-related malnutrition: a report on genuine MRDM. Diabetes Care 1995; 18:276-7.

- Tripathy BB, Kar BC. Observations on clinical patterns of diabetes mellitus in India. Diabetes 1965: 14:404-12.
- Balasubramanyam A, Yajnik CS, Tandon N. Non-traditional forms of diabetes worldwide: implications for translational investigation. Transl Endocrinol Metab 2011; 2:43-67.
- Diabetes mellitus. Report of a WHO study group. World Health Organ Tech Rep Ser 1985; 727:1-113.
- Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 1998; 15:539-53.
- 20. Sainty R, Silver MJ, Prentice AM, Monk D. The influence of early environment and micronutrient availability on developmental epigenetic programming: lessons from the placenta. Front Cell Dev Biol 2023; 11:1212199.
- 21. Perna L, Zhang Y, Wild B, Kliegel M, Ihle A, Schöttker B, et al. Childhood exposure to hunger: associations with health outcomes in later life and epigenetic markers. Epigenomics 2020; 12:1861-70.
- Barker DJP, Osmond C, Winter PD, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet 1989; 334:577-80.
- 23. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303:1019-22.
- 24. Bhargava SK, Sachdev HS, Fall CHD, Osmond C, Lakshmy R, Barker DJP, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004; 350:865-75.
- 25. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-insulindependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993; 36:62-7.
- Grajeda R, Hassell T, Ashby-Mitchell K, Uauy R, Nilson E. Regional overview on the double burden of malnutrition and examples of program and policy responses: Latin America and the Caribbean. Ann Nutr Metab 2019; 75:139-43.
- Félix-Beltrán L, Seixas BV. Childhood hunger experiences and chronic health conditions later in life among Brazilian older adults. Rev Panam Salud Pública 2021; 45:e39.
- 28. Rede Brasileira de Pesquisa em Soberania e Segurança Alimentar e Nutricional. II Inquérito Nacional sobre Insegurança Alimentar no contexto da pandemia da COVID-19 no Brasil (II VIGISAN): relatório final. São Paulo: Fundação Friedrich Ebert/Rede Brasileira de Pesquisa em Soberania e Segurança Alimentar e Nutricional; 2022.
- 29. International Diabetes Federation. Diabetes atlas. 11th Ed. Brussels: International Diabetes Federation; 2025.

- 30. Confortin SC, Ribeiro MRC, Barros AJD, Menezes AMB, Horta BL, Victora CG, et al. RPS Brazilian Birth Cohorts Consortium (Ribeirão Preto, Pelotas and São Luís): history, objectives and methods. Cad Saúde Pública 2021; 37:e00093320.
- 31. Allen LN, Smith RW, Simmons-Jones F, Roberts N, Honney R, Currie J. Addressing social determinants of noncommunicable diseases in primary care: a systematic review. Bull World Health Organ 2020; 98:754-65B.
- 32. Care of Preterm or Low Birthweight Infants Group. New World Health Organization recommendations for care of preterm or low birth weight infants: health policy. EClinicalMedicine 2023; 63:102155.
- 33. Sichieri R, Barbosa FS, Moura EC. Relationship between short stature and obesity in Brazil: a multilevel analysis. Br J Nutr 2010; 103:1534-8.

- 34. Carvalho RES, Poblacion A, Gouveia AVS, Correia MEG, Segall-Corrêa AM, Cook J, et al. Validade do instrumento para triagem de domicílios em risco de insegurança alimentar em diversos estratos da população brasileira. Cad Saúde Pública 2022; 38:e00239521.
- 35. Coordenação-Geral de Alimentação e Nutrição, Departamento de Prevenção e Promoção da Saúde, Secretaria de Atenção Primária à Saúde. Ministério da Saúde. Nota Técnica nº 51/2024-CGAN/DEPPROS/SAPS/MS. Brasília: Ministério da Saúde; 2024.

Submitted on 15/May/2025 Final version resubmitted on 11/Jul/2025 Approved on 30/Jul/2025

Evaluation coordinator: Associate Editor Raquel Canuto (0000-0002-4042-1913)