Acessibilidade / Reportar erro

Technological applications and color stability of carotenoids extracted from selected Amazonian fruits

Abstract

In this review, we gathered information regarding the carotenoid composition of selected Amazonian fruits: peach palm (Bactris gasipaes), buriti (Mauritia flexuosa), tucumã (Astrocaryum vulgare), taperebá (Spondias mombin), and araçá-boi (Eugenia stipitata); and also discussed the stability of carotenoid extracts and their potential to be used as natural colorants in foods. Notwithstanding the claimed health benefits, information on technological approaches to the use of carotenoid extracts from Amazonian fruits as natural colorants or antioxidant are quite limited. These findings evidenced the need for more systematic studies assessing the stability of carotenoid extracts of Amazonian fruits and their application as natural food additives.

Keywords:
natural pigments; bioactive compounds; color stability; carotenoid profiles; food additives

1 Introduction

The scientific interest in investigating the composition and technological potential of bioactive compounds extracted from fruits has increased since high intake of fruits and vegetables has been associated with protective effects against various chronicle degenerative diseases, including prevention of cancer, coronary heart disease, inflammatory reactions, age-related diseases and other comorbidities (Griffiths et al., 2016Griffiths, K., Aggarwal, B. B., Singh, R. B., Buttar, H. S., Wilson, D., & Meester, F. (2016). Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention. Diseases, 4(3), 28. http://dx.doi.org/10.3390/diseases4030028. PMid:28933408.
http://dx.doi.org/10.3390/diseases403002...
; Coelho et al., 2019Coelho, M. S., Fernandes, S. S., & Salas-Mellado, M. M. (2019). Association between diet, health, and the presence of bioactive compounds in foods. In M. R. S. Campos (Ed.), Bioactive compounds: health benefits and potential applications (pp. 159-183). Cambridge: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-12-814774-0.00009-8.
http://dx.doi.org/10.1016/B978-0-12-8147...
). Interestingly, Amazonian fruits have been the focus of intensive researches due to their high levels of bioactive compounds, especially carotenoids (Virgolin et al., 2017Virgolin, L. B., Seixas, F. R. F., & Janzantti, N. S. (2017). Composition, content of bioactive compounds, and antioxidant activity of fruit pulps from the Brazilian Amazon biome. Pesquisa Agropecuária Brasileira, 52(10), 933-941. http://dx.doi.org/10.1590/s0100-204x2017001000013.
http://dx.doi.org/10.1590/s0100-204x2017...
; Lima et al., 2020Lima, L. G. B., Montenegro, J., Abreu, J. P., Santos, M. C. B., Nascimento, T. P., Santos, M. S., Ferreira, A. G., Cameron, L. C., Ferreira, M. S. L., & Teodoro, A. J. (2020). Metabolite profiling by UPLC-MS(E), NMR, and antioxidant properties of Amazonian fruits: mamey apple (Mammea Americana), camapu (Physalis Angulata), and uxi (Endopleura Uchi). Molecules, 25(2), 342. http://dx.doi.org/10.3390/molecules25020342. PMid:31952109.
http://dx.doi.org/10.3390/molecules25020...
; Montero et al., 2020Montero, I. F., Saravia, S. A. M., Santos, R. A., Santos, R. C., Marcía, J. A. F., & Costa, H. N. R. (2020). Nutrients in Amazonian fruit pulps with functional and pharmacological interest. African Journal of Pharmacy and Pharmacology, 14(5), 118-127. http://dx.doi.org/10.5897/AJPP2020.5136.
http://dx.doi.org/10.5897/AJPP2020.5136...
; Khouryieh, 2021Khouryieh, H. A. (2021). Novel and emerging technologies used by the U.S. food processing industry. Innovative Food Science & Emerging Technologies, 67, 102559. http://dx.doi.org/10.1016/j.ifset.2020.102559.
http://dx.doi.org/10.1016/j.ifset.2020.1...
).

Carotenoids are natural tetraterpenic pigments with lipophilic characteristics, comprising more than 750 compounds mainly responsible for the orange, yellow, and/or red color of plants, but can be also bioaccumulated in animals and synthesized by microorganisms and some arthropods such as hemipteran (aphids, adelgids, phylloxerids) (Dias et al., 2018Dias, M. G., Olmedilla-Alonso, B., Hornero-Méndez, D., Mercadante, A. Z., Osorio, C., Vargas-Murga, L., & Meléndez-Martínez, A. J. (2018). Comprehensive database of carotenoid contents in Ibero-American foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. Journal of Agricultural and Food Chemistry, 66(20), 5055-5107. http://dx.doi.org/10.1021/acs.jafc.7b06148. PMid:29614229.
http://dx.doi.org/10.1021/acs.jafc.7b061...
; Rodriguez-Concepcion et al., 2018Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M. C., Meléndez-Martínez, A. J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M. J., Zacarias, L., & Zhu, C. (2018). A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93. http://dx.doi.org/10.1016/j.plipres.2018.04.004. PMid:29679619.
http://dx.doi.org/10.1016/j.plipres.2018...
; Maoka, 2020Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. http://dx.doi.org/10.1007/s11418-019-01364-x. PMid:31588965.
http://dx.doi.org/10.1007/s11418-019-013...
). Carotenoids find application as healthy food ingredients and contribute to improving sensory characteristics of food products. Among the sensory attributes, color is known to impart the greatest influence on purchase decision, especially compared with taste and aroma, as it defines consumers' first impression of overall product quality (Martins et al., 2016Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. F. R. (2016). Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1-15. http://dx.doi.org/10.1016/j.tifs.2016.03.009.
http://dx.doi.org/10.1016/j.tifs.2016.03...
; Stinco et al., 2019Stinco, C. M., Szczepańska, J., Marszałek, K., Pinto, C. A., Inácio, R. S., Mapelli-Brahm, P., Barba, F. J., Lorenzo, J. M., Saraiva, J. A., & Meléndez-Martínez, A. J. (2019). Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chemistry, 299, 125112. http://dx.doi.org/10.1016/j.foodchem.2019.125112. PMid:31299521.
http://dx.doi.org/10.1016/j.foodchem.201...
).

The industrial use of carotenoids as natural colorants still requires further attention. These compounds are unstable when exposed to light, oxygen, high temperatures, and acidic conditons, resulting in expressive discoloration of food products, reduced sensory quality, and, in some cases, decreased biological activity (Neri-Numa et al., 2017Neri-Numa, I. A., Pessoa, M. G., Paulino, B. N., & Pastore, G. M. (2017). Genipin: a natural blue pigment for food and health purposes. Trends in Food Science & Technology, 67, 271-279. http://dx.doi.org/10.1016/j.tifs.2017.06.018.
http://dx.doi.org/10.1016/j.tifs.2017.06...
; Ribeiro & Veloso, 2021Ribeiro, J. S., & Veloso, C. M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: a review. Food Hydrocolloids, 112, 106374. http://dx.doi.org/10.1016/j.foodhyd.2020.106374.
http://dx.doi.org/10.1016/j.foodhyd.2020...
). Given these limitations, there is a constant need for effective strategies to increase the stability of carotenoids to be used as natural colorants (Rostamabadi et al., 2019Rostamabadi, H., Falsafi, S. R., & Jafari, S. M. (2019). Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release, 298, 38-67. http://dx.doi.org/10.1016/j.jconrel.2019.02.005. PMid:30738975.
http://dx.doi.org/10.1016/j.jconrel.2019...
; Dutta et al., 2021Dutta, S., Muthusamy, V., Chhabra, R., Baveja, A., Zunjare, R. U., Mondal, T. K., Yadava, D. K., & Hossain, F. (2021). Low expression of carotenoids cleavage dioxygenase 1 (ccd1) gene improves the retention of provitamin-A in maize grains during storage. Molecular Genetics and Genomics, 296(1), 141-153. http://dx.doi.org/10.1007/s00438-020-01734-1. PMid:33068135.
http://dx.doi.org/10.1007/s00438-020-017...
; Valerio et al., 2021Valerio, P. P., Frias, J. M., & Cren, E. C. (2021). Thermal degradation kinetics of carotenoids: Acrocomia aculeata oil in the context of nutraceutical food and bioprocess technology. Journal of Thermal Analysis and Calorimetry, 143(4), 2983-2994. http://dx.doi.org/10.1007/s10973-020-09303-9.
http://dx.doi.org/10.1007/s10973-020-093...
).

In this review, information available in the current literature on the carotenoid composition of five Amazonian fruits, namely peach palm (Bactris gasipaes Kunth), buriti (Mauritia flexuosa L.f.), tucumã (Astrocaryum vulgare Mart.), taperebá (Spondias mombin L.), and araçá-boi (Eugenia stipitata McVaugh) were summarized, including specific aspects of the color stability of their carotenoid extracts for further application as natural food colorants.

2 Carotenoids: chemical definition and biological properties

Carotenoids are isoprenoid compounds with several conjugated double bonds in their chemical structures that confer high chemical reactivity and capacity to absorb light in the visible region of the electromagnetic spectrum, appearing as yellow, orange, or red to the human eye; however, there are also colorless carotenoids (phytoene and phytofluene) (Meléndez-Martínez et al., 2015Meléndez-Martínez, A. J., Mapelli-Brahm, P., Benítez-González, A., & Stinco, C. M. (2015). A comprehensive review on the colorless carotenoids phytoene and phytofluene. Archives of Biochemistry and Biophysics, 572, 188-200. http://dx.doi.org/10.1016/j.abb.2015.01.003. PMid:25615528.
http://dx.doi.org/10.1016/j.abb.2015.01....
; Sovová & Stateva, 2019Sovová, H., & Stateva, R. P. (2019). New developments in the modelling of carotenoids extraction from microalgae with supercritical CO2. The Journal of Supercritical Fluids, 148, 93-103. http://dx.doi.org/10.1016/j.supflu.2019.03.002.
http://dx.doi.org/10.1016/j.supflu.2019....
). Carotenoids can be cyclic or acyclic structures and they can be classified into two groups: carotenes, which comprise chemical structures formed only by carbon and hydrogen atoms; and xanthophylls – oxygenated structures derived from carotenes (Figure 1A) (Rodriguez-Concepcion et al., 2018Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M. C., Meléndez-Martínez, A. J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M. J., Zacarias, L., & Zhu, C. (2018). A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93. http://dx.doi.org/10.1016/j.plipres.2018.04.004. PMid:29679619.
http://dx.doi.org/10.1016/j.plipres.2018...
).

Figure 1
(A) Major carotenes and xanthophylls found in foods. (B) Conversion of provitamin A carotenoids to retinol (vitamin A).

Carotenoids are biosynthesized by photosynthetic organisms as well as by some non-photosynthetic prokaryotes and fungi (Pérez-Gálvez et al., 2020Pérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. http://dx.doi.org/10.3390/antiox9060505. PMid:32526968.
http://dx.doi.org/10.3390/antiox9060505...
). In photosynthetic organisms, carotenoids have several functions beyond its attractiveness: these compounds play an important role in photosynthesis, act as accessory pigments for photoprotection, prevent overexcitation of chlorophyll reaction centers, promote heat dissipation, and act as natural antioxidants, inhibiting or delaying lipid peroxidation (Cazzaniga et al., 2016Cazzaniga, S., Bressan, M., Carbonera, D., Agostini, A., & Dall’Osto, L. (2016). Differential roles of carotenes and xanthophylls in photosystem I photoprotection. Biochemistry, 55(26), 3636-3649. http://dx.doi.org/10.1021/acs.biochem.6b00425. PMid:27290879.
http://dx.doi.org/10.1021/acs.biochem.6b...
). The role of carotenoids (and their derivatives) as pigments in fruits, vegetables and derived food products has high impact on the marketability and appearance of these products and also on consumers’ choices, as well as ample evidence that these compounds have demonstrated health-promoting properties, as elegantly discussed in details by Meléndez-Martínez (2019)Meléndez-Martínez, A. J. (2019). An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular Nutrition & Food Research, 63(15), 1801045. http://dx.doi.org/10.1002/mnfr.201801045. PMid:31189216.
http://dx.doi.org/10.1002/mnfr.201801045...
.

To date, more than 750 carotenoids have been identified in nature, of which about 50 are part of the human diet and 10 to 15 are found in measurable concentrations in the body. The main bioavailable dietary carotenoids found in human fluids and tissues are lycopene, α-carotene, β-carotene, lutein, β-cryptoxanthin, and zeaxanthin, but also the colorless carotenoids phytoene, and phytofluene, which have recently attracted more attention of the scientific community (Kiokias et al., 2016Kiokias, S., Proestos, C., & Varzakas, T. (2016). A review of the structure, biosynthesis, absorption of carotenoids-analysis and properties of their common natural extracts. Current Research in Nutrition and Food Science, 4(Spe 1), 25-37. http://dx.doi.org/10.12944/CRNFSJ.4.Special-Issue1.03.
http://dx.doi.org/10.12944/CRNFSJ.4.Spec...
; Pietro et al., 2016Pietro, N., Tomo, P., & Pandolfi, A. (2016). Carotenoids in cardiovascular disease prevention. JSM Atherosclerosis, 1(1), 1002.; Meléndez-Martínez, 2019Meléndez-Martínez, A. J. (2019). An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular Nutrition & Food Research, 63(15), 1801045. http://dx.doi.org/10.1002/mnfr.201801045. PMid:31189216.
http://dx.doi.org/10.1002/mnfr.201801045...
).

The frequent intake of dietary carotenoids have been associated with the reduced risk to develop chronic degenerative diseases such as cardiovascular diseases, macular degeneration, cataracts, inflammation, and also the development of several types of cancer, including prostate, breast, lung, and bowel cancer (Eggersdorfer & Wyss, 2018Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18-26. http://dx.doi.org/10.1016/j.abb.2018.06.001. PMid:29885291.
http://dx.doi.org/10.1016/j.abb.2018.06....
; Rivera-Madrid et al., 2020Rivera-Madrid, R., Carballo-Uicab, V. M., Cárdenas-Conejo, Y., Aguilar-Espinosa, M., & Siva, R. (2020). Overview of carotenoids and beneficial effects on human health. In C. M. Galanakis (Ed.), Carotenoids: properties, processing and applications (pp. 1-40). Cambridge: Academic Press. http://dx.doi.org/10.1016/B978-0-12-817067-0.00001-4.
http://dx.doi.org/10.1016/B978-0-12-8170...
). Regarding cancer, once manifested, it triggers the oxidation of biomolecules by inducing a state of oxidative stress due to the overproduction of reactive oxygen and nitrogen species, leading to cell aging and promoting the development of chronicle degenerative diseases. In these cases, the action of dietary (exogenous) antioxidants, such as carotenoids, is of utmost importance because it helps to protect cells from the oxidative damage caused by reactive species (Rowles & Erdman, 2020Rowles, J. L. III, & Erdman, J. W. Jr. (2020). Carotenoids and their role in cancer prevention. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(11), 158613. http://dx.doi.org/10.1016/j.bbalip.2020.158613. PMid:31935448.
http://dx.doi.org/10.1016/j.bbalip.2020....
). However, in addition to the antioxidant action, other possible mechanisms for the health benefits of carotenoids have been postulated, such as pro-oxidant mechanisms, enhancement of gap junctional intercellular communication, modulation of signaling pathways, and absorption of visible light, which may work synergistically (Meléndez-Martínez, 2019Meléndez-Martínez, A. J. (2019). An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular Nutrition & Food Research, 63(15), 1801045. http://dx.doi.org/10.1002/mnfr.201801045. PMid:31189216.
http://dx.doi.org/10.1002/mnfr.201801045...
).

In addition to their coloring and antioxidant properties, some carotenoids are also precursors of retinol (vitamin A), which is essential for immune and reproductive functions as well as for the prevention of vision problems (cataract and age-related macular degeneration) (Arunkumar et al., 2020Arunkumar, R., Gorusupudi, A., & Bernstein, P. S. (2020). The macular carotenoids: a biochemical overview. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(11), 158617. http://dx.doi.org/10.1016/j.bbalip.2020.158617. PMid:31931175.
http://dx.doi.org/10.1016/j.bbalip.2020....
). Some examples of carotenoids with provitamin A activity commonly found in foods are α-carotene, β-carotene, and β-cryptoxanthin (Figure 1B), being β-carotene the carotenoid with the highest conversion efficiency, as each β-carotene molecule can be enzymatically cleaved into two molecules of retinol (Eggersdorfer & Wyss, 2018Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18-26. http://dx.doi.org/10.1016/j.abb.2018.06.001. PMid:29885291.
http://dx.doi.org/10.1016/j.abb.2018.06....
; Meléndez-Martínez, 2019Meléndez-Martínez, A. J. (2019). An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular Nutrition & Food Research, 63(15), 1801045. http://dx.doi.org/10.1002/mnfr.201801045. PMid:31189216.
http://dx.doi.org/10.1002/mnfr.201801045...
; Hermanns et al., 2020Hermanns, A. S., Zhou, X., Xu, Q., Tadmor, Y., & Li, L. (2020). Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal, 6(6), 343-360. http://dx.doi.org/10.1016/j.hpj.2020.10.002.
http://dx.doi.org/10.1016/j.hpj.2020.10....
).

3 Carotenoid composition in the selected Amazonian fruits

The Amazonia biome is distributed in an extensive area comprised by nine countries in South America: Brazil (which houses ≈ 60% of total area), Peru, Bolivia, French Guiana, Suriname, Guyana, Venezuela, Colombia and Ecuador. The Brazilian Amazonia is predominantly covered by dense tropical rainforest under warm, humid climate and constant, heavy rainfall. This biome houses a broad variety of native and exotic fruit-producing plants, described as promising sources of bioactive compounds and micronutrients (Anunciação et al., 2019Anunciação, P. C., Giuffrida, D., Murador, D. C., Paula, G. X. Fo., Dugo, G., & Pinheiro-Sant’Ana, H. M. (2019). Identification and quantification of the native carotenoid composition in fruits from the Brazilian Amazon by HPLC–DAD–APCI/MS. Journal of Food Composition and Analysis, 83, 103296. http://dx.doi.org/10.1016/j.jfca.2019.103296.
http://dx.doi.org/10.1016/j.jfca.2019.10...
; Matos et al., 2019Matos, K. A. N., Lima, D. P., Barbosa, A. P. P., Mercadante, A. Z., & Chisté, R. C. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272, 216-221. http://dx.doi.org/10.1016/j.foodchem.2018.08.053. PMid:30309535.
http://dx.doi.org/10.1016/j.foodchem.201...
).

Although Amazonian fruits have been little explored commercially, they hold great agroindustrial potential for the development of healthy products with high contents of bioactive compounds, such as phenolic compounds, ascorbic acid and carotenoids (Montero et al., 2020Montero, I. F., Saravia, S. A. M., Santos, R. A., Santos, R. C., Marcía, J. A. F., & Costa, H. N. R. (2020). Nutrients in Amazonian fruit pulps with functional and pharmacological interest. African Journal of Pharmacy and Pharmacology, 14(5), 118-127. http://dx.doi.org/10.5897/AJPP2020.5136.
http://dx.doi.org/10.5897/AJPP2020.5136...
). It becomes clear each day more that an extensive effort must be supported by government policies with the help of the scientific community to stimulate the conscious prospection of Amazonia’s biodiversity for the sustainable production of health-promoting foods. However, the lack of knowledge about Amazonian fruits impairs sustainable agricultural production and conservation, increasing the need for further research to unravel their chemical composition followed by investigations regarding the stability of bioactive compounds for future application in the food industry.

Table 1 focused to summarize the major carotenoids found in peach palm, buriti, tucumã, taperebá, and araçá-boi. In general, the fruit peels presented the highest contents of the main carotenoids identified in the selected Amazonian fruits, being β-carotene de major compound in peach palm, buriti and tucumã, while β-cryptoxanthin was the major in taperebá and araçá-boi (Table 1). All the contents of the individual carotenoids in Table 1 were used to classify the fruits in low (0-1 μg/g), moderate (1-5 μg/g), high (5-20 μg/g) and very high sources (≥ 20 μg/g), according to Britton & Khachik (2009)Britton, G., & Khachik, F. (2009). Carotenoids in food. In G. Britton, H. Pfander & S. Liaaen-Jensen (Eds.), Carotenoids (vol. 5, pp. 45-66). Basel: Birkhäuser. http://dx.doi.org/10.1007/978-3-7643-7501-0_3.
http://dx.doi.org/10.1007/978-3-7643-750...
, and discussed along the text.

Table 1
Carotenoid composition of peach palm (Bactris gasipaes), buriti (Mauritia flexuosa), tucumã (Astrocaryum vulgare), taperebá (Spondias mombin), and araçá-boi (Eugenia stipitata).

3.1 Peach palm

Peach palm fruits are small drupes weighing between 0.5 and 25 g and measuring between 2 and 7 cm-diameter. The epicarp is fibrous, and the mesocarp varies from starchy to oily. At the full ripe stage, the fruit peels become yellow, orange, red, or some species keep them green, and may or may not contain seeds (Bezerra & Silva, 2016Bezerra, C., & Silva, L. (2016). Pupunha (Bactris gasipaes): general and consumption aspects. In K. Kristbergsson & J. Oliveira (Eds.), Traditional foods: general and consumer aspects (pp. 399-405). New York: Springer. http://dx.doi.org/10.1007/978-1-4899-7648-2_33.
http://dx.doi.org/10.1007/978-1-4899-764...
; Santos et al., 2020Santos, O., Soares, S., Dias, P., Duarte, S., Santos, M., & Nascimento, F. (2020). Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health. Revista de Nutrição, 33, e190146. http://dx.doi.org/10.1590/1678-9805202033e190146.
http://dx.doi.org/10.1590/1678-980520203...
). Peach palm is mainly found in the Brazilian Amazonia, but also commonly found in Peru, Colombia e Ecuador (Adin et al., 2004Adin, A., Weber, J. C., Montes, C. S., Vidaurre, H., Vosman, B., & Smulders, M. J. M. (2004). Genetic differentiation and trade among populations of peach palm (Bactris gasipaes Kunth) in the Peruvian Amazon-implications for genetic resource management. Theoretical and Applied Genetics, 108(8), 1564-1573. http://dx.doi.org/10.1007/s00122-003-1581-9. PMid:14985969.
http://dx.doi.org/10.1007/s00122-003-158...
; Silva et al., 2019aSilva, C. C., Rodrigues, D. P., Clement, C. R., & Astolfi, S. Fo. (2019a). Molecular-genetic analysis for validation of peach palm (Bactris gasipaes Kunt) landraces using RAPD markers. Científica, 47(3), 313-320. http://dx.doi.org/10.15361/1984-5529.2019v47n3p313-320.
http://dx.doi.org/10.15361/1984-5529.201...
). In the Brazilian Amazonia, peach palm fruits are typically cooked in salty water before consumption and they are valued for their characteristic flavor and high energetic value (≈ 391 kcal 100 g−1) (Melo et al., 2017Melo, M. C. T., Costa, L. L., Pereira, F. C., Castro, L. M., & Neponuceno, S. (2017). Physical and chemical analysis of fruit “in natura” of pupunha. Revista Inova Ciência e Tecnologia, 3(1), 13-17.). The fruits are mainly composed of lipids, carbohydrates (starch), as well as vitamin C, selenium, and zinc and very high levels of carotenoids (Basto et al., 2016Basto, G. J., Carvalho, C. W. P., Soares, A. G., Costa, H. T. G. B., Chávez, D. W. H., Godoy, R. L. O., & Pacheco, S. (2016). Physicochemical properties and carotenoid content of extruded and non-extruded corn and peach palm (Bactris gasipaes, Kunth). Lebensmittel-Wissenschaft + Technologie, 69, 312-318. http://dx.doi.org/10.1016/j.lwt.2015.12.065.
http://dx.doi.org/10.1016/j.lwt.2015.12....
; Rojas-Garbanzo et al., 2016Rojas-Garbanzo, C., Pérez, A., Vaillant, F., & Pineda-Castro, M. (2016). Physicochemical and antioxidant composition of fresh peach palm (Bactris gasipaes Kunth) fruits in Costa Rica. Brazilian Journal of Food Technology, 19(0). http://dx.doi.org/10.1590/1981-6723.9715.
http://dx.doi.org/10.1590/1981-6723.9715...
). In the fruit pulp, Basto et al. (2016)Basto, G. J., Carvalho, C. W. P., Soares, A. G., Costa, H. T. G. B., Chávez, D. W. H., Godoy, R. L. O., & Pacheco, S. (2016). Physicochemical properties and carotenoid content of extruded and non-extruded corn and peach palm (Bactris gasipaes, Kunth). Lebensmittel-Wissenschaft + Technologie, 69, 312-318. http://dx.doi.org/10.1016/j.lwt.2015.12.065.
http://dx.doi.org/10.1016/j.lwt.2015.12....
identified β-carotene and α-carotene, which have provitamin A activity, whereas Rosso & Mercadante (2007)Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072. http://dx.doi.org/10.1021/jf0705421. PMid:17530774.
http://dx.doi.org/10.1021/jf0705421...
detected β-carotene, followed by δ-carotene and γ-carotene as the major carotenoids. Recently, Chisté et al. (2021)Chisté, R. C., Costa, E. L. N., Monteiro, S. F., & Mercadante, A. Z. (2021). Carotenoid and phenolic compound profiles of cooked pulps of orange and yellow peach palm fruits (Bactris gasipaes) from the Brazilian Amazonia. Journal of Food Composition and Analysis, 99, 103873. http://dx.doi.org/10.1016/j.jfca.2021.103873.
http://dx.doi.org/10.1016/j.jfca.2021.10...
reported a total of 16 carotenoids in cooked peach palm fruits of orange variety and 20 carotenoids in the yellow variety, being β-carotene the major carotenoid in both types. In the peels of peach palm fruits, Matos et al. (2019)Matos, K. A. N., Lima, D. P., Barbosa, A. P. P., Mercadante, A. Z., & Chisté, R. C. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272, 216-221. http://dx.doi.org/10.1016/j.foodchem.2018.08.053. PMid:30309535.
http://dx.doi.org/10.1016/j.foodchem.201...
identified β-carotene, δ-carotene, and γ-carotene as the major carotenoids and reported almost 11 times higher total carotenoid contents in the peel than in the pulp. (Table 1). Interestingly, γ-carotene is a rare provitamin A carotenoid found in fruits and it was reported at high concentrations in both peel and pulp of peach palm fruits, classifying them as very high sources of γ-carotene, in addition to also β-carotene and δ-carotene (Table 1). Overall, given its chemical composition, peach palm fruit has high biological and health potential, associated with antioxidant activity (Jatunov et al., 2010Jatunov, S., Quesada, S., Diaz, C., & Murillo, E. (2010). Carotenoid composition and antioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes. Archivos Latinoamericanos de Nutricion, 60(1), 99-104. PMid:21090177.; Quesada et al., 2011Quesada, S., Azofeifa, G., Jatunov, S., Jiménez, G., Navarro, L., & Gómez, G. (2011). Carotenoids composition, antioxidant activity and glycemic index of two varieties of Bactris gasipaes. Emirates Journal of Food and Agriculture, 23, 482-489.).

3.2 Buriti

M. flexuosa is distributed throughout Amazonia and popularly known as buriti, miriti, and muriti, depending on the region. The fruits are elongated oval-shaped drupes measuring 4 to 7 cm-length, 3 to 5 cm -diameter, and 25 to 40 g-weight. Buriti has a brown–reddish epicarp (shell), a fleshy, intense orange colored mesocarp (pulp), an endocarp (seed coat), and an endosperm (seed) (Pereira-Freire et al., 2016Pereira-Freire, J. A., Barros, K. B. N. T., Lima, L. K. F., Martins, J. M., Araújo, Y. C., Oliveira, G. L. S., Aquino, J. S., & Ferreira, P. M. P. (2016). Phytochemistry profile, nutritional properties and pharmacological activities of Mauritia flexuosa. Journal of Food Science, 81(11), R2611-R2622. http://dx.doi.org/10.1111/1750-3841.13529. PMid:30240016.
http://dx.doi.org/10.1111/1750-3841.1352...
). The oily pulp is the most consumed part of the fruit, which is rich in iron, calcium, and fibers and widely used by local population for the production of ice cream, candy, and jelly. Buriti pulp is predominantly composed by lipids and carbohydrates, with total energetic values varying from 93 to 230 kcal 100.g−1, depending on growing location (Cândido & Silva, 2017Cândido, T. L. N., & Silva, M. R. (2017). Comparison of the physicochemical profiles of buriti from the Brazilian Cerrado and the Amazon region. Food Science and Technology, 37(Suppl. 1), 78-82. http://dx.doi.org/10.1590/1678-457x.32516.
http://dx.doi.org/10.1590/1678-457x.3251...
; Sandri et al., 2017Sandri, D., Xisto, A., Rodrigues, E., Morais, E., & Barros, W. (2017). Antioxidant activity and physicochemical characteristics of buriti pulp (Mauritia flexuosa) collected in the city of Diamantino – MTS. Revista Brasileira de Fruticultura, 39(3). http://dx.doi.org/10.1590/0100-29452017864.
http://dx.doi.org/10.1590/0100-294520178...
; Nascimento-Silva et al., 2020Nascimento-Silva, N. R. R., Silva, F. A., & Silva, M. R. (2020). Physicochemical composition and antioxidants of buriti (Mauritia flexuosa Linn. F.) – pulp and sweet. Journal of Bioenergy and Food Science, 7, 1-12. http://dx.doi.org/10.18067/jbfs.v7i1.279.
http://dx.doi.org/10.18067/jbfs.v7i1.279...
). The oil fraction in the pulp is composed by high percentage of oleic acid (C18:1) (89.81%) and palmitic acid (C16:0) (10.16%) (Pereira et al., 2018Pereira, Y. F., Costa, M. S., Tintino, S. R., Rocha, J. E., Rodrigues, F. F. G., Feitosa, M. K. S. B., Menezes, I. R. A., Coutinho, H. D. M., Costa, J. G. M., & Sousa, E. O. (2018). Modulation of the antibiotic activity by the Mauritia flexuosa (Buriti) fixed oil against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Other Multidrug-Resistant (MDR) bacterial strains. Pathogens, 7(4), 98. http://dx.doi.org/10.3390/pathogens7040098. PMid:30544654.
http://dx.doi.org/10.3390/pathogens70400...
). Regarding the bioactive compounds, buriti pulp exhibits a remarkable composition presenting tocopherols, ascorbic acid, very high contents of carotenoids; and, as stated by Rosso & Mercadante (2007)Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072. http://dx.doi.org/10.1021/jf0705421. PMid:17530774.
http://dx.doi.org/10.1021/jf0705421...
, Freitas et al. (2018)Freitas, M., Chisté, R., Polachini, T., Sardella, L., Aranha, C., Ribeiro, A., & Nicoletti, V. (2018). Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L.) oil. Grasas y Aceites, 68(4), e220. http://dx.doi.org/10.3989/gya.0557171.
http://dx.doi.org/10.3989/gya.0557171...
and Cruz et al. (2020)Cruz, M. B., Oliveira, W. S., Araújo, R. L., França, A. C. H., & Pertuzatti, P. B. (2020). Buriti (Mauritia Flexuosa L.) pulp oil as an immunomodulator against enteropathogenic Escherichia coli. Industrial Crops and Products, 149, 112330. http://dx.doi.org/10.1016/j.indcrop.2020.112330.
http://dx.doi.org/10.1016/j.indcrop.2020...
currently, it has the highest β-carotene contents in nature. In addition, γ-carotene, was also reported at high contents in the pulp of buriti (high source) (Rosso & Mercadante, 2007Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072. http://dx.doi.org/10.1021/jf0705421. PMid:17530774.
http://dx.doi.org/10.1021/jf0705421...
). Due to the chemical composition of buriti, its fruits have been investigated regarding its high antioxidant, antibacterial, antimutagenic, and healing activities (Rosso & Mercadante, 2007Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072. http://dx.doi.org/10.1021/jf0705421. PMid:17530774.
http://dx.doi.org/10.1021/jf0705421...
; Santos et al., 2015Santos, M. F. G., Alves, R. E., & Roca, M. (2015). Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas y Aceites, 66(3), e086. http://dx.doi.org/10.3989/gya.1062142.
http://dx.doi.org/10.3989/gya.1062142...
; Freitas et al., 2018Freitas, M., Chisté, R., Polachini, T., Sardella, L., Aranha, C., Ribeiro, A., & Nicoletti, V. (2018). Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L.) oil. Grasas y Aceites, 68(4), e220. http://dx.doi.org/10.3989/gya.0557171.
http://dx.doi.org/10.3989/gya.0557171...
; Pereira-Freire et al., 2018Pereira-Freire, J. A., Oliveira, G. L. S., Lima, L. K. F., Ramos, C. L. S., Arcanjo-Medeiros, S. R., Lima, A. C. S., Teixeira, S. A., Oliveira, G. A. L., Nunes, N. M. F., Amorim, V. R., Lopes, L. S., Rolim, L. A., Costa-Júnior, J. S., & Ferreira, P. M. P. (2018). In vitro and ex vivo chemopreventive action of Mauritia flexuosa products. Evidence-Based Complementary and Alternative Medicine, 2018, 2051279. http://dx.doi.org/10.1155/2018/2051279. PMid:29967646.
http://dx.doi.org/10.1155/2018/2051279...
; Cruz et al., 2020Cruz, M. B., Oliveira, W. S., Araújo, R. L., França, A. C. H., & Pertuzatti, P. B. (2020). Buriti (Mauritia Flexuosa L.) pulp oil as an immunomodulator against enteropathogenic Escherichia coli. Industrial Crops and Products, 149, 112330. http://dx.doi.org/10.1016/j.indcrop.2020.112330.
http://dx.doi.org/10.1016/j.indcrop.2020...
).

3.3 Tucumã

The genus Astrocaryum is also distributed throughout Amazonia. Two species of the genus Astrocaryum occur in northern Brazil, A. aculeatum G.Mey. in Pará and A. vulgare in Amazonas State (Chiste & Fernandes, 2016Chiste, R. C., & Fernandes, E. (2016). Bioactive compounds from Amazonian fruits and their antioxidant properties. In L. R. Silva & B. M. Silva (Eds.), Natural bioactive compounds from fruits and vegetables as health promoters: part 1 (pp. 244-264). Oak Park: Bentham Science Publishers. http://dx.doi.org/10.2174/9781681082394116010011.
http://dx.doi.org/10.2174/97816810823941...
). The fruits are smooth ovoid drupes, about 5-6 cm in diameter and 70-75 g in weight, consisting of endocarp, endosperm, and edible epicarp (peel) and mesocarp (pulp), which range in color from yellow to dark orange and red (Matos et al., 2019Matos, K. A. N., Lima, D. P., Barbosa, A. P. P., Mercadante, A. Z., & Chisté, R. C. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272, 216-221. http://dx.doi.org/10.1016/j.foodchem.2018.08.053. PMid:30309535.
http://dx.doi.org/10.1016/j.foodchem.201...
). Lipids, along with carbohydrates and fibers are the main fruit constituents. The pulp is used to extract oil with anti-inflammatory and antioxidant properties (Baldissera et al., 2017Baldissera, M. D., Souza, C. F., Grando, T. H., Cossetin, L. F., Sagrillo, M. R., Nascimento, K., Silva, A. S., Machado, A. K., Cruz, I. B. M., Stefani, L. M., Klein, B., Wagner, R., & Monteiro, S. G. (2017). Antihyperglycemic, antioxidant activities of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: new natural source to treat hyperglycemia. Chemico-Biological Interactions, 270, 51-58. http://dx.doi.org/10.1016/j.cbi.2017.04.001. PMid:28419827.
http://dx.doi.org/10.1016/j.cbi.2017.04....
; Cabral et al., 2020Cabral, F. L., Bernardes, V. M., Passos, D. F., Oliveira, J. S., Doleski, P. H., Silveira, K. L., Horvarth, M. C., Bremm, J. M., Barbisan, F., Azzolin, V. F., Teixeira, C. F., Andrade, C. M., Cruz, I. B. M., Ribeiro, E. E., & Leal, D. B. R. (2020). Astrocaryum aculeatum fruit improves inflammation and redox balance in phytohemagglutinin-stimulated macrophages. Journal of Ethnopharmacology, 247, 112274. http://dx.doi.org/10.1016/j.jep.2019.112274. PMid:31589969.
http://dx.doi.org/10.1016/j.jep.2019.112...
). Oil extracts show great potential for the use in food industry and biodiesel production (Rosso & Mercadante, 2007Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072. http://dx.doi.org/10.1021/jf0705421. PMid:17530774.
http://dx.doi.org/10.1021/jf0705421...
; Santos et al., 2015Santos, M. F. G., Alves, R. E., & Roca, M. (2015). Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas y Aceites, 66(3), e086. http://dx.doi.org/10.3989/gya.1062142.
http://dx.doi.org/10.3989/gya.1062142...
; Costa et al., 2016Costa, B. E. T., Santos, O. V., Corrêa, N. C. F., & França, L. F. (2016). Comparative study on the quality of oil extracted from two tucumã varieties using supercritical carbon dioxide. Food Science and Technology, 36(2), 322-328. http://dx.doi.org/10.1590/1678-457X.0094.
http://dx.doi.org/10.1590/1678-457X.0094...
). Tucumã pulp has high total energetic value (247 kcal 100 g−1) and contains high levels of fatty acids, mainly oleic (C18:1), linoleic (C18:2), and palmitic (C16:0) acids, in addition to vitamin B2, vitamin C, catechin, quercetin, and carotenoids (Serra et al., 2019Serra, J. L., Rodrigues, A. M. C., Freitas, R. A., Meirelles, A. J. A., Darnet, S. H., & Silva, L. H. M. (2019). Alternative sources of oils and fats from Amazonian plants: fatty acids, methyl tocols, total carotenoids and chemical composition. Food Research International, 116, 12-19. http://dx.doi.org/10.1016/j.foodres.2018.12.028. PMid:30716906.
http://dx.doi.org/10.1016/j.foodres.2018...
; Cunha Jr et al., 2020Cunha Jr, R. M. Domingues, P. B. A., Ambrósio, R. O., Martins, C. A. F., Silva, J. G. B. P. C., & Pieri, F. A. (2020). Brazilian Amazon plants: an overview of chemical composition and biological activity. In E. R. Rhodes & H. Naser (Eds.), Natural resources management and biological sciences (pp. 1-16). London: Intech, Open.; Ferreira et al., 2021Ferreira, M. J. A., Mota, M. F. S., Mariano, R. G. B., & Freitas, S. P. (2021). Evaluation of liquid-liquid extraction to reducing the acidity index of the tucuma (Astrocaryum vulgare Mart.) pulp oil. Separation and Purification Technology, 257, 117894. http://dx.doi.org/10.1016/j.seppur.2020.117894.
http://dx.doi.org/10.1016/j.seppur.2020....
). The fruit was found to contain 21 different types of carotenoids, being β-carotene the major one (very high source) (Table 1). Matos et al. (2019)Matos, K. A. N., Lima, D. P., Barbosa, A. P. P., Mercadante, A. Z., & Chisté, R. C. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272, 216-221. http://dx.doi.org/10.1016/j.foodchem.2018.08.053. PMid:30309535.
http://dx.doi.org/10.1016/j.foodchem.201...
, reported that tucumã peel and pulp had total carotenoid levels of 18.06 and 8.39 mg 100 g−1, respectively, and the fruit peel was classified as a very high source of β-carotene and γ-carotene.

3.4 Taperebá

S. mombin is a small deciduous tree widespread over Amazonia whose fruit is popularly known as taperebá in the Amazonia and cajá, cajá verdadeiro, and cajá-miri in other regions of Brazil (Silva et al., 2009Silva, E. F., Martins, L. S. S., & Oliveira, V. R. (2009). Diversity and genetic struture in cajá tree (Spondias mombin L.) populations in northeastern Brazil. Revista Brasileira de Fruticultura, 31(1), 171-181. http://dx.doi.org/10.1590/S0100-29452009000100024.
http://dx.doi.org/10.1590/S0100-29452009...
; Neiens et al., 2017Neiens, S. D., Geisslitz, S. M., & Steinhaus, M. (2017). Aroma-active compounds in Spondias mombin L. fruit pulp. European Food Research and Technology, 243(6), 1073-1081. http://dx.doi.org/10.1007/s00217-016-2825-7.
http://dx.doi.org/10.1007/s00217-016-282...
). The fruit is an ellipsoid-shaped drupe about 4 cm long with a thin yellow peel and translucent to yellow pulp (Neiens et al., 2017Neiens, S. D., Geisslitz, S. M., & Steinhaus, M. (2017). Aroma-active compounds in Spondias mombin L. fruit pulp. European Food Research and Technology, 243(6), 1073-1081. http://dx.doi.org/10.1007/s00217-016-2825-7.
http://dx.doi.org/10.1007/s00217-016-282...
). The pulp contains about 90% moisture and is acidic, with a pH of 2.63 (Carvalho et al., 2017Carvalho, A. V., Chaves, R. P. F., & Alves, R. M. (2017). Caracterização física e físico-química de frutos em matrizes de cajazeira no estado do Pará. Boletim de Pesquisa e Desenvolvimento, 117, 1-22.). Taperebá is rich in potassium, phenolic compounds, and carotenoids, such as β-cryptoxanthin as the major compound (high source), zeinoxanthin, β-carotene, α-carotene, lutein, and zeaxanthin (Table 1) (Neiens et al., 2017Neiens, S. D., Geisslitz, S. M., & Steinhaus, M. (2017). Aroma-active compounds in Spondias mombin L. fruit pulp. European Food Research and Technology, 243(6), 1073-1081. http://dx.doi.org/10.1007/s00217-016-2825-7.
http://dx.doi.org/10.1007/s00217-016-282...
; Costa & Mercadante, 2018Costa, G. A., & Mercadante, A. Z. (2018). In vitro bioaccessibility of free and esterified carotenoids in cajá frozen pulp-based beverages. Journal of Food Composition and Analysis, 68, 53-59. http://dx.doi.org/10.1016/j.jfca.2017.02.012.
http://dx.doi.org/10.1016/j.jfca.2017.02...
). The fruit's flavor, aroma, and high carotenoid content are characteristics that capture the interest of consumers and the food industry (Silvino et al., 2017Silvino, R., Silva, G., & Santos, O. V. (2017). Qualidade nutricional e parâmetros morfológicos do fruto cajá (Spondias Mombin L.). DESAFIOS - Revista Interdisciplinar da Universidade Federal do Tocantins, 4(2), 3-11. http://dx.doi.org/10.20873/uft.2359-3652.2017v4n2p3.
http://dx.doi.org/10.20873/uft.2359-3652...
; Pelais et al., 2020Pelais, A. C. A., Martins, I. R., Martins, L. H. S., Silva, A. E., Figueiredo, E. L., & Braga, A. C. C. (2020). Viabilidade de bactérias probióticas do gênero Lactobacillus em néctar de taperebá: efeito nas propriedades fisico-quimicas e sensoriais. Brazilian Journal of Development, 6(5), 25945-25960. http://dx.doi.org/10.34117/bjdv6n5-158.
http://dx.doi.org/10.34117/bjdv6n5-158...
). Although taperebá is highly appreciated, few studies have investigated the biological properties of the pulp. Aniceto et al. (2021)Aniceto, A., Montenegro, J., Cadena, R. S., & Teodoro, A. J. (2021). Physicochemical characterization, antioxidant capacity, and sensory properties of murici (Byrsonima crassifolia (L.) Kunth) and taperebá (Spondias mombin L.) beverages. Molecules, 26(2), 332. http://dx.doi.org/10.3390/molecules26020332. PMid:33440607.
http://dx.doi.org/10.3390/molecules26020...
reported a high antioxidant capacity for the pulp of taperebá through different in vitro assays, suggesting that carotenoids had high contribution, among the bioactive compounds in the pulp composition. Tiburski et al. (2011)Tiburski, J. H., Rosenthal, A., Deliza, R., Godoy, R. L. O., & Pacheco, S. (2011). Nutritional properties of yellow mombin (Spondias mombin L.) pulp. Food Research International, 44(7), 2326-2331. http://dx.doi.org/10.1016/j.foodres.2011.03.037.
http://dx.doi.org/10.1016/j.foodres.2011...
, indicated an efficient antioxidant effect for taperebá fruit (17.47 mmol TEAC.g-1), and they reported a content of total carotenoids of 4869.5 µg.100g-1 pulp, being β-cryptoxanthin (1708.5 µg. 100 g-1) the major compound.

3.5 Araçá-boi

Araçá-boi is a fruit tree native to the equatorial region of the Amazonia. It is popularly known in the Brazilian Amazonia as arazá, marmelo, and Amazon guava. The fruit weighs 30-80 g, measures 12 cm in diameter, and has a thin yellow epicarp, white pulp, soft texture, and highly acidic taste taste (pH around 2.5) (Baldini et al., 2017Baldini, T. F., Neri-Numa, I. A., Sacramento, C. K., Schmiele, M., Bolini, H. M. A., Pastore, G. M., & Bicas, J. L. (2017). Elaboration and characterization of apple nectars supplemented with araçá-boi (Eugenia stipitata Mac Vaugh—Myrtaceae). Beverages, 3(4), 59. http://dx.doi.org/10.3390/beverages3040059.
http://dx.doi.org/10.3390/beverages30400...
). Araçá-boi contains 83% moisture, high contents of sugars, fibers, and ascorbic acid (Avila-Sosa et al., 2019Avila-Sosa, R., Montero-Rodríguez, A. F., Aguilar-Alonso, P., Vera-López, O., Lazcano-Hernández, M., Morales-Medina, J. C., & Navarro-Cruz, A. R. (2019). Antioxidant properties of Amazonian fruits: a mini review of in vivo and in vitro studies. Oxidative Medicine and Cellular Longevity, 2019, 8204129. http://dx.doi.org/10.1155/2019/8204129. PMid:30911350.
http://dx.doi.org/10.1155/2019/8204129...
). Because of its sensory properties and composition, araçá-boi is widely used to produce juice, nectar, ice cream, jam, and syrup (Araújo et al., 2019Araújo, F. F., Neri-Numa, I. A., Farias, D. P., Cunha, G. R. M. C., & Pastore, G. M. (2019). Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Research International, 121, 57-72. http://dx.doi.org/10.1016/j.foodres.2019.03.018. PMid:31108783.
http://dx.doi.org/10.1016/j.foodres.2019...
). Few studies have investigated the bioactive compounds composition of araçá-boi fruit, and the carotenoid profile of its pulp and peel was reported to be mainly composed by lutein, which the fruit peel can be considered a high source, β-carotene, β-cryptoxanthin, violaxanthin, and zeaxanthin (Table 1). The peel of araçá-boi fruit was reported to contain higher total carotenoid contents (24.84 µg.g-1) than the pulp (8.06 µg.g-1), and regarding the antioxidant capacity, the peel extract was five time more efficient than the pulp (Garzón et al., 2012Garzón, G. A., Narváez-Cuenca, C.-E., Kopec, R. E., Barry, A. M., Riedl, K. M., & Schwartz, S. J. (2012). Determination of carotenoids, total phenolic content, and antioxidant activity of arazá (Eugenia stipitata McVaugh), an Amazonian fruit. Journal of Agricultural and Food Chemistry, 60(18), 4709-4717. http://dx.doi.org/10.1021/jf205347f. PMid:22519635.
http://dx.doi.org/10.1021/jf205347f...
). In another study, Berni et al. (2019)Berni, P., Campoli, S. S., Negri, T. C., Toledo, N. M. V., & Canniatti-Brazaca, S. G. (2019). Non-conventional tropical fruits: characterization, antioxidant potential and carotenoid bioaccessibility. Plant Foods for Human Nutrition, 74(1), 141-148. http://dx.doi.org/10.1007/s11130-018-0710-1. PMid:30644024.
http://dx.doi.org/10.1007/s11130-018-071...
showed that the pulp of araçá-boi fruit (8.78 µg.g-1 of total carotenoids) presented lower antioxidant capacity in comparison to other tropical fruits, such as acerola (Malpighia emarginata) and cambuití (Sageretia elegans). Notwithstanding the few available studies, araçá-boi fruits are widely used in folk medicine to treat intestinal diseases, bladder disorders, and common cold.

4 Potential of the selected Amazonian fruits for the application as natural colorants

Sight is one of the most important senses influencing food acceptance. Colorful foods, for instance, can be highly attractive to consumers. Due to this fact, a wide variety of artificial and natural coloring agents is used in the food industry. Carotenoids, a major class of natural colorants, are important not only for their color properties but also for their biological activity. The compounds' capacity to promote health benefits has further stimulated their use in the food industry (Martins et al., 2016Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. F. R. (2016). Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1-15. http://dx.doi.org/10.1016/j.tifs.2016.03.009.
http://dx.doi.org/10.1016/j.tifs.2016.03...
; Mesquita et al., 2017Mesquita, S. D. S., Teixeira, C. M. L. L., & Servulo, E. F. C. (2017). Carotenoides: propriedades, aplicações e mercado. Revista Virtual de Química, 9(2), 672-688. http://dx.doi.org/10.21577/1984-6835.20170040.
http://dx.doi.org/10.21577/1984-6835.201...
).

There has been much discussion about the negative health and environmental impacts associated with the intense use of artificial coloring to increase food attractiveness. Consumers' awareness of the risks of artificial colorant consumption (e.g., cytotoxicity, genotoxicity, hyperactivity, and anxiety) has increased the demand for natural coloring agents (Doguc et al., 2015Doguc, D. K., Aylak, F., Ilhan, I., Kulac, E., & Gultekin, F. (2015). Are there any remarkable effects of prenatal exposure to food colourings on neurobehaviour and learning process in rat offspring? Nutritional Neuroscience, 18(1), 12-21. http://dx.doi.org/10.1179/1476830513Y.0000000095. PMid:24257113.
http://dx.doi.org/10.1179/1476830513Y.00...
; Rodriguez-Amaya, 2016Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7, 20-26. http://dx.doi.org/10.1016/j.cofs.2015.08.004.
http://dx.doi.org/10.1016/j.cofs.2015.08...
).

Amazonian fruits are well known for their bioactive potential, stemming from their carotenoid contents (Anunciação et al., 2019Anunciação, P. C., Giuffrida, D., Murador, D. C., Paula, G. X. Fo., Dugo, G., & Pinheiro-Sant’Ana, H. M. (2019). Identification and quantification of the native carotenoid composition in fruits from the Brazilian Amazon by HPLC–DAD–APCI/MS. Journal of Food Composition and Analysis, 83, 103296. http://dx.doi.org/10.1016/j.jfca.2019.103296.
http://dx.doi.org/10.1016/j.jfca.2019.10...
). Peach palm is currently the most studied Amazonian fruit, with high potential to be incorporated in food formulations (Martínez-Girón et al., 2017Martínez-Girón, J., Figueroa-Molano, A. M., & Ordóñez-Santos, L. E. (2017). Effect of the addition of peach palm (Bactris gasipaes) peel flour on the color and sensory properties of cakes. Food Science and Technology, 37(3), 418-424. http://dx.doi.org/10.1590/1678-457x.14916.
http://dx.doi.org/10.1590/1678-457x.1491...
; Pires et al., 2019bPires, M. B., Amante, E. R., Lopes, A. S., Rodrigues, A. M. C., & Silva, L. H. M. (2019b). Peach palm flour (Bactris gasipae KUNTH): potential application in the food industry. Food Science and Technology, 39(3), 613-619. http://dx.doi.org/10.1590/fst.34617.
http://dx.doi.org/10.1590/fst.34617...
; Costa et al., 2022Costa, R. D. S., Rodrigues, A. M. C., & Silva, L. H. M. (2022). The fruit of peach palm (Bactris gasipaes) and its technological potential: an overview. Food Science and Technology, 42, e82721. http://dx.doi.org/10.1590/fst.82721.
http://dx.doi.org/10.1590/fst.82721...
). Buriti is still underexploited, while tucumã, taperebá, and araçá-boi remains still unexploited, despite their high promising content of natural pigments (Aniceto et al., 2017Aniceto, A., Porte, A., Montenegro, J., Cadena, R. S., & Teodoro, A. J. (2017). A review of the fruit nutritional and biological activities of three Amazonian species: bacuri (Platonia insignis), murici (Byrsonima spp.), and taperebá (Spondias mombin). Fruits, 72(5), 317-326. http://dx.doi.org/10.17660/th2017/72.5.7.
http://dx.doi.org/10.17660/th2017/72.5.7...
; Avila-Sosa et al., 2019Avila-Sosa, R., Montero-Rodríguez, A. F., Aguilar-Alonso, P., Vera-López, O., Lazcano-Hernández, M., Morales-Medina, J. C., & Navarro-Cruz, A. R. (2019). Antioxidant properties of Amazonian fruits: a mini review of in vivo and in vitro studies. Oxidative Medicine and Cellular Longevity, 2019, 8204129. http://dx.doi.org/10.1155/2019/8204129. PMid:30911350.
http://dx.doi.org/10.1155/2019/8204129...
; Pires et al., 2019aPires, F. C. S., Silva, A. P. S., Salazar, M. A. R., Costa, W. A., Costa, H. S. C., Lopes, A. S., Rogez, H., & Carvalho, R. N. Jr. (2019a). Determination of process parameters and bioactive properties of the murici pulp (Byrsonima crassifolia) extracts obtained by supercritical extraction. The Journal of Supercritical Fluids, 146, 128-135. http://dx.doi.org/10.1016/j.supflu.2019.01.014.
http://dx.doi.org/10.1016/j.supflu.2019....
).

Pinzón-Zárate et al. (2015)Pinzón-Zárate, L. X., Hleap-Zapata, J. I., & Ordóñez-Santos, L. E. (2015). Análisis de los parámetros de color en salchichas Frankfurt adicionadas con extracto oleoso de residuos de chontaduro (Bactris Gasipaes). Información Tecnológica, 26(5), 45-54. http://dx.doi.org/10.4067/S0718-07642015000500007.
http://dx.doi.org/10.4067/S0718-07642015...
investigated the effect of adding the oily residue of peach palm extract to Frankfurt sausages through instrumental color (CIELAB space) evaluation lightness (L*), reddish (+a*) and yellowish (+b*) color coordinates, color saturation (C*, chroma) and hue angle (). Sausages prepared using oily residue had higher lightness (L*) (75.54 to 8.95), b* (8.39 to 20.34), chroma (C*) (10.17 to 0.85), and hue () (55.76 to 76.38) and lower a* (5.73 to 2.73) than the control (L* = 69.00, b* = 11.00, C* = 11.37, = 76.38, a* = 2.73). The authors concluded that natural colorants from the oily residue of peach palm extract are a viable alternative to reduce the use of nitrites in meat products.

Martínez-Girón et al. (2017)Martínez-Girón, J., Figueroa-Molano, A. M., & Ordóñez-Santos, L. E. (2017). Effect of the addition of peach palm (Bactris gasipaes) peel flour on the color and sensory properties of cakes. Food Science and Technology, 37(3), 418-424. http://dx.doi.org/10.1590/1678-457x.14916.
http://dx.doi.org/10.1590/1678-457x.1491...
added different concentrations of peach palm peel flour (2.5, 5.0, 7.5, and 10%) to cakes to replace tartrazine. Addition of 10% peach palm peel flour increased total carotenoid content, darkening index (from 88.2 to 118.1), and a* value (from 8.5 to 17.5) while decreasing L* (from 60.9 to 44.1), b* (from 42.2 to 20.1), and (from 78.6 to 49.0) compared with the control. The results suggest that peach palm peel flour can be used as a natural colorant in bakery products to replace the artificial dye tartrazine.

Mesquita et al. (2020)Mesquita, L. M. S., Neves, B. V., Pisani, L. P., & Rosso, V. V. (2020). Mayonnaise as a model food for improving the bioaccessibility of carotenoids from Bactris gasipaes fruits. LWT, 122, 109022. http://dx.doi.org/10.1016/j.lwt.2020.109022.
http://dx.doi.org/10.1016/j.lwt.2020.109...
found that the use of peach palm carotenoids as colorant in mayonnaise positively influenced color perception. Control mayonnaise had a whitish color, whereas mayonnaise prepared with carotenoid extract had a more yellowish color, similar to that of commercial mayonnaise. The carotenoid-added mayonnaise formulation scored a mean of 8.0 in color, aroma, flavor, texture, and overall acceptance. These findings are promising, as color is crucial for mayonnaise acceptance. Therefore, this study presented an excellent alternative for the incorporation of carotenoids in new food formulations, providing promising options for developing functional products with more bioaccessible fat-soluble bioactive compounds.

Buriti carotenoids have also been investigated for use as natural food colorants. Best et al. (2020)Best, I., Casimiro-Gonzales, S., Portugal, A., Olivera-Montenegro, L., Aguilar, L., Muñoz, A. M., & Ramos-Escudero, F. (2020). Phytochemical screening and DPPH radical scavenging activity of three morphotypes of Mauritia flexuosa L.f. from Peru, and thermal stability of a milk-based beverage enriched with carotenoids from these fruits. Heliyon, 6(10), e05209. http://dx.doi.org/10.1016/j.heliyon.2020.e05209. PMid:33088964.
http://dx.doi.org/10.1016/j.heliyon.2020...
used freeze-dried buriti pulp as a colorant in a milk-based beverage, resulting in increased lightness (L*) and yellowish color (b*). The study concluded that buriti carotenoids are a natural option for improving the sensory properties of milk-based beverages.

Bovi et al. (2017)Bovi, G. G., Petrus, R. R., & Pinho, S. C. (2017). Feasibility of incorporating buriti (Mauritia flexuosa L.) oil nanoemulsions in isotonic sports drink. International Journal of Food Science & Technology, 52(10), 2201-2209. http://dx.doi.org/10.1111/ijfs.13499.
http://dx.doi.org/10.1111/ijfs.13499...
added buriti to isotonic beverages as a partial replacer of Sunset Yellow. Redness was not influenced by buriti addition. Although only 25% of Sunset Yellow was replaced, the color of buriti-enriched beverages remained stable for up to 38 days of storage.

5 Stability of carotenoids from the selected Amazonian fruits

Color instability in food systems is a common industrial issue to be overcome when natural colorants are considered, including carotenoids. The stability of carotenoids is influenced by intrinsic structural characteristics of carotenoids (carotene or xanthophyll, esterified or non-esterified, E or Z configuration) and the food matrix (fruit, leaf, root, or juice). Carotenoids are mainly subject to oxidation, which leads to changes in color. Because of their sensitivity to acidic pH and heat, carotenoids may undergo isomerization (EZ), resulting in color loss. Carotenoid degradation is further stimulated by the rupture of cell’s structure, inadequate storage conditions of food products, processing, packaging material, permeability and exposure to light and oxygen (Rodriguez-Amaya, 2015Rodriguez-Amaya, D. B. (2015). Food carotenoids: chemistry, biology and technology. Chichester: Wiley Blackwell. http://dx.doi.org/10.1002/9781118864364.
http://dx.doi.org/10.1002/9781118864364...
).

Fruit peeling and enzymatic or non-enzymatic oxidative degradation during processing and storage are known to result in carotenoid loss. Non-enzymatic oxidation (autoxidation) is followed by isomerization, and both Z and E isomers can be oxidized. The oxidative process is characterized by epoxidation, followed by cleavage into apocarotenal and hydroxylation. Subsequent fragmentations result in volatile compounds with low molecular weight. Direct cleavage of the polyene chain and modifications of cleavage products may also occur, resulting in a wide range of volatile products. The volatile compounds formed after carotenoid degradation are colorless and might impart off-flavors in food and beverages (Rodriguez-Amaya, 2019Rodriguez-Amaya, D. B. (2019). Update on natural food pigments - a mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124, 200-205. http://dx.doi.org/10.1016/j.foodres.2018.05.028. PMid:31466641.
http://dx.doi.org/10.1016/j.foodres.2018...
).

Carotenoids have an important structural characteristic that influences their stability under high-temperature conditions. These phytochemicals have highly unsaturated structures; thus, they are sensitive to degradation reactions caused by heat treatment, which may vary according to temperature. Isomerization of E-carotenoids to Z-isomers modifies its biological activities and color, but not to the same extent as oxidation. In several foods, enzymatic carotenoid degradation can be more damaging than thermal decomposition or non-enzymatic oxidation (Valerio et al., 2021Valerio, P. P., Frias, J. M., & Cren, E. C. (2021). Thermal degradation kinetics of carotenoids: Acrocomia aculeata oil in the context of nutraceutical food and bioprocess technology. Journal of Thermal Analysis and Calorimetry, 143(4), 2983-2994. http://dx.doi.org/10.1007/s10973-020-09303-9.
http://dx.doi.org/10.1007/s10973-020-093...
).

The stability of carotenoids in food products depends on several factors, including storage conditions of raw materials, product stability, sensory characteristics, and chemical composition of extracts (Bajoub et al., 2015Bajoub, A., Carrasco-Pancorbo, A., Ajal, E. A., Ouazzani, N., & Fernández-Gutiérrez, A. (2015). Potential of LC–MS phenolic profiling combined with multivariate analysis as an approach for the determination of the geographical origin of north Moroccan virgin olive oils. Food Chemistry, 166, 292-300. http://dx.doi.org/10.1016/j.foodchem.2014.05.153. PMid:25053059.
http://dx.doi.org/10.1016/j.foodchem.201...
). Franklin & Nascimento (2020)Franklin, B., & Nascimento, F. C. A. (2020). Plantas para o futuro: compilação de dados de composição nutricional do araçá-boi, buriti, cupuaçu, murici e pupunha. Brazilian Journal of Development, 6(3), 10174-10189. http://dx.doi.org/10.34117/bjdv6n3-046.
http://dx.doi.org/10.34117/bjdv6n3-046...
found that cooked peach palm (4,710.00 µg. g-1) had a higher carotenoid content than raw peach palm (3,769.25 µg. g-1). This finding demonstrates that cooking may facilitate carotenoid extraction from plant materials. On the other hand, cooking may also alter compound stability, resulting in color loss (Franklin & Nascimento, 2020Franklin, B., & Nascimento, F. C. A. (2020). Plantas para o futuro: compilação de dados de composição nutricional do araçá-boi, buriti, cupuaçu, murici e pupunha. Brazilian Journal of Development, 6(3), 10174-10189. http://dx.doi.org/10.34117/bjdv6n3-046.
http://dx.doi.org/10.34117/bjdv6n3-046...
).

Pelais et al. (2020)Pelais, A. C. A., Martins, I. R., Martins, L. H. S., Silva, A. E., Figueiredo, E. L., & Braga, A. C. C. (2020). Viabilidade de bactérias probióticas do gênero Lactobacillus em néctar de taperebá: efeito nas propriedades fisico-quimicas e sensoriais. Brazilian Journal of Development, 6(5), 25945-25960. http://dx.doi.org/10.34117/bjdv6n5-158.
http://dx.doi.org/10.34117/bjdv6n5-158...
assessed the total carotenoid content of taperebá pulp subjected to freezing (30.3 µg g−1) and taperebá nectar subjected to pasteurization and refrigeration (14.2 and 12.4 µg g−1 at 0 and 31 days of storage, respectively). The results showed that heat treatment and storage conditions affected carotene content. It seems that the lower carotenoid content of nectar was due to pasteurization, as heating prior to refrigeration can lead to instability. Given the scarcity of research on taperebá fruit, it was not possible to discuss the findings of the referred study. Similar reports used different methods, precluding comparative analysis; transformation of results to the same unit afforded large discrepancies (Pelais et al., 2020Pelais, A. C. A., Martins, I. R., Martins, L. H. S., Silva, A. E., Figueiredo, E. L., & Braga, A. C. C. (2020). Viabilidade de bactérias probióticas do gênero Lactobacillus em néctar de taperebá: efeito nas propriedades fisico-quimicas e sensoriais. Brazilian Journal of Development, 6(5), 25945-25960. http://dx.doi.org/10.34117/bjdv6n5-158.
http://dx.doi.org/10.34117/bjdv6n5-158...
).

Ferreira (2011)Ferreira, J. E. M. (2011). Estabilidade de carotenoides, flavonóides e vitamina C em alimentos submetidos às tecnologias emergentes de processamento (Doctoral dissertation). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas. investigated the effects of time and pressure conditions of high hydrostatic pressure (HHP) treatment on the content and isomerization of taperebá pulp carotenoids using response surface methodology. The major carotenoids were found to be β-carotene, α-carotene, β-cryptoxanthin, and lutein. Concentrations of all trans-carotenoids did not differ significantly between treated and control samples, although there was a decreasing trend with HHP treatment. The authors recognized that the isomerization study was hampered by the low concentrations of Z-isomers, explained by the fact that Z-carotenoids undergo oxidation during formation. Z-Isomer concentrations were significantly higher in HHP-treated taperebá pulps than in untreated pulp, except for β-carotene content, which did not differ between samples. The findings showed that treatment of taperebá pulp at 157-441 MPa for 3 to 17 min causes isomerization. The effects of HHP on carotenoids differ according to the nature/integrity of the food matrix, intensity of treatment, and type of carotenoid. The stability of carotenoids in foods subjected to HHP depends on pressure–time conditions (Ferreira, 2011Ferreira, J. E. M. (2011). Estabilidade de carotenoides, flavonóides e vitamina C em alimentos submetidos às tecnologias emergentes de processamento (Doctoral dissertation). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas.).

Ribeiro et al. (2020)Ribeiro, M. L. F. F., Roos, Y. H., Ribeiro, A. P. B., & Nicoletti, V. R. (2020). Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules. Food and Bioproducts Processing, 124, 208-221. http://dx.doi.org/10.1016/j.fbp.2020.09.004.
http://dx.doi.org/10.1016/j.fbp.2020.09....
produced carotenoid-rich microcapsules by atomization of oil-in-water buriti emulsions stabilized with soy protein isolate and high-methoxyl pectin. The authors observed that the sample with the lowest maltodextrin content (0.75 g g−1) had the lowest L* value (76.93), that is, a more intense color. This sample also had the highest chroma value (85.90), whereas the sample containing 1.25 g g−1 maltodextrin had the lowest chroma value (80.94). The findings showed that the higher the maltodextrin content, the lower the color saturation of buriti oil microcapsules. Microcapsules were shown to be promising alternatives to enhance the carotenoid content and color properties of foods. Encapsulation efficiency and retention of carotenoids and buriti oil were significantly influenced (p ≤ 0.05) by maltodextrin content. The highest encapsulation efficiencies (63.75% for carotenoids and 65.70% for buriti oil) and retention of carotenoids (53.31%) and buriti oil (56.38%) were observed in samples containing 1.25 g g−1 maltodextrin. Maltodextrin probably acted as a barrier at the microcapsule surface, thereby minimizing oil and carotenoid loss. Such results demonstrate that high concentrations of drying agents can contribute to the production of highly effective encapsulation matrices for bioactive compound protection (Ribeiro et al., 2020Ribeiro, M. L. F. F., Roos, Y. H., Ribeiro, A. P. B., & Nicoletti, V. R. (2020). Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules. Food and Bioproducts Processing, 124, 208-221. http://dx.doi.org/10.1016/j.fbp.2020.09.004.
http://dx.doi.org/10.1016/j.fbp.2020.09....
).

Although several studies have confirmed the beneficial effects of ultrasound treatment on the extraction and protection of bioactive compounds from fruit juices, few have investigated the use of this emerging technology in Amazonian fruits. Carvalho et al. (2020)Carvalho, L. M. S., Lemos, M. C. M., Sanches, E. A., Silva, L. S., Bezerra, J. A., Aguiar, J. P. L., Souza, F. C. A., Alves, E. G. Fo., & Campelo, P. H. (2020). Improvement of the bioaccessibility of bioactive compounds from Amazon fruits treated using high energy ultrasound. Ultrasonics Sonochemistry, 67, 105148. http://dx.doi.org/10.1016/j.ultsonch.2020.105148. PMid:32388313.
http://dx.doi.org/10.1016/j.ultsonch.202...
assessed the influence of high-energy ultrasound on the physicochemical properties of buriti juice. Ultrasound energy density was positively correlated with processing temperature, so that acoustic cavitation energy was dissipated in the form of heat. Under ultrasound treatment at 1.8 kJ cm−3, buriti juice did not reach 45 °C, whereas, at 3.6 kJ cm−3, juice reached 70 °C after 10 min. Ultrasound energy significantly influenced (p < 0.05) the color parameters of buriti juice: L* and b* values increased with energy density. This result is associated with the higher carotenoid concentration of samples, given that ultrasound treatment promotes intracellular extraction of these compounds. In general, color changes in buriti juice treated with ultrasound might be associated with oxidation of bioactive compounds and the consequent production of other compounds with different colors (Ordóñez-Santos et al., 2017Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in cape gooseberry juice. Food Chemistry, 233, 96-100. http://dx.doi.org/10.1016/j.foodchem.2017.04.114. PMid:28530616.
http://dx.doi.org/10.1016/j.foodchem.201...
; Silva et al., 2019bSilva, L. F. R., Gomes, A. S., Castro, D. R. G., Souza, F. C. A., Mar, J. M., Silva, L. S., Sanches, E. A., Bezerra, J. A., Bakry, A. M., & Campelo, P. H. (2019b). Ultrasound-assisted homogenization and gum Arabic combined to physicochemical quality of cupuaçu juice. Journal of Food Processing and Preservation, 43(9), e14072. http://dx.doi.org/10.1111/jfpp.14072.
http://dx.doi.org/10.1111/jfpp.14072...
; Carvalho et al., 2020Carvalho, L. M. S., Lemos, M. C. M., Sanches, E. A., Silva, L. S., Bezerra, J. A., Aguiar, J. P. L., Souza, F. C. A., Alves, E. G. Fo., & Campelo, P. H. (2020). Improvement of the bioaccessibility of bioactive compounds from Amazon fruits treated using high energy ultrasound. Ultrasonics Sonochemistry, 67, 105148. http://dx.doi.org/10.1016/j.ultsonch.2020.105148. PMid:32388313.
http://dx.doi.org/10.1016/j.ultsonch.202...
).

6 Conclusions and future perspectives

This review summarized the main chemical characteristics and composition of carotenoids of the selected Amazonian fruits (peach palm, buriti, tucumã, taperebá, and araçá-boi) and the factors that affect their stability, bioactive properties and potential as natural food colorants. Notwithstanding the information provided, this review highlights the need of further and systematic researches on these underexploited Amazonian fruits as sources of carotenoid extracts with promising potential to be used as natural colorants in food formulations, particularly in lipid-rich formulations, given the lipophilic characteristic of carotenoids.

Acknowledgements

The authors thank FAPESPA (Fundação Amazônia de Amparo a Estudos e Pesquisas, Belém, PA, Brazil, Project 2017/52864 - ICAAF Nº 013/2018), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq, Brazil, Projects 408181/2021-4 and 314929/2021-5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil, Finance Code 001), for the financial support through Master and Doctor scholarships.

  • Practical application: Carotenoids from Amazonian fruits have high technological potential as natural food additive.

References

  • Adin, A., Weber, J. C., Montes, C. S., Vidaurre, H., Vosman, B., & Smulders, M. J. M. (2004). Genetic differentiation and trade among populations of peach palm (Bactris gasipaes Kunth) in the Peruvian Amazon-implications for genetic resource management. Theoretical and Applied Genetics, 108(8), 1564-1573. http://dx.doi.org/10.1007/s00122-003-1581-9 PMid:14985969.
    » http://dx.doi.org/10.1007/s00122-003-1581-9
  • Aniceto, A., Montenegro, J., Cadena, R. S., & Teodoro, A. J. (2021). Physicochemical characterization, antioxidant capacity, and sensory properties of murici (Byrsonima crassifolia (L.) Kunth) and taperebá (Spondias mombin L.) beverages. Molecules, 26(2), 332. http://dx.doi.org/10.3390/molecules26020332 PMid:33440607.
    » http://dx.doi.org/10.3390/molecules26020332
  • Aniceto, A., Porte, A., Montenegro, J., Cadena, R. S., & Teodoro, A. J. (2017). A review of the fruit nutritional and biological activities of three Amazonian species: bacuri (Platonia insignis), murici (Byrsonima spp.), and taperebá (Spondias mombin). Fruits, 72(5), 317-326. http://dx.doi.org/10.17660/th2017/72.5.7
    » http://dx.doi.org/10.17660/th2017/72.5.7
  • Anunciação, P. C., Giuffrida, D., Murador, D. C., Paula, G. X. Fo., Dugo, G., & Pinheiro-Sant’Ana, H. M. (2019). Identification and quantification of the native carotenoid composition in fruits from the Brazilian Amazon by HPLC–DAD–APCI/MS. Journal of Food Composition and Analysis, 83, 103296. http://dx.doi.org/10.1016/j.jfca.2019.103296
    » http://dx.doi.org/10.1016/j.jfca.2019.103296
  • Araújo, F. F., Neri-Numa, I. A., Farias, D. P., Cunha, G. R. M. C., & Pastore, G. M. (2019). Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Research International, 121, 57-72. http://dx.doi.org/10.1016/j.foodres.2019.03.018 PMid:31108783.
    » http://dx.doi.org/10.1016/j.foodres.2019.03.018
  • Arunkumar, R., Gorusupudi, A., & Bernstein, P. S. (2020). The macular carotenoids: a biochemical overview. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(11), 158617. http://dx.doi.org/10.1016/j.bbalip.2020.158617 PMid:31931175.
    » http://dx.doi.org/10.1016/j.bbalip.2020.158617
  • Avila-Sosa, R., Montero-Rodríguez, A. F., Aguilar-Alonso, P., Vera-López, O., Lazcano-Hernández, M., Morales-Medina, J. C., & Navarro-Cruz, A. R. (2019). Antioxidant properties of Amazonian fruits: a mini review of in vivo and in vitro studies. Oxidative Medicine and Cellular Longevity, 2019, 8204129. http://dx.doi.org/10.1155/2019/8204129 PMid:30911350.
    » http://dx.doi.org/10.1155/2019/8204129
  • Bajoub, A., Carrasco-Pancorbo, A., Ajal, E. A., Ouazzani, N., & Fernández-Gutiérrez, A. (2015). Potential of LC–MS phenolic profiling combined with multivariate analysis as an approach for the determination of the geographical origin of north Moroccan virgin olive oils. Food Chemistry, 166, 292-300. http://dx.doi.org/10.1016/j.foodchem.2014.05.153 PMid:25053059.
    » http://dx.doi.org/10.1016/j.foodchem.2014.05.153
  • Baldini, T. F., Neri-Numa, I. A., Sacramento, C. K., Schmiele, M., Bolini, H. M. A., Pastore, G. M., & Bicas, J. L. (2017). Elaboration and characterization of apple nectars supplemented with araçá-boi (Eugenia stipitata Mac Vaugh—Myrtaceae). Beverages, 3(4), 59. http://dx.doi.org/10.3390/beverages3040059
    » http://dx.doi.org/10.3390/beverages3040059
  • Baldissera, M. D., Souza, C. F., Grando, T. H., Cossetin, L. F., Sagrillo, M. R., Nascimento, K., Silva, A. S., Machado, A. K., Cruz, I. B. M., Stefani, L. M., Klein, B., Wagner, R., & Monteiro, S. G. (2017). Antihyperglycemic, antioxidant activities of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: new natural source to treat hyperglycemia. Chemico-Biological Interactions, 270, 51-58. http://dx.doi.org/10.1016/j.cbi.2017.04.001 PMid:28419827.
    » http://dx.doi.org/10.1016/j.cbi.2017.04.001
  • Basto, G. J., Carvalho, C. W. P., Soares, A. G., Costa, H. T. G. B., Chávez, D. W. H., Godoy, R. L. O., & Pacheco, S. (2016). Physicochemical properties and carotenoid content of extruded and non-extruded corn and peach palm (Bactris gasipaes, Kunth). Lebensmittel-Wissenschaft + Technologie, 69, 312-318. http://dx.doi.org/10.1016/j.lwt.2015.12.065
    » http://dx.doi.org/10.1016/j.lwt.2015.12.065
  • Berni, P., Campoli, S. S., Negri, T. C., Toledo, N. M. V., & Canniatti-Brazaca, S. G. (2019). Non-conventional tropical fruits: characterization, antioxidant potential and carotenoid bioaccessibility. Plant Foods for Human Nutrition, 74(1), 141-148. http://dx.doi.org/10.1007/s11130-018-0710-1 PMid:30644024.
    » http://dx.doi.org/10.1007/s11130-018-0710-1
  • Best, I., Casimiro-Gonzales, S., Portugal, A., Olivera-Montenegro, L., Aguilar, L., Muñoz, A. M., & Ramos-Escudero, F. (2020). Phytochemical screening and DPPH radical scavenging activity of three morphotypes of Mauritia flexuosa L.f. from Peru, and thermal stability of a milk-based beverage enriched with carotenoids from these fruits. Heliyon, 6(10), e05209. http://dx.doi.org/10.1016/j.heliyon.2020.e05209 PMid:33088964.
    » http://dx.doi.org/10.1016/j.heliyon.2020.e05209
  • Bezerra, C., & Silva, L. (2016). Pupunha (Bactris gasipaes): general and consumption aspects. In K. Kristbergsson & J. Oliveira (Eds.), Traditional foods: general and consumer aspects (pp. 399-405). New York: Springer. http://dx.doi.org/10.1007/978-1-4899-7648-2_33
    » http://dx.doi.org/10.1007/978-1-4899-7648-2_33
  • Bovi, G. G., Petrus, R. R., & Pinho, S. C. (2017). Feasibility of incorporating buriti (Mauritia flexuosa L.) oil nanoemulsions in isotonic sports drink. International Journal of Food Science & Technology, 52(10), 2201-2209. http://dx.doi.org/10.1111/ijfs.13499
    » http://dx.doi.org/10.1111/ijfs.13499
  • Britton, G., & Khachik, F. (2009). Carotenoids in food. In G. Britton, H. Pfander & S. Liaaen-Jensen (Eds.), Carotenoids (vol. 5, pp. 45-66). Basel: Birkhäuser. http://dx.doi.org/10.1007/978-3-7643-7501-0_3
    » http://dx.doi.org/10.1007/978-3-7643-7501-0_3
  • Cabral, F. L., Bernardes, V. M., Passos, D. F., Oliveira, J. S., Doleski, P. H., Silveira, K. L., Horvarth, M. C., Bremm, J. M., Barbisan, F., Azzolin, V. F., Teixeira, C. F., Andrade, C. M., Cruz, I. B. M., Ribeiro, E. E., & Leal, D. B. R. (2020). Astrocaryum aculeatum fruit improves inflammation and redox balance in phytohemagglutinin-stimulated macrophages. Journal of Ethnopharmacology, 247, 112274. http://dx.doi.org/10.1016/j.jep.2019.112274 PMid:31589969.
    » http://dx.doi.org/10.1016/j.jep.2019.112274
  • Cândido, T. L. N., & Silva, M. R. (2017). Comparison of the physicochemical profiles of buriti from the Brazilian Cerrado and the Amazon region. Food Science and Technology, 37(Suppl. 1), 78-82. http://dx.doi.org/10.1590/1678-457x.32516
    » http://dx.doi.org/10.1590/1678-457x.32516
  • Carvalho, A. V., Chaves, R. P. F., & Alves, R. M. (2017). Caracterização física e físico-química de frutos em matrizes de cajazeira no estado do Pará. Boletim de Pesquisa e Desenvolvimento, 117, 1-22.
  • Carvalho, L. M. S., Lemos, M. C. M., Sanches, E. A., Silva, L. S., Bezerra, J. A., Aguiar, J. P. L., Souza, F. C. A., Alves, E. G. Fo., & Campelo, P. H. (2020). Improvement of the bioaccessibility of bioactive compounds from Amazon fruits treated using high energy ultrasound. Ultrasonics Sonochemistry, 67, 105148. http://dx.doi.org/10.1016/j.ultsonch.2020.105148 PMid:32388313.
    » http://dx.doi.org/10.1016/j.ultsonch.2020.105148
  • Cazzaniga, S., Bressan, M., Carbonera, D., Agostini, A., & Dall’Osto, L. (2016). Differential roles of carotenes and xanthophylls in photosystem I photoprotection. Biochemistry, 55(26), 3636-3649. http://dx.doi.org/10.1021/acs.biochem.6b00425 PMid:27290879.
    » http://dx.doi.org/10.1021/acs.biochem.6b00425
  • Chiste, R. C., & Fernandes, E. (2016). Bioactive compounds from Amazonian fruits and their antioxidant properties. In L. R. Silva & B. M. Silva (Eds.), Natural bioactive compounds from fruits and vegetables as health promoters: part 1 (pp. 244-264). Oak Park: Bentham Science Publishers. http://dx.doi.org/10.2174/9781681082394116010011
    » http://dx.doi.org/10.2174/9781681082394116010011
  • Chisté, R. C., Costa, E. L. N., Monteiro, S. F., & Mercadante, A. Z. (2021). Carotenoid and phenolic compound profiles of cooked pulps of orange and yellow peach palm fruits (Bactris gasipaes) from the Brazilian Amazonia. Journal of Food Composition and Analysis, 99, 103873. http://dx.doi.org/10.1016/j.jfca.2021.103873
    » http://dx.doi.org/10.1016/j.jfca.2021.103873
  • Coelho, M. S., Fernandes, S. S., & Salas-Mellado, M. M. (2019). Association between diet, health, and the presence of bioactive compounds in foods. In M. R. S. Campos (Ed.), Bioactive compounds: health benefits and potential applications (pp. 159-183). Cambridge: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-12-814774-0.00009-8
    » http://dx.doi.org/10.1016/B978-0-12-814774-0.00009-8
  • Costa, B. E. T., Santos, O. V., Corrêa, N. C. F., & França, L. F. (2016). Comparative study on the quality of oil extracted from two tucumã varieties using supercritical carbon dioxide. Food Science and Technology, 36(2), 322-328. http://dx.doi.org/10.1590/1678-457X.0094
    » http://dx.doi.org/10.1590/1678-457X.0094
  • Costa, G. A., & Mercadante, A. Z. (2018). In vitro bioaccessibility of free and esterified carotenoids in cajá frozen pulp-based beverages. Journal of Food Composition and Analysis, 68, 53-59. http://dx.doi.org/10.1016/j.jfca.2017.02.012
    » http://dx.doi.org/10.1016/j.jfca.2017.02.012
  • Costa, R. D. S., Rodrigues, A. M. C., & Silva, L. H. M. (2022). The fruit of peach palm (Bactris gasipaes) and its technological potential: an overview. Food Science and Technology, 42, e82721. http://dx.doi.org/10.1590/fst.82721
    » http://dx.doi.org/10.1590/fst.82721
  • Cruz, M. B., Oliveira, W. S., Araújo, R. L., França, A. C. H., & Pertuzatti, P. B. (2020). Buriti (Mauritia Flexuosa L.) pulp oil as an immunomodulator against enteropathogenic Escherichia coli. Industrial Crops and Products, 149, 112330. http://dx.doi.org/10.1016/j.indcrop.2020.112330
    » http://dx.doi.org/10.1016/j.indcrop.2020.112330
  • Cunha Jr, R. M. Domingues, P. B. A., Ambrósio, R. O., Martins, C. A. F., Silva, J. G. B. P. C., & Pieri, F. A. (2020). Brazilian Amazon plants: an overview of chemical composition and biological activity. In E. R. Rhodes & H. Naser (Eds.), Natural resources management and biological sciences (pp. 1-16). London: Intech, Open.
  • Dias, M. G., Olmedilla-Alonso, B., Hornero-Méndez, D., Mercadante, A. Z., Osorio, C., Vargas-Murga, L., & Meléndez-Martínez, A. J. (2018). Comprehensive database of carotenoid contents in Ibero-American foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. Journal of Agricultural and Food Chemistry, 66(20), 5055-5107. http://dx.doi.org/10.1021/acs.jafc.7b06148 PMid:29614229.
    » http://dx.doi.org/10.1021/acs.jafc.7b06148
  • Doguc, D. K., Aylak, F., Ilhan, I., Kulac, E., & Gultekin, F. (2015). Are there any remarkable effects of prenatal exposure to food colourings on neurobehaviour and learning process in rat offspring? Nutritional Neuroscience, 18(1), 12-21. http://dx.doi.org/10.1179/1476830513Y.0000000095 PMid:24257113.
    » http://dx.doi.org/10.1179/1476830513Y.0000000095
  • Dutta, S., Muthusamy, V., Chhabra, R., Baveja, A., Zunjare, R. U., Mondal, T. K., Yadava, D. K., & Hossain, F. (2021). Low expression of carotenoids cleavage dioxygenase 1 (ccd1) gene improves the retention of provitamin-A in maize grains during storage. Molecular Genetics and Genomics, 296(1), 141-153. http://dx.doi.org/10.1007/s00438-020-01734-1 PMid:33068135.
    » http://dx.doi.org/10.1007/s00438-020-01734-1
  • Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18-26. http://dx.doi.org/10.1016/j.abb.2018.06.001 PMid:29885291.
    » http://dx.doi.org/10.1016/j.abb.2018.06.001
  • Ferreira, J. E. M. (2011). Estabilidade de carotenoides, flavonóides e vitamina C em alimentos submetidos às tecnologias emergentes de processamento (Doctoral dissertation). Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas.
  • Ferreira, M. J. A., Mota, M. F. S., Mariano, R. G. B., & Freitas, S. P. (2021). Evaluation of liquid-liquid extraction to reducing the acidity index of the tucuma (Astrocaryum vulgare Mart.) pulp oil. Separation and Purification Technology, 257, 117894. http://dx.doi.org/10.1016/j.seppur.2020.117894
    » http://dx.doi.org/10.1016/j.seppur.2020.117894
  • Franklin, B., & Nascimento, F. C. A. (2020). Plantas para o futuro: compilação de dados de composição nutricional do araçá-boi, buriti, cupuaçu, murici e pupunha. Brazilian Journal of Development, 6(3), 10174-10189. http://dx.doi.org/10.34117/bjdv6n3-046
    » http://dx.doi.org/10.34117/bjdv6n3-046
  • Freitas, M., Chisté, R., Polachini, T., Sardella, L., Aranha, C., Ribeiro, A., & Nicoletti, V. (2018). Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L.) oil. Grasas y Aceites, 68(4), e220. http://dx.doi.org/10.3989/gya.0557171
    » http://dx.doi.org/10.3989/gya.0557171
  • Garzón, G. A., Narváez-Cuenca, C.-E., Kopec, R. E., Barry, A. M., Riedl, K. M., & Schwartz, S. J. (2012). Determination of carotenoids, total phenolic content, and antioxidant activity of arazá (Eugenia stipitata McVaugh), an Amazonian fruit. Journal of Agricultural and Food Chemistry, 60(18), 4709-4717. http://dx.doi.org/10.1021/jf205347f PMid:22519635.
    » http://dx.doi.org/10.1021/jf205347f
  • Griffiths, K., Aggarwal, B. B., Singh, R. B., Buttar, H. S., Wilson, D., & Meester, F. (2016). Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention. Diseases, 4(3), 28. http://dx.doi.org/10.3390/diseases4030028 PMid:28933408.
    » http://dx.doi.org/10.3390/diseases4030028
  • Hermanns, A. S., Zhou, X., Xu, Q., Tadmor, Y., & Li, L. (2020). Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal, 6(6), 343-360. http://dx.doi.org/10.1016/j.hpj.2020.10.002
    » http://dx.doi.org/10.1016/j.hpj.2020.10.002
  • Jatunov, S., Quesada, S., Diaz, C., & Murillo, E. (2010). Carotenoid composition and antioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes. Archivos Latinoamericanos de Nutricion, 60(1), 99-104. PMid:21090177.
  • Khouryieh, H. A. (2021). Novel and emerging technologies used by the U.S. food processing industry. Innovative Food Science & Emerging Technologies, 67, 102559. http://dx.doi.org/10.1016/j.ifset.2020.102559
    » http://dx.doi.org/10.1016/j.ifset.2020.102559
  • Kiokias, S., Proestos, C., & Varzakas, T. (2016). A review of the structure, biosynthesis, absorption of carotenoids-analysis and properties of their common natural extracts. Current Research in Nutrition and Food Science, 4(Spe 1), 25-37. http://dx.doi.org/10.12944/CRNFSJ.4.Special-Issue1.03
    » http://dx.doi.org/10.12944/CRNFSJ.4.Special-Issue1.03
  • Lima, L. G. B., Montenegro, J., Abreu, J. P., Santos, M. C. B., Nascimento, T. P., Santos, M. S., Ferreira, A. G., Cameron, L. C., Ferreira, M. S. L., & Teodoro, A. J. (2020). Metabolite profiling by UPLC-MS(E), NMR, and antioxidant properties of Amazonian fruits: mamey apple (Mammea Americana), camapu (Physalis Angulata), and uxi (Endopleura Uchi). Molecules, 25(2), 342. http://dx.doi.org/10.3390/molecules25020342 PMid:31952109.
    » http://dx.doi.org/10.3390/molecules25020342
  • Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. http://dx.doi.org/10.1007/s11418-019-01364-x PMid:31588965.
    » http://dx.doi.org/10.1007/s11418-019-01364-x
  • Martínez-Girón, J., Figueroa-Molano, A. M., & Ordóñez-Santos, L. E. (2017). Effect of the addition of peach palm (Bactris gasipaes) peel flour on the color and sensory properties of cakes. Food Science and Technology, 37(3), 418-424. http://dx.doi.org/10.1590/1678-457x.14916
    » http://dx.doi.org/10.1590/1678-457x.14916
  • Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. F. R. (2016). Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1-15. http://dx.doi.org/10.1016/j.tifs.2016.03.009
    » http://dx.doi.org/10.1016/j.tifs.2016.03.009
  • Matos, K. A. N., Lima, D. P., Barbosa, A. P. P., Mercadante, A. Z., & Chisté, R. C. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272, 216-221. http://dx.doi.org/10.1016/j.foodchem.2018.08.053 PMid:30309535.
    » http://dx.doi.org/10.1016/j.foodchem.2018.08.053
  • Meléndez-Martínez, A. J. (2019). An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular Nutrition & Food Research, 63(15), 1801045. http://dx.doi.org/10.1002/mnfr.201801045 PMid:31189216.
    » http://dx.doi.org/10.1002/mnfr.201801045
  • Meléndez-Martínez, A. J., Mapelli-Brahm, P., Benítez-González, A., & Stinco, C. M. (2015). A comprehensive review on the colorless carotenoids phytoene and phytofluene. Archives of Biochemistry and Biophysics, 572, 188-200. http://dx.doi.org/10.1016/j.abb.2015.01.003 PMid:25615528.
    » http://dx.doi.org/10.1016/j.abb.2015.01.003
  • Melo, M. C. T., Costa, L. L., Pereira, F. C., Castro, L. M., & Neponuceno, S. (2017). Physical and chemical analysis of fruit “in natura” of pupunha. Revista Inova Ciência e Tecnologia, 3(1), 13-17.
  • Mesquita, L. M. S., Neves, B. V., Pisani, L. P., & Rosso, V. V. (2020). Mayonnaise as a model food for improving the bioaccessibility of carotenoids from Bactris gasipaes fruits. LWT, 122, 109022. http://dx.doi.org/10.1016/j.lwt.2020.109022
    » http://dx.doi.org/10.1016/j.lwt.2020.109022
  • Mesquita, S. D. S., Teixeira, C. M. L. L., & Servulo, E. F. C. (2017). Carotenoides: propriedades, aplicações e mercado. Revista Virtual de Química, 9(2), 672-688. http://dx.doi.org/10.21577/1984-6835.20170040
    » http://dx.doi.org/10.21577/1984-6835.20170040
  • Montero, I. F., Saravia, S. A. M., Santos, R. A., Santos, R. C., Marcía, J. A. F., & Costa, H. N. R. (2020). Nutrients in Amazonian fruit pulps with functional and pharmacological interest. African Journal of Pharmacy and Pharmacology, 14(5), 118-127. http://dx.doi.org/10.5897/AJPP2020.5136
    » http://dx.doi.org/10.5897/AJPP2020.5136
  • Nascimento-Silva, N. R. R., Silva, F. A., & Silva, M. R. (2020). Physicochemical composition and antioxidants of buriti (Mauritia flexuosa Linn. F.) – pulp and sweet. Journal of Bioenergy and Food Science, 7, 1-12. http://dx.doi.org/10.18067/jbfs.v7i1.279
    » http://dx.doi.org/10.18067/jbfs.v7i1.279
  • Neiens, S. D., Geisslitz, S. M., & Steinhaus, M. (2017). Aroma-active compounds in Spondias mombin L. fruit pulp. European Food Research and Technology, 243(6), 1073-1081. http://dx.doi.org/10.1007/s00217-016-2825-7
    » http://dx.doi.org/10.1007/s00217-016-2825-7
  • Neri-Numa, I. A., Pessoa, M. G., Paulino, B. N., & Pastore, G. M. (2017). Genipin: a natural blue pigment for food and health purposes. Trends in Food Science & Technology, 67, 271-279. http://dx.doi.org/10.1016/j.tifs.2017.06.018
    » http://dx.doi.org/10.1016/j.tifs.2017.06.018
  • Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in cape gooseberry juice. Food Chemistry, 233, 96-100. http://dx.doi.org/10.1016/j.foodchem.2017.04.114 PMid:28530616.
    » http://dx.doi.org/10.1016/j.foodchem.2017.04.114
  • Pelais, A. C. A., Martins, I. R., Martins, L. H. S., Silva, A. E., Figueiredo, E. L., & Braga, A. C. C. (2020). Viabilidade de bactérias probióticas do gênero Lactobacillus em néctar de taperebá: efeito nas propriedades fisico-quimicas e sensoriais. Brazilian Journal of Development, 6(5), 25945-25960. http://dx.doi.org/10.34117/bjdv6n5-158
    » http://dx.doi.org/10.34117/bjdv6n5-158
  • Pereira, Y. F., Costa, M. S., Tintino, S. R., Rocha, J. E., Rodrigues, F. F. G., Feitosa, M. K. S. B., Menezes, I. R. A., Coutinho, H. D. M., Costa, J. G. M., & Sousa, E. O. (2018). Modulation of the antibiotic activity by the Mauritia flexuosa (Buriti) fixed oil against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Other Multidrug-Resistant (MDR) bacterial strains. Pathogens, 7(4), 98. http://dx.doi.org/10.3390/pathogens7040098 PMid:30544654.
    » http://dx.doi.org/10.3390/pathogens7040098
  • Pereira-Freire, J. A., Barros, K. B. N. T., Lima, L. K. F., Martins, J. M., Araújo, Y. C., Oliveira, G. L. S., Aquino, J. S., & Ferreira, P. M. P. (2016). Phytochemistry profile, nutritional properties and pharmacological activities of Mauritia flexuosa. Journal of Food Science, 81(11), R2611-R2622. http://dx.doi.org/10.1111/1750-3841.13529 PMid:30240016.
    » http://dx.doi.org/10.1111/1750-3841.13529
  • Pereira-Freire, J. A., Oliveira, G. L. S., Lima, L. K. F., Ramos, C. L. S., Arcanjo-Medeiros, S. R., Lima, A. C. S., Teixeira, S. A., Oliveira, G. A. L., Nunes, N. M. F., Amorim, V. R., Lopes, L. S., Rolim, L. A., Costa-Júnior, J. S., & Ferreira, P. M. P. (2018). In vitro and ex vivo chemopreventive action of Mauritia flexuosa products. Evidence-Based Complementary and Alternative Medicine, 2018, 2051279. http://dx.doi.org/10.1155/2018/2051279 PMid:29967646.
    » http://dx.doi.org/10.1155/2018/2051279
  • Pérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. http://dx.doi.org/10.3390/antiox9060505 PMid:32526968.
    » http://dx.doi.org/10.3390/antiox9060505
  • Pietro, N., Tomo, P., & Pandolfi, A. (2016). Carotenoids in cardiovascular disease prevention. JSM Atherosclerosis, 1(1), 1002.
  • Pinzón-Zárate, L. X., Hleap-Zapata, J. I., & Ordóñez-Santos, L. E. (2015). Análisis de los parámetros de color en salchichas Frankfurt adicionadas con extracto oleoso de residuos de chontaduro (Bactris Gasipaes). Información Tecnológica, 26(5), 45-54. http://dx.doi.org/10.4067/S0718-07642015000500007
    » http://dx.doi.org/10.4067/S0718-07642015000500007
  • Pires, F. C. S., Silva, A. P. S., Salazar, M. A. R., Costa, W. A., Costa, H. S. C., Lopes, A. S., Rogez, H., & Carvalho, R. N. Jr. (2019a). Determination of process parameters and bioactive properties of the murici pulp (Byrsonima crassifolia) extracts obtained by supercritical extraction. The Journal of Supercritical Fluids, 146, 128-135. http://dx.doi.org/10.1016/j.supflu.2019.01.014
    » http://dx.doi.org/10.1016/j.supflu.2019.01.014
  • Pires, M. B., Amante, E. R., Lopes, A. S., Rodrigues, A. M. C., & Silva, L. H. M. (2019b). Peach palm flour (Bactris gasipae KUNTH): potential application in the food industry. Food Science and Technology, 39(3), 613-619. http://dx.doi.org/10.1590/fst.34617
    » http://dx.doi.org/10.1590/fst.34617
  • Quesada, S., Azofeifa, G., Jatunov, S., Jiménez, G., Navarro, L., & Gómez, G. (2011). Carotenoids composition, antioxidant activity and glycemic index of two varieties of Bactris gasipaes. Emirates Journal of Food and Agriculture, 23, 482-489.
  • Ribeiro, J. S., & Veloso, C. M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: a review. Food Hydrocolloids, 112, 106374. http://dx.doi.org/10.1016/j.foodhyd.2020.106374
    » http://dx.doi.org/10.1016/j.foodhyd.2020.106374
  • Ribeiro, M. L. F. F., Roos, Y. H., Ribeiro, A. P. B., & Nicoletti, V. R. (2020). Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules. Food and Bioproducts Processing, 124, 208-221. http://dx.doi.org/10.1016/j.fbp.2020.09.004
    » http://dx.doi.org/10.1016/j.fbp.2020.09.004
  • Rivera-Madrid, R., Carballo-Uicab, V. M., Cárdenas-Conejo, Y., Aguilar-Espinosa, M., & Siva, R. (2020). Overview of carotenoids and beneficial effects on human health. In C. M. Galanakis (Ed.), Carotenoids: properties, processing and applications (pp. 1-40). Cambridge: Academic Press. http://dx.doi.org/10.1016/B978-0-12-817067-0.00001-4
    » http://dx.doi.org/10.1016/B978-0-12-817067-0.00001-4
  • Rodriguez-Amaya, D. B. (2015). Food carotenoids: chemistry, biology and technology Chichester: Wiley Blackwell. http://dx.doi.org/10.1002/9781118864364
    » http://dx.doi.org/10.1002/9781118864364
  • Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7, 20-26. http://dx.doi.org/10.1016/j.cofs.2015.08.004
    » http://dx.doi.org/10.1016/j.cofs.2015.08.004
  • Rodriguez-Amaya, D. B. (2019). Update on natural food pigments - a mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124, 200-205. http://dx.doi.org/10.1016/j.foodres.2018.05.028 PMid:31466641.
    » http://dx.doi.org/10.1016/j.foodres.2018.05.028
  • Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M. C., Meléndez-Martínez, A. J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M. J., Zacarias, L., & Zhu, C. (2018). A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93. http://dx.doi.org/10.1016/j.plipres.2018.04.004 PMid:29679619.
    » http://dx.doi.org/10.1016/j.plipres.2018.04.004
  • Rojas-Garbanzo, C., Pérez, A., Vaillant, F., & Pineda-Castro, M. (2016). Physicochemical and antioxidant composition of fresh peach palm (Bactris gasipaes Kunth) fruits in Costa Rica. Brazilian Journal of Food Technology, 19(0). http://dx.doi.org/10.1590/1981-6723.9715
    » http://dx.doi.org/10.1590/1981-6723.9715
  • Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072. http://dx.doi.org/10.1021/jf0705421 PMid:17530774.
    » http://dx.doi.org/10.1021/jf0705421
  • Rostamabadi, H., Falsafi, S. R., & Jafari, S. M. (2019). Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release, 298, 38-67. http://dx.doi.org/10.1016/j.jconrel.2019.02.005 PMid:30738975.
    » http://dx.doi.org/10.1016/j.jconrel.2019.02.005
  • Rowles, J. L. III, & Erdman, J. W. Jr. (2020). Carotenoids and their role in cancer prevention. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(11), 158613. http://dx.doi.org/10.1016/j.bbalip.2020.158613 PMid:31935448.
    » http://dx.doi.org/10.1016/j.bbalip.2020.158613
  • Sandri, D., Xisto, A., Rodrigues, E., Morais, E., & Barros, W. (2017). Antioxidant activity and physicochemical characteristics of buriti pulp (Mauritia flexuosa) collected in the city of Diamantino – MTS. Revista Brasileira de Fruticultura, 39(3). http://dx.doi.org/10.1590/0100-29452017864
    » http://dx.doi.org/10.1590/0100-29452017864
  • Santos, M. F. G., Alves, R. E., & Roca, M. (2015). Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas y Aceites, 66(3), e086. http://dx.doi.org/10.3989/gya.1062142
    » http://dx.doi.org/10.3989/gya.1062142
  • Santos, O., Soares, S., Dias, P., Duarte, S., Santos, M., & Nascimento, F. (2020). Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health. Revista de Nutrição, 33, e190146. http://dx.doi.org/10.1590/1678-9805202033e190146
    » http://dx.doi.org/10.1590/1678-9805202033e190146
  • Serra, J. L., Rodrigues, A. M. C., Freitas, R. A., Meirelles, A. J. A., Darnet, S. H., & Silva, L. H. M. (2019). Alternative sources of oils and fats from Amazonian plants: fatty acids, methyl tocols, total carotenoids and chemical composition. Food Research International, 116, 12-19. http://dx.doi.org/10.1016/j.foodres.2018.12.028 PMid:30716906.
    » http://dx.doi.org/10.1016/j.foodres.2018.12.028
  • Silva, C. C., Rodrigues, D. P., Clement, C. R., & Astolfi, S. Fo. (2019a). Molecular-genetic analysis for validation of peach palm (Bactris gasipaes Kunt) landraces using RAPD markers. Científica, 47(3), 313-320. http://dx.doi.org/10.15361/1984-5529.2019v47n3p313-320
    » http://dx.doi.org/10.15361/1984-5529.2019v47n3p313-320
  • Silva, E. F., Martins, L. S. S., & Oliveira, V. R. (2009). Diversity and genetic struture in cajá tree (Spondias mombin L.) populations in northeastern Brazil. Revista Brasileira de Fruticultura, 31(1), 171-181. http://dx.doi.org/10.1590/S0100-29452009000100024
    » http://dx.doi.org/10.1590/S0100-29452009000100024
  • Silva, L. F. R., Gomes, A. S., Castro, D. R. G., Souza, F. C. A., Mar, J. M., Silva, L. S., Sanches, E. A., Bezerra, J. A., Bakry, A. M., & Campelo, P. H. (2019b). Ultrasound-assisted homogenization and gum Arabic combined to physicochemical quality of cupuaçu juice. Journal of Food Processing and Preservation, 43(9), e14072. http://dx.doi.org/10.1111/jfpp.14072
    » http://dx.doi.org/10.1111/jfpp.14072
  • Silvino, R., Silva, G., & Santos, O. V. (2017). Qualidade nutricional e parâmetros morfológicos do fruto cajá (Spondias Mombin L.). DESAFIOS - Revista Interdisciplinar da Universidade Federal do Tocantins, 4(2), 3-11. http://dx.doi.org/10.20873/uft.2359-3652.2017v4n2p3
    » http://dx.doi.org/10.20873/uft.2359-3652.2017v4n2p3
  • Sovová, H., & Stateva, R. P. (2019). New developments in the modelling of carotenoids extraction from microalgae with supercritical CO2. The Journal of Supercritical Fluids, 148, 93-103. http://dx.doi.org/10.1016/j.supflu.2019.03.002
    » http://dx.doi.org/10.1016/j.supflu.2019.03.002
  • Stinco, C. M., Szczepańska, J., Marszałek, K., Pinto, C. A., Inácio, R. S., Mapelli-Brahm, P., Barba, F. J., Lorenzo, J. M., Saraiva, J. A., & Meléndez-Martínez, A. J. (2019). Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chemistry, 299, 125112. http://dx.doi.org/10.1016/j.foodchem.2019.125112 PMid:31299521.
    » http://dx.doi.org/10.1016/j.foodchem.2019.125112
  • Tiburski, J. H., Rosenthal, A., Deliza, R., Godoy, R. L. O., & Pacheco, S. (2011). Nutritional properties of yellow mombin (Spondias mombin L.) pulp. Food Research International, 44(7), 2326-2331. http://dx.doi.org/10.1016/j.foodres.2011.03.037
    » http://dx.doi.org/10.1016/j.foodres.2011.03.037
  • Valerio, P. P., Frias, J. M., & Cren, E. C. (2021). Thermal degradation kinetics of carotenoids: Acrocomia aculeata oil in the context of nutraceutical food and bioprocess technology. Journal of Thermal Analysis and Calorimetry, 143(4), 2983-2994. http://dx.doi.org/10.1007/s10973-020-09303-9
    » http://dx.doi.org/10.1007/s10973-020-09303-9
  • Virgolin, L. B., Seixas, F. R. F., & Janzantti, N. S. (2017). Composition, content of bioactive compounds, and antioxidant activity of fruit pulps from the Brazilian Amazon biome. Pesquisa Agropecuária Brasileira, 52(10), 933-941. http://dx.doi.org/10.1590/s0100-204x2017001000013
    » http://dx.doi.org/10.1590/s0100-204x2017001000013

Publication Dates

  • Publication in this collection
    06 June 2022
  • Date of issue
    2022

History

  • Received
    06 Jan 2022
  • Accepted
    15 Mar 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br