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1 Introduction
Anthocyanins are food components that are very important 

in terms of human health especially available in fruits and 
vegetables that are prominent with their attractive colors. They 
are mainly flavonoid pigments whose colors vary from orange 
to blue and violet (Zhang et al., 2019a). The anthocyanins act 
by various mechanisms in protection from various specific 
diseases and in stopping the progression of the diseases. They 
are compounds that are highly capable of reacting with many 
chemical components. It has been found to be involved in 
many complex metabolic interactions in human metabolism. 
Anthocyanins are generally effective in inhibiting α-glucosidase, 
lipase, α-amylase enzymes, lowering glucose levels, regulating 
insulin secretion, and preventing insulin resistance (Habtemariam 
& Varghese, 2014). They possess anticancer (Liang et al. 2019) 
anti-tumoral (Reboredo-Rodríguez 2018), anti-atherosclerotic 
(Long et al., 2018), anti-inflammatory (Perez-Meseguer et al. 
2019), anti-microbial (Bukhari  et  al. 2019) and anti-obesity 
effects on human health and are the chemical componds that 
prevent neuronal and cardiovascular diseases (Yang et al., 2019, 
Watson et al., 2019, Zhang et al., 2019b). Anthocyanins have 
anti-obesity effects of blood lowering leptin levels by means of 
the modulation of adipocytokine secretion and lipid metabolism 
in the adipose tissue (Tucakovic et al., 2018).

Obesity and overweight are described as excessive fat 
accumulation or abnormal that causes significant health risks 
by the WHO (World Health Organization, 2018). A person who 
has a BMI (Body Mass Index) of 30 kg/m2 or more is assumed 

as obese, while a person with a BMI equal to or more than 
25 kg/m2 is accepted as overweight. Obesity and overweight 
obesity are the main risk sources for various chronic diseases 
such as cancer, diabetes, cardiovascular diseases, etc. Obesity 
and overweight were initially considered to be a social problem 
that was prevalent only in wealthy countries with excessive 
food consumption. Today, however, it is identified as a rapidly 
growing global problem in low- and middle-income countries, 
especially in urban areas (World Health Organization, 2018).

In this review, the interactions of anthocyanins, which are 
abundant in fruits and vegetables, on the metabolism from past to 
present, especially in anti-obesity, are investigated and discussed.

2 Anthocyanins
Anthocyanins are generally present in the skin of plants 

but can also be found in their flesh, and their amount increases 
during ripening stage (Clifford, 2000). They are water-soluble 
pigments, glycosides or acyl glycosides of anthocyanidins that 
are flavylium (2-phenyl benzo pyrylium) salts (Zhang  et  al., 
2019c). In general, anthocyanins are heterosides containing 
an anthocyanidin (aglycone) derived from the 2-phenyl benzo 
pyrylium (flavylium) ring which is different form as methoxylated 
(hydroxylated), that is part of the one or more sugar molecules 
which can be acylated afterward by aromatic or aliphatic organic 
acids. In nature, most of the anthocyanins are derived from the six 
aglycone molecules known as petunidin, malvidin, pelargonidin, 
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delphinidin, peonidin and cyanidin (Figure 1). It has been found 
approximately 539 derivates of anthocyanins available in the 
plants as mentioned by Žilić et al. (2019). Cyanidin-3-glucoside 
is one of the most known anthocyanins available in the fruits 
and vegetables.

In respect of their health benefits, usage and application 
in foods, interaction capability is a critical factor and changes 
depending on amount, pH, light, temperature, metallic ions, 
presence of oxygen, proteins, enzymes, and other phenolics 
compounds (Kasote  et  al., 2019). Interaction capability of 
anthocyanins is mainly based on their conjugated double bonds. 
Conjugated bonds in the molecule cause multi-functionality in 
terms of chemical reactions and mean that the single and double 
bonds interchangeable. This capability allows that the electrons 
can be delocalized throughout the entire molecule and thus be 
shared by the other atoms. Therefore, the delocalized electrons 
can be replaced among the atoms in the whole molecule system. 
On the other hand, the conjugate bonds of anthocyanins are 
responsible for their different colors appeared as purple, blue and 
red. Because of the ionic nature of the anthocyanin molecule, 
their color changes can be affected by the pH of the product or 
environment. Furthermore, their solubility in the aqueous media 
also changes depending on the pH. In slightly acidic to neutral 
conditions, blue quinoidal bases are formed by de-protonation 
while colorless hemiketal forms are formed by hydration. Under 
the acidic conditions, cations of red flavylium are produced 
intensively (Turturică et al., 2015; Khoo et al., 2017).

Anthocyanins have significant free radical-scavenging and 
antioxidative properties by hydrogen (electron) donation ability 
belonging to flavonoid molecule (Fascella  et  al., 2019). They 
activate the genes responsible for the enzyme production in order 
to protect DNA by reducing oxidative stress and the formation 
of endogenous reactive oxygen species. The antioxidant enzyme 
activity for the enzymes such as superoxide dismutase can be 
increased by this mechanism (Bonetta, 2018; Gonçalves et al., 
2018; Dziadek et al., 2019; Oracz et al., 2019).

Anthocyanins have many different functions in plants. They 
are antioxidants, protect the plant from UV light, are a defense 
mechanism and are very important for pollination and reproduction. 
The color of many flowers originates from anthocyanins, and 
is important for attracting insects. Bee‑pollination species 
are more abundant in plants such as Primulaceae containing 
delphinidine‑anthocyanins, while other anthocyanins are preferred 
by wasps or birds. Cyaninidin‑3‑glucoside, a common anthocyanin, 
protects the plant against some larvae. Other anthocyanins have 
similar activities. As an antioxidant, anthocyanins protect plants 
from free radicals (formed by daylight or plant degradation) that 
break down DNA and cause cell death. There are indications that 
anthocyanins promote health as antioxidants, reducing the risk 
of chronic heart disease, improving visual and antiviral activity. 
However, these claims have not been scientifically proven. 
Anthocyanins are important antioxidants, but their impact 
on human health is not fully understood (Delgado-Vargas & 
Paredes-Lopez, 2002).

3 Obesity
Obesity, defined as the increase in adipose tissue, occurs as 

a result of disturbance in energy balance, and is an important 
health problem that is rapidly increasing all over the world 
(Krassas  et  al., 2003). Insulin resistance (IR) is associated 
with many metabolic disorders including impaired insulin 
releasing, non-insulin dependent diabetes, cardiovascular 
diseases hypertension and dyslipidemia etc. However, with the 
pathogenesis of IR developing in obesity related mechanisms 
are not fully understood (Lee et al., 2009). Insulin and glucagon 
levels of glucose in equilibrium is a narrow range under normal 
physiological conditions. It was thought to have been managed. 
Today this understanding the presence of a more complex 
multihormonal system has changed direction. Both glucose 
metabolism this multihormonal regulates both food intake and 
insulin and amylin released from the pancreas, glucagon-like 
peptide-1 (GLP-1), ghrelin and glucose-dependent insulinotropic 
polypeptide (GIP) secreted from the intestinal tract, adipokines 
(leptin, adiponectin, visfatin, resistin and adipsin) secreted from 
adipose tissue have an important place (Aronoff et al., 2004).

4 Obesity-anthocyanin interactions
The mechanisms involved in preventing obesity due to 

anthocyanins can be classified under five pathways. These 
mechanisms are inhibition of lipid absorption, increasing of 
energy expenditure, regulation of lipid metabolism, regulation of 
gut microbiota and controlling of food intake. The mechanisms 
led to anti-obesity effect and their interactions connected with 
obesity metabolism have investigated by in vitro experiments 
and clinical trials with test animals (Table 1).

4.1 Hunger and satiety

The hunger is controlled by hypothalamus present in the 
human brain. The neurons available in the hypothalamus are 
responsible for controlling food intake and energy expenditure. 
There are two specific neuron types in the hypothalamus: 
anorexigenic or appetite-suppressing (Pro-opiomelanocortin) 
neurons (1) and orexigenic or appetite provocative neuropeptide 

Figure 1. Chemical structure of the common anthocyanins. Cyanidin 
R1(OH), R2(H), R3(Sugar); Malvidin R1(OCH3), R2(OCH3), R3(Sugar); 
Peonidin R1(OCH3), R2(H), R3(Sugar); Delphinidin R1(OH), R2(OH), 
R3(Sugar); Pelarganidin R1(H), R2(H), R3(Sugar); Petunidin R1(OCH3), 
R2(OH), R3(Sugar). The Aromatic A-ring condensed with non-aromatic 
C-ring and other aromatic B-ring that forming a carbon-carbon bonding.
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(Agouti-related peptide) neurons (2). The body energy level is 
controlled by means of the signals transmitted by these neurons 
(Roh & Kim 2016).

The level of gastrointestinal satiety is controlled by the main 
signal produced from the digestive tract. Thus, a full stomach 
and intestine provoke satiety, by means of the vagus nerve 
connecting to the hypothalamus. Furthermore, the enteric 

hormone cholecystokinin induces satiety, while the hormone 
ghrelin stimulates the appetite. When the level of nutrients such as 
amino acids and glucose are increased in the blood, concentrations 
of the hormones such as cholecystokinin, insulin, and glucagon 
are elevated (Ştefănescu (Braic) et al., 2018; Zhao et al., 2018).

Food intake is essentially controlled by the the hormones 
named insulin, and ghrelin with cholecystokinin in the body. 

Table 1. Anti-obesity mechanisms and effects on the body parameters of the anthocyanins.

Fruit/Vegetable Active Compound Mechanism Body Parameter Ref.
Blueberry

(Vaccinium Ashei,
Vaccinium corymbosum)

Cyanidin-3-galactoside,
Cyanidin-3-arabinoside,

Delphinidin-3-arabinoside,
Delphinidin-3-galactoside,

Petunidin-3-glucoside,
Petunidin-3-arabinoside,
Malvidin-3-galactoside,
Malvidin-3-glucoside

Regulate lipid metabolism,
Resolve inflammation

Glucose ↑,
Triglyceride (TG) 
Accumulation↓,
Cholesterol ↓,

Insulin secretion ↓,
Leptin secretion ↓

Stull (2016),
Wu et al. (2016b)
Xie et al. (2016) 

Blackcurrant
(Ribes nigrum)

Delphinidin-3-glucoside,
Delphinidin-3-orutinoside,

Cyanidin-3-glucoside,
Cyanidin-3-rutinoside

Controlling weigh gain Adipogenic genes ↓ Benn et al. (2014)

Esposito et al. (2015) 

Cranberry
(Vaccinium oxycoccos)

Cyanidin-3-galactoside,
Cyanidin-3-arabinoside,
Peonidin-3-galactoside,
Peonidin-3-arabinoside

Controlling weigh gain
Insulin resistance ↓

Glucose ↓ Wilson et al. (2010),
Wang et al. (2015)

Raspberry
(Rubus idaeus)

Cyanidin-3-glucoside,
Cyanidin-3-sophorosides,
Pelargonidin-3-glucosides,
Pelargonidin-3-diglucoside,
Pelargonidin-3-rutinocides,

Pelargonidin-3-sambubiosides

Energy expenditure ↑,
Lipid accumulation ↓,

Inflammatory response ↓

Cholesterol ↓,
Adinopectin ↑,

Insulin sentivity ↑,
IL-6 ↓

Bonetta (2018),
Jeong et al. (2014),
Sardo et al. (2016),

Overall et al. (2017),
Zhao et al. (2018)

Mulberry
(Morus australis P.)

Cyanidin-3-glucoside,
Cyanidin-3-rutinoside,
Pelarginidin-3-glucose

Ameliorate lipid 
metabolism,

Inhibition of food intake

Glucose ↓,
Leptin secretion ↓

Wu et al. (2016b)

Siberian Ginseng
(Eleutherococcus 

senticosus)

Cyanidin-3-glucoside Regulate lipid metabolism,
Energy expenditure ↑

AMPK (Activated protein 
kinase enzyme) regulation

Lee et al. (2013),
Overall et al. (2017) 

Aronia
(Aronia melanocarpa)

Cyanidin-3-galactoside,
Cyanidin-3-glucoside,

Cyanidin-3-arabinoside,
Cyanidin-3-xyloside

Modulate adipogenesis 
related functions,
Lipid metabolism 

regulation

Energy expenditure ↑,
Suppress food intake

Xie et al. (2016) 

Red Grapes
(Vitis vinifera)

Cyanidin-3-glucoside,
Delphinidin-3-glucoside,

Malvidin-3-glucoside,
Peonidin-3-glucoside,
Petunidin-3-glucoside

Controlling weight gain,
Inflammatory response ↓

Increased glucose tolerance Chuang et al. (2012),
Budić-Leto et al. (2018)

Black Carrots
(Daucus carota L.)

Cyanidin-3-rutinoside,
Malvidin-3,5-diglycoside,
Delphinidin-3-glucoside

Hepatic triglyceride 
accumulation ↓

Energy expenditure ↑,
Regulation lipid 

metabolism

Park et al. (2015)

Purple Sweet Potato
(Ipomoea Batatas)

Cyanidin-3-glucoside,
Peonidin-3-glucoside

Lipid metabolism 
regulation,

Hepatic triglyceride 
accumulation ↓

Leptin secretion ↓,
Adipogenic factors ↓

Andre et al. (2007),
Poudyal et al. (2010),

Ju et al. (2011),
Zhang et al. (2015) 

Red Radish
(Raphanus raphanistrum 

subsp. Sativus)

Cyanidin-3-glucoside,
Pelarginidin-3-glucoside

Lipid metabolism 
regulation

Triglyceride (TG) 
accumulation ↓

Lee et al. (2018) 
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Insulin, ghrelin and cholecystokinin with glucagon-like peptide-1 
(GLP-1) are released by the signals produced from adipose 
tissue, pancreas and digestive tract (stomach and intestine), 
respectively (Ştefănescu (Braic) et al., 2018).

4.2 Metabolic pathways in obesity

Inhibition of pancreatic lipase enzyme

The main inhibition effect of the pancreatic lipase enzyme is 
preventing lipid absorption. This mechanism is mainly depended 
on decreasing energy intake into the body. Over-consumption of 
fat during daily diet causes mainly hyperlipidemia and triggers to 
increase the weight of adipose tissue. In addition, the occurrence 
of some significant metabolic diseases is related to the increase in 
fat tissue. Pancreatic lipase enzyme is required for the dietary fat 
absorption. Therefore, it is important to inhibit pancreatic lipase 
enzyme in order to reduce obesity development (Vijayaraj et al., 
2019). Anthocyanin-rich fruits and vegetables contain significant 
anthocyanins that are able to inhibit pancreatic lipase enzyme, 
thus, some fruits and vegetables rich in anthocyanins have 
significant effects on preventing obesity. Due to, high content 
of anthocyanin, it has been declared that many fruits such as 
pomegranate and blood orange, have a very high pancreatic 
lipase inhibiting activity (Xie et al., 2018).

In the research in which the effect of litchi flower extract 
in the Mediterranean diet containing anthocyanin-rich fruit 
and vegetables was investigated, it was determined that the 
extract samples have a suppressive effect on pancreatic lipase. 
In the researches in which some anthocyanin-containing fruits 
were used, it was found that pomegranate and blood orange 
juices have significant pancreatic lipase inhibition due to the 
high anthocyanin content (Chen et al., 2018; Xie et al., 2018; 
Vijayaraj et al., 2019). In another research, black rice extract 
containing cyanidin 3-glucoside and peonidin 3-glucoside 
anthocyanins in the arrest of cholesterol absorption in Caco-2 
cells has been tested. It was found that the pancreatic lipase was 
inhibited by the experimental extract and reduced the cholesterol 
absorption up to 58%. It has also been observed that the adsorption 
by dose-dependent recombinant actions has also been reduced 
by the two anthocyanins tested. The hypolipidemic activity of 
cyanidin 3-glucoside was determined, is caused by its regulatory 
role on the lipogenic enzymes available in hypercholesterolemic 
erythrocytes (Chen et al., 2018; Li et al.2018).

Activated protein kinase enzyme

The main mechanism of this enzyme on energy metabolism 
is to increase energy expenditure in the cell. The mechanism 
is mainly based on the stimulation of fatty acid oxidation and 
mitochondrial biogenesis. Activated protein kinase enzyme 
is one of the most significant enzymes that play a role in the 
energy balance of the human body. The main action of activated 
protein kinase enzyme is to preventing of triglyceride synthesis, 
stimulating fatty acid oxidation and exposing of energy due to 
accelerated reactions seen in the mitochondria (Chen  et  al., 
2018; Li et al.2018).

As known, energy expenditure is managed by mitochondria 
in the cell structure. Activated protein kinase enzyme (AMPK) 

is the main factor to control signals responsible for obtaining 
energy. AMPK causes to increase in the expression of the genes 
(PPARgclα) which encode the regulator of mitochondrial biogenesis 
as mentioned by Garcia & Shaw (2017). The mission of AMPK 
in the cell is inhibition of the lipid metabolism. The inhibition of 
lipid metabolism occurs via provoking the metabolic stress and 
the formation of cytokines which are formed by adipocytes such 
as adiponectin and leptin. In addition, AMPK enzyme prevents 
triglyceride synthesis, increases fatty acid oxidation and provokes 
the mitochondrial cycle. Therefore, if the AMPK enzyme is 
activated, hypertriglyceridemia and deposition of triglycerides 
in the muscle tissue and liver decrease. There are also uncoupled 
mitochondrial proteins regulate thermogenesis which is the 
process of heat production in the organism (Chen et al., 2018; 
Iizuka et al., 2018; Kang 2018; Li et al., 2018; Xie et al., 2018).

In the comprehensive study conducted on the mice, four 
different diets (2% of dextrin, 2% of black carrot extracts, 2% 
of black carrot fermented with Lactobacillus plantarum and 2% 
of black carrot fermented with Aspergillus oryzae) were tested 
versus the control group fed with a high-fat diet including 
2% of dextrin. At the end of the observation period, fat tissue 
ratio and weight gain, blood cholesterol, and triglyceride levels 
decreased compared to the control group fed with black carrot 
extracts, black carrot fermented with Lactobacillus plantarum 
and black carrot fermented with Aspergillus oryzae. It has been 
mentioned that AMPK (pAMPK) and Acetyl CoA carboxylase 
are responsible for the positive changes (Park  et  al., 2017). 
Some proteins in the mitochondria present in the fat tissues 
are responsible for the thermogenesis. Thermogenesis is a 
metabolic process during which the human body burns calories 
which are obtained from energy compounds to produce heat 
(Kang, 2018; Lemecha et al., 2018). In the mice fed with black 
soybean extract including the anthocyanins listed as 6.2% 
of epicatechin, 9.2% of cyanidin‑3‑glucoside, and 39.8% of 
procyanidin for 14 weeks; black soybean extract caused to stop 
the fat accumulation by regulation of proteins in the mesenteric 
fat pouch. Uncoupling protein 1 (UCP-1) in brown adipose 
tissue and uncoupling protein 2 (UCP-2) in white adipose 
tissue are the proteins playing role in the mitochondrial cycle 
and have been shown to regulate protein expression levels and 
genes (Kanamoto  et  al., 2011). In  the mice fed with purple 
sweet potatoes containing 200 mg/kg anthocyanin per day, the 
decrease in the weight gain was observed. Furthermore, it was 
seen that the hepatic triglyceride accumulation and serum lipids 
are lowered. Anthocyanin fraction led to an increase in AMPK 
phosphorylation and a decrease in the levels of SREBP-1, ACC, 
and FAS (Hwang et al., 2011)

Lipolysis and lipogenesis

If the amount of energy-giving compounds in the body 
is higher than the consumption of those compounds, the fat 
accumulation in the body is unavoidable. Therefore, lipid 
metabolism should be sustained in balance. Two enzymes as 
acetyl-CoA carboxylase and fatty acid synthase are significant 
players in the regulation of lipid metabolism (Chen  et  al., 
2018; Iizuka et al., 2018; Li et al., 2018, Xie et al., 2018). In the 
regulation of lipid metabolism, lipolysis and lipogenesis are 
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major active mechanisms. If lipolysis does not remain in force 
effectively, dyslipidemia occurs. The lipolysis causes to reduce 
fat deposition while lipogenesis leads to fat accumulation. 
The fatty acids formed as a result of lipolysis are the compounds 
open to oxidation. As declared in recently, lipid metabolism 
can directly be influenced by the anthocyanins available in 
the diet. In the research that has been done to investigate the 
consumption of anthocyanins on lipid metabolism, the mice were 
nourished with a high-fat diet and given black soybean extract 
(cyanidin‑3‑glucoside, 10mg/g) for 6 weeks. It has been observed 
that fatty acid compositions in rats fed with black soybean were 
changed and decreased. It was seen that this decrease in the 
level of fatty acids can help to prevent the inflammation in the 
body (Sato et al., 2015). It has been mentioned that diet with 
10% and 20% of adzuki nuclei and Aronia melanocarpa extract 
containing a high level of anthocyanin, led to regulation of 
hepatic triglyceride and serum contents in C57BL/6 rats fed a 
high-fat diet for 10 weeks (Kim et al., 2016; Park et al., 2017).

The role of anthocyanins on obesity is significant due to the 
regulating effect on lipid metabolism. Black carrot fermented 
with Aspergillus oryzae and cranberry extract has been found to 
reduce gene and mRNA expression in the oxidation mechanism 
for fatty acids and enzyme fatty acid synthase (Lemecha et al., 
2018). Cheng et al. (2014) ’s, research made with mice, they 
observed that feeding with lettuce extract containing cyanidin-3 
glucoside caused to lower lipid level in the liver after 4 weeks. In 
another study made with mice fed by Queen Garnet juice and a 
pure cyanidin-3 glucoside, it has been determined that both of 
the diets caused to reduce the abnormal metabolic reactions due 
to high-fat consumption (Bhaswant et al., 2015). Sweet cherry 
is a fruit that mainly contains anthocyanins including cyanidin 
3-rutinoside, cyanidin 3-(2G-glucosyl-rutinoside) and pelargonidin 
3-rutinoside. It has found that sweet cherry anthocyanins on 
the mice reduced to weight gain between 5 to 11%.

In addition, the diet with sweet cherry anthocyanins decreased 
the dimensions of epididymal adipocytes and levels of serum 
lipids in 3T3-L1 cells about 30% as mentioned by Wu et al., 
(2014). In another study, it was found that the bodyweight of 
the mouse was reduced by approximately 19% by consuming 
currant anthocyanins (Wu et al., 2016a).

4.3 Hormone activities in obesity

Insulin activity

Fat accumulation and inflammation are the changes that 
cause damage in glucose metabolism and insulin resistance. That’s 
why disrupted glucose metabolism leads to an increase in tissue 
damage and inflammation. Finally, endothelial dysfunction occurs 
(Frueh et al., 2013). The anti-diabetic role of anthocyanins is 
based on the inhibition of some enzymes such as α-glucosidase 
and α-amylase available in the pancreas (Kalita et al., 2018). 
The anti-diabetic effect of anthocyanins can be seen just like 
traditional anti-diabetic drugs. In their activation mechanisms, the 
carbohydrate digestion is being prevented in the gut by reducing 
the level of glucose available in the blood. Anthocyanins mainly 
including cyanidin, delphinidin, pelargonidin, and petunidin 
glycosides have inhibition effect on the enzymes that response 
from the digestion of the carbohydrates (Belwal et al., 2017).

In recent years, comprehensive studies regarding insulin resistance 
on human adipocytes cells (3T3-L1), muscle cells (L6 myotubes), 
β-cells and satellite cells available in the rodents pancreas, the 
rat liver cells (H4IIE) and the hepatocytes (HepG2 cells), have 
been done in-vitro conditions (Belwal et al., 2017). It has been 
found that anthocyanins can lead to raising glucose level and 
insulin sensitivity in the adipose tissues and the muscles, and 
thus can regulate insulin resistance for diabetics. Furthermore, 
anthocyanins can suppress the lipogenic factors that play an 
effective role in the adipocyte cells (Scazzocchio et al., 2011).

Leptin activity

Leptin plays a significant role among these neuron cells. 
The main hormone related to satiety is leptin. Leptin is synthesized 
and secreted mainly by fat cells called adipocytes of the white 
adipose tissue. Its main function is regulating energy balance. 
The leptin receptors are mainly found in the hypothalamus, 
which is known to act in controlling metabolic rate and food 
intake. It is also produced by brown adipose tissue. Leptin is 
satiety controlling hormone. Leptin concentration increases or 
decreases in plasma. Normally, if the body fat mass increases, 
the level of leptin in blood also increases. If the level of leptin 
is increased, body weight also reduces depending on the low 
food intake, increased energy expenditure and metabolic rate 
(Pan & Myers, 2018).

Leptin resistance is a disfunctioning of leptin mechanism 
that results in overweight and obesity (Wu et al., 2013). As the 
most common two reasons for obesity are of leptin resistance 
and damage of adipocytokines (Lazar & Saltiel, 2006). Therefore, 
controlling of leptin resistance in obesity treatment is an 
important strategy.

The purified cyanidin 3-glucoside used in the diet of the rats 
has found to stimulate adipocytokine (leptin and adiponectin) 
secretion in the adipose tissue (Nemes et al., 2019). But, there 
are also the findings in which the different correlation between 
leptin and adiponectin was found. For example, adiponectin 
levels in the mice fed with the anthocyanin-rich foods increased 
while leptin secretion is decreased (Wu et al., 2016b, 2018).

Glucagon-like peptide-1 (GLP-1) activity

Glucagon-like peptide-1 (GLP-1), which enhances postprandial 
insulin release in a glucose-dependent trait, is a peptide hormone 
that is secreted by intestinal epithelial L-cells in response to food, 
hormonal and neural stimuli (Meier & Nauck 2005).

Approaches regarding the functions of GLP-1, a member 
of the incretin hormone family, suggest that it acts as an 
endocrine hormone. GLP-1 modulates glucagon and insulin 
secretion from pancreatic islets and with other gastrointestinal 
hormones, contributes to glucose homeostasis and metabolism 
regulation in healthy individuals (Campbell & Drucker 2013; 
Skow et al., 2016). GLP-1 controls saturation and food intake in 
the gastrointestinal tract. Having an important place in glucose 
homeostasis, it is a neuropeptide hormone and found in both 
the central nervous system and the gastrointestinal tract. After 
food intake, as a response to glucose, stimulates insulin release 
and inhibits glucagon release. This mechanism is responsible 
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for weight loss and glycemic control (Muscogiuri et al., 2017; 
Calsolaro & Edison, 2015). The highest L-cell density expressing 
GLP-1 is in the colon, but nutrients do not reach the colon until 
after a meal (60 min). Also, the insulin peak occurs after 15 min 
(Wichmann et al., 2013).

Tani et al. (2017), fed the rats with Blackcurrant extracts 
by 5 mg/kg body weight. Anthocyanin (mostly delphinidine 
3-rutinoside) rich blackcurrant extracts were found to ameliorate 
glucose tolerance by stimulating GLP-1 secretion and inducing 
insulin secretion. Castro-Acosta  et  al. (2016), evaluated 
insulin, blood glucose and incretin concentrations on Men and 
postmenopausal women by low sugar fruit drinks containing 
blackcurrant extract providing 150-mg (Low dose), 300-mg 
(Medium dose) and 600-mg (High dose) total anthocyanins 
or no blackcurrant extract (Control) immediately before a 
high‑carbohydrate meal. They determined that beverages 
containing black currant delayed the occurrence of glucose 
in the blood and decrease the insulin and incretin releasing. 
The concentration of GLP-1 in blood plasma was increased 
for 90 min after 600-mg (High dose) consumption. As a result 
of the study, it was found that the blackcurrant consumption 
equivalent to approximately 100 g reduces incretin, postprandial 
glycemia, and insulinemia secration. Anthocyanin content 
of Blackcurrant shows cardio-metabolic health benefits on 
human metabolism.

Glucose dependent insulinotropic polypeptide (GIP) activity

Glucose-dependent insulinotropic polypeptide (GIP) is a 
peptide hormone which expresses the gut. After food intake, 
it binds to glucose-dependent insulinotropic polypeptide 
receptors (GIPRs) and became activated. Brain, stomach, 
adipocytes, pancreatic islets are the different tissues expressing 
GIPRs. GIP signaling is related with numerous activities, liked 
overnutrition to obesity, insulin resistance and diabetes. Cho & 
Kieffer (2010) reported that GIP intervents in the modulation 
of β-cell neogenesis, differentiation, proliferation as well as the 
stimulation of glucose-stimulated insulin-releasing. Additionally, 
GIP has extra-pancreatic effects and facilitates insulin secretion. 
The GIP level is associated with increased visceral fat area (VFA) 
independent of the effect of low-density lipoprotein and insulin, 
indicating that GIP is modulating adiposite deposits (Møller et al., 
2016). In terms of anthociyanin effects on GIP, Castro-Acosta et al. 
(2016) determined that, anthocyanin-rich blackcurrant drinks, 
by the 600-mg (High dose) samples, showed off the inhibitory 
effect in plasma glucose, and insulin concentrations for 30 min 
and GIP concentrations in plasma up to 90 min. reducing 
postprandial glycemia, insulinemia and incretin secration by 
GIP suppression, increase the cardio-metabolic health benefits 
on human metabolism.

Ghrelin activity

Ghrelin is an orexigenic-hormone, stimulates food intake in 
a dose-dependent manner, acting centrally and influencing the 
reward modulation, memory and feeding behavior motivations 
(Cheung & Wu, 2013; Monteleone & Maj, 2013; Wu et al., 2013). 
It is secreting the glands of the gastric fundus of the endocrine 
cells, and the gastric body, the duodenum and jejunal mucosa, the 

lungs, urogenital organs and the pituitary gland (Monteleone & 
Maj, 2013). In addition, it acts in the regulation of immune and 
cardiovascular systems, regulates insulin-like growth factor and 
plays a dominant role in gastrointestinal system such as gastric 
emptying and bowel motility (Melissas et al., 2013).

Although ghrelin is still not well-defined in the pathophysiology 
of obesity, the relationship between increased ghrelin levels and 
increased appetite has been determined, and the control of the 
hormone is could be an effective way of treating obesity. In the 
studies conducted, the problem was determined to be insensitivity 
or oversensitivity to ghrelin regardless of the consumption of 
food (Anderson et al., 2013; Dimitriadis et al., 2013). The effects 
of ghrelin on obesity are evident in studies conducted between 
obese and slim experimental object comparing ghrelin levels 
with appetite, although this has not been proven by studies at 
the molecular level.

4.4 Role on gut microbiota

In recent decades, it has well understood that microorganism 
in the available in the human gut is critical in terms of healthiness. 
Therefore, the studies focused on the probiotics and the factors 
which help to their growth and are defined as prebiotics have been 
increased recently. Diet is a process that acts the gut microbiota 
and thus the human metabolism. It has been found that obesity 
can cause different changes in the content of gut microbiota. 
It has been observed that the mice nourished with the diet 
containing high-fat were preserved from the diet originated 
obesity by anthocyanin-rich food (Xie et al., 2018).

On the other hand, the microbiota belonged to the genetically 
obese mice has been transplanted into the gut of healthy lean 
mice and observed that the size of adipose tissue increased. 
Due to the consumption of high-fat diet in mice, obesity and 
the inflammation in white adipose tissue increased and has 
been found strong correlation regarding the toll-like receptors 
and chemokine CCL2.

It has been determined that the consumption of anthocyanins 
improved the growth of specific fecal bacteria such as 
Lactobacillus spp. and Enterococcus spp. and the probiotic 
bacteria such as Bifidobacterium spp. (Hidalgo et al., 2012). 
The intestinal metabolites of anthocyanins have also beneficial 
bioactive effects (Xie et al., 2018). A positive correlation has 
been found between the content of anthocyanin metabolites 
and the growth of Bifidobacteria (Xie et al., 2018). Obesity 
could also be affected by intestinal microbiota (Parks et al., 
2013). Gastrointestinal microbiomodulator (GIMM) utilization 
causes to support the specific hormones and increases the 
intestinal short-chain fatty acid concentrations versus to the 
control group (Tsuda, 2016).

Anthocyanins could play the role just as prebiotics and affect 
obesity by promoting intestinal bacterial growth (Jamar et al., 
2017). Raphanus sativus (sango sprout) contains cyanidin-based 
anthocyanins and isothiocyanates. In the regarded diet, the number 
of microorganisms in the intestine increased compared to the 
high-fat diet while the number of Enterococcus spp. decreased 
(Vivarelli et al., 2018).
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4.5 Bioavailability and bioaccessibility

Bioavailability and bioaccessibility are the important definitions 
of the mechanisms that express the absorption and utilization of 
the anthocyanins by the body. Because it is not possible to digest 
all the nutritional components after consumption. Furthermore, 
all of the absorbed components may not give a beneficial reflection 
on the body organs. Therefore, it is important how much of the 
body components are beneficial to the body.

Bioavailability is a significant metabolic process that defines 
the utilization and thus the biodegradability of the dietary 
nutrients. Bioavailability is an important factor that designates the 
preventive effect of anthocyanins against diseases (Oracz et al., 
2019). Bioavailability is a term that can be expressed as the 
antioxidant amount that has a biological impact, available in 
blood and urine, after absorption intestinally. It is a level of 
ingested component that can show its biological impact when 
it was included in the systemic circulation in the body.

Bioaccessibility is an outcome measurement of in vitro studies 
that show the potential impact of dietary antioxidants against 
diseases. Bioavailability and bioaccessibility n the body change 
depending on several factors such as nature of the compound, 
food matrix, molecular linkage properties, interaction with other 
compounds, consumed the amount, host-related biological factors, 
the factors affecting their absorption and intestinal conditions 
(Porrini & Riso 2008).

In recent studies, regarding the health benefits of anthocyanins, 
have mainly been focused on three issues; anthocyanin content 
in the product, bioavailability, and mechanism of their action. 
In the systemic circulation, anthocyanins reveal a unique pattern 
different from flavonoids (Bertoia  et  al., 2016). The effect of 
pH in the human digestion process is significant in terms of 
synergistic and antagonistic interactions (Braga et al., 2018). 
Generally, antioxidative compounds exist in glycosylated forms 
or as esters or polymers, therefore they cannot be absorbed 
natively, must be hydrolyzed by the specific enzymes before 
absorption. Even, some antioxidants can reach up to the large 
intestine without degraded (Stevens et al., 2019; Tao et al., 2019). 
Exceptionally, anthocyanins in the glycoside chemical form can 
only be absorbed directly and determined in the systematic 
circulation (Vendrame & Klimis-Zacas,  2019). The availability 
of the phenolic compounds is also affected by the nature of the 
food matrix, for example, their lipophilic structure limits their 
solubilization and absorption. Some/Certain solvents as ethanol 
make absorption of anthocyanins easier through the intestinal 
epithelium (Kamiloglu  et  al., 2015). Another factor that can 
play a role in the interactions is protein some proteins affect 
the bioavailability of anthocyanins by modifying biological 
function (Ge et al., 2019). For example, glucose and proteins, 
except starch, can cause to decrease in the transport efficiency 
of anthocyanins in the gastric cells (Oliveira et al., 2019). They 
facilitate the introduction of phenolics into the cell and interact 
for the absorption (Tungmunnithum et al., 2018).

Regular consumption of fruit and vegetables is important 
for daily diet. It has been stated that a long consumption period 
of anthocyanins causes to increase their beneficial effects on the 
structure of the cells (Tungmunnithum et al., 2018). Inversely, 

if the duration of the obesity period prolongs, the undesirable 
changes occur in the metabolism, and, inflammation formed 
can lead to attenuation of immunity (Caslin & Hasty, 2019). 
Estimation of the daily intake value of polyphenols is difficult 
due to the various biological factors. When considering the whole 
human metabolism, anthocyanins can affect mechanisms of the 
homeostasis related to lipids, glucose and amino acids and can 
suppress the inflammation. In recent years, significant efforts 
including alternative approaches have been paid to prevent 
adipogenesis, glucose transport, and intake, to decrease inflammation, 
and to strengthen the immune response. Anthocyanins are the 
compounds that have positive effects on gut microbiota and can 
interact with them. This synergistic effect can help to decrease 
inflammatory markers associated with many chronic diseases, 
and also, can support the hormonal balance. Development of 
obesity causes chronic inflammation accompanied by insulin 
resistance and therefore, the harmful microorganisms in the 
gut become dominant (Baldwin et al., 2016). In obese mice fed 
with polyphenol-rich grape juice have been observed less white 
adipose tissue and higher glucose tolerance than the mice fed 
with high-fat content. As a result, it has been found that the 
grape-based treatments changed the microbiota in the gut and 
decreased the inflammation probability in the white adipose 
tissues (Collins et al., 2016).

5 Anthocyanin-rich fruit and vegetables
Anthocyanins are compounds that have colors from 

red to purple. Anthocyanin-rich fruits are could be listed 
as pomegranate, blackberry, blueberry, goka, blackcurrant, 
cranberry, aronia, mulberry, sumac drupes, and blood orange; 
the vegetables are violet cauliflower and red cabbage, and the 
cereals are black bean and black rice. Health benefits including 
antioxidant effects of anthocyanins in fruit and vegetables are 
affected by the various processing technologies such as drying, 
pasteurization, concentration etc. (Yousuf et al., 2016; Azzini et al., 
2017). Significant findings of some anthocyanin-rich fruits and 
vegetables regarding their health benefits are summarized below.

It has been found that anthocyanin-rich foods are significant 
in terms of anti-obesity activity. As mentioned by Jiao  et  al. 
(2019), consumption of blueberry polyphenol extract reduced 
body weight and fat accumulation significantly in the obese rats 
(C57BL/6J) fed by a high-fat diet and has a role as a prebiotic for 
the gut bacteria. It should be considered that the bioavailability 
of anthocyanins according to product type (juice, extract, and 
powdered form) may lead to different results on the weight gain 
of the test animals. When the fermented blueberry-blackberry 
beverage mix was used for the feeding rats (C57BL/6J), the 
obesity tendency and levels of fasting blood glucose was reduced 
(Johnson et al., 2016). Similar results were also obtained from the 
mulberry juice. The mulberry juice provided to decrease the level 
of blood cholesterol, insulin resistance, and body weight just as 
blueberry juice. In another study, blueberry juice also decreased 
the lipid accumulation of the rats (Vendrame et al., 2015).

Anti-inflammatory, antioxidant and cytoprotective effects 
of blueberry on the obesity pathology have been investigated by 
Lewis et al. (2018) and Hoskin et al. (2019). Their cytoprotective 
and anti-inflammatory roles have been explained by the ability 
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to replicate the signals including nuclear factor stress and the 
mitogen activated protein kinase.

According the study conducted by Boušová et al. (2015), 
the cranberry extract (2%) was given to obese and non-obese 
mice for 4 weeks. The plasma thiol content and glutathione 
S-transferase enzyme function were increased in both groups 
and, MDA content in the blood was lowered while the enzymes 
catalase and liver quinone oxidoreductase increased in the obese 
mice. Raspberry is known with effects on obesity and weight 
gain (Wu et al., 2018). The rats (C57BL/6) were divided into 
three experimental groups and fed by three different diets as 
high-fat enriched with raspberry anthocyanins, only high-fat 
and low-fat diet for 12 weeks. At the end the body weight gain 
was found to decrease by about 64%. It was determined that 
raspberry anthocyanins affected insulin signaling pathway in 
the obese mice, due to some metabolomics produced. Raspberry 
anthocyanins found to reduce obesity by alleviation of oxidative 
stress, regulation of lipid metabolism and amelioration of the 
gut microbiome (Tu et al., 2018). Also, raspberry extracts have 
a controlling effect on obesogenic signals in the hepatocytes 
(Fotschki et al., 2018). The mulberry extract was determined 
to decrease liver steatosis, adipose hypertrophy and insulin 
resistance for the subjects fed with the high-fat diet. Yimam et al. 
(2019) also determined that Morus alba extracts provide appetite 
suppression, regulation of body weight, and improve metabolic 
syndrome. It has been observed that black chokeberry (Aronia 
melanocarpa) led to a decrease in epididymal fat tissue and 
adiponectin in obese mice (C57BL/6). It has been found that 
weight gain and obesity can be prevented by this anthocyanin 
concentrate. Aronia as an anthocyanin-rich fruit was observed 
to inhibit the fat accumulation in the internal organs and 
hyperglycemia due to prevention of pancreatic lipase enzyme 
activity in rats, thereby intestinal lipid absorption can be 
reduced (Lim et al., 2019). Table grapes, having high content 
if polyphenols and anthocyanins, determined to be negative 
metabolic consequences of the high-fat diet (Collins et al., 2016). 
In a study in which the test animals were used, it was observed 
that the mice fed with a high-fat diet and the grape stalk, caused 
to improve glucose tolerance, reduce the inflammation and white 
adipose tissue formation (Kim et al., 2019). In addition, when 
the moderate level of fat diet including the grapes was used to 
feed the test animals, adiposity reduced, the liver triglyceride 
levels increased and, white adipose tissue inflammatory gene 
expression decreased moderately (Pérez-Ramírez et al., 2019).

The anthocyanins-rich vegetables as purple colored carrots, 
potatoes, and maize (Zea mays L.) have significant health benefits 
including preventing obesity just like anthocyanins-rich fruits. 
The metabolic syndrome parameters and insulin resistance have 
been investigated throughout 8 weeks in the obese Zucker rats 
fed with purple color vegetables (potatoes and carrots) versus 
the same vegetables without purple color (Ayoub et al., 2017). 
It has been expressed that the purple vegetables may lead to 
positive metabolic changes in the test rats having the background 
of a high-fat diet and obesity. Purple corn can play a role in 
preventing obesity-associated disorders by mechanisms such as 
downregulating inflammatory mediators including IL-6, TNF-alpha, 
COX-2 and IL-1 beta (Tomay et al., 2019). Black carrot (Daucus 
Carota L.) (Akhtar et al., 2017) and purple maize (Zhang et al., 

2019b) have significant roles in metabolic syndrome, Diabetes 
mellitus, and obesity. Furthermore, black carrot anthocyanins 
play a role as the major biological components to prevent certain 
diseases. The feeding with purple sweet potato reduced the fat 
ratio and the risk factors such as fat deposition and body weight 
and helped to the regulation of energy expenditure in the obese 
mice (C57BL/6J) (Ju et al., 2017).

6 Conclusions
The fruits including blood orange, pomegranate, mulberry, 

aronia, berries (blackberry, blackcurrant, cranberry, strawberry, 
raspberry i.e.), vegetables including red cabbage, purple potatoes, 
purple carrot, purple cauliflower and red radish, legumes such 
as black bean and cereals such as black rice are the most known 
anthocyanin-rich plant foods.

There are five anti-obesity mechanisms that originated from 
the anthocyanins available in the colored fruits and vegetables. 
These mechanisms are; inhibition of lipid absorption, increasing 
energy expenditure, regulation of lipid mechanism, controlling 
of food intake and regulation of gut microbiota. In medical 
nutrition therapy, there was a significant impact of anthocyanins 
on reducing/regulating insulin resistance and fasting insulin levels.

The anti-inflammatory effects of anthocyanins have been explained 
sufficiently by many researchers. Glucoside‑based anthocyanins 
including delphinidin-3-glucoside, petunidin‑3‑glucoside, and 
cyanidin-3-glucoside inhibit mainly F-κB activities through 
mitogen-activated protein kinase (MAPK) enzyme (Vendrame et al., 
2015). Whereas, cyclooxygenase (COX) enzyme activity is 
inhibited by cyanidin (Lee et al., 2017).

It can be concluded that the form of fruit or vegetable 
as anthocyanin source (juice, extract and powdered form) 
has different effects on fat accumulation in the body. When 
considering the product type of fruit and vegetable as a source 
of anthocyanin, different results on the weight gain have been 
obtained with different fruit and vegetable forms.
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