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1 Introduction
Every day, more individuals and economic industries are being 

involved in globalization. The transportation of goods is one of 
the industries where the effect has been the greatest (Carvalho, 
2017). On the other hand, food and feed protection is a highly 
sensitive issue: food should be especially safe for customers (Ionel, 
2018; Kah et al., 2019). The economic effects and health risks 
of recent food shortages demonstrate the value of food safety. 
Walls et al. (2019) depict the decline in beef consumption after 
the mad cow disease epidemic. Panghal et al. (2018) demonstrate 
the importance of trustworthiness in disclaimers, as shown by 
the botched detection of E. coli-infected cucumbers. According 
to the World Trade Organization (WTO), It is a major industry 
subject: food and farm products account for roughly 10% of all 
exports. In particular, the European Commission has made setting 
high food safety standards a top policy priority (Flynn et al., 
2019; Jagadeesan et al., 2019). In 2002, the European Food Safety 
Authority (EFSA) was established to provide scientific guidance 
and communicate the risks associated with chain food to carry 
out this strategy.

The ability to determine food attributes quickly, accurately, 
and automatically is a functional requirement in everyday life 
(Patterson & Gibson, 2017). Food characteristics have been 
detected using modern techniques such as electronic noses, 
computer vision, spectroscopy, and spectral imaging, and so 
on (Kamilaris & Prenafeta-Boldú, 2018). These methods can 
collect a significant amount of digital data about food properties. 
The importance of data processing in these methods is critical 

because the vast volume of data contains a lot of repetitive and 
meaningless material. How to work with such a vast volume 
of data and derive valuable functionality from it is a pressing 
and critical problem, as well as a difficulty when it comes to 
putting these strategies into the application (APP) (Buduma 
& Locascio, 2017).

A vast amount of data is being generated around the world 
in almost all segments of society, including industry, health care, 
government, and research disciplines such as natural sciences, 
life sciences, social sciences, humanities, and engineering. When 
more big data becomes accessible, it can be used to provide 
new information, improve decision-making, and improve 
product and service efficiency (Nogales et al., 2020). Machine 
Learning strategies are a method of finding trends in data 
after being educated on a historical dataset and then applying 
them to new data to make automated predictions or decisions. 
Deep learning (DL) has been a success in recent years among 
Machine Learning methods, providing good results in prediction 
problems (Brei et al., 2020; Kloeckner et al., 2020). Deep neural 
networks (DNNs), a branch of artificial neural networks (ANNs) 
inspired by how human neurons act, conduct DL. It’s known 
as models that can learn multiple levels of abstraction for data 
representations (Zhou et al., 2019). These methods will collect 
a lot of digital data on food properties. The importance of data 
processing in these methods is critical because the vast volume 
of data contains a lot of repetitive and meaningless material. 
How to work with such a vast volume of data and derive valuable 
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functionality from it is a pressing and critical problem, as well 
as a difficulty when it comes to putting these strategies into 
practice. Principal component analysis, for example, is used 
to isolate features (PCA) (Affonso et al., 2017; Fan et al., 2019; 
Nijhawan et al., 2019; Yin & Zhao, 2016). DL is a set of machines 
learning algorithms that include:

•  They use a large number of multiple layers of non-linear 
processing units to extract and convert features. Each layer 
will use the output of the previous layer as input;

•  They learn in a supervised manner (like classification) or 
without supervision (like pattern analysis);

•  Learn multiple layers of play corresponding to different 
abstraction levels; these levels form a series of concepts.

Most modern DL approaches are based on ANNs, although 
these models may contain propositional formulas or hidden 
organized layered variables in productive approaches like the 
nodes in deep Boltzmann machines (DBMs) and deep belief 
networks (DBNs). Each level learns to turn its input data into 
a slightly more abstract and hybrid display in-depth learning. 
In the image recognition application, the raw input can be a 
pixel matrix; the first display layer can be used to single out 
pixels and encode the edges; the second layer can create and 
encode the edges; the third layer can encode the eyes and nose, 
and the fourth layer can identify that the image includes a face. 
What is important is that an in-depth learning process can 
learn on its own which features can be optimally positioned 
at which level. Development in food production is a very long 
process. Using artificial intelligence (AI), very large agricultural 
information databases can be generated in great detail and at 
high speed. Machine learning can be used to identify nutritious 
foods as well as spices and to develop cooking recipes. With 

this system’s development, there are many opportunities for 
cooking and preparing food with new flavors and according to 
the audience’s taste.

Machine learning has been used in different of areas as a useful 
method for data analysis. A manual function extraction process 
normally accompanies orthodox machine learning methods 
due to the inability to evaluate raw natural data (Tsoumakas, 
2019). For recognition, grouping, or regression, a computer 
may use representation learning to derive features from raw 
data. Convolution is the main idea behind convolutional neural 
networks (CNN), and how it is used is a major determinant of 
network performance. At the first level is the convolution layer, 
which can extract new features from the image using various 
kernels. This is followed by the Max pooling operation, which 
performs the task of reducing the size and number of network 
parameters. This layer’s output is sent to the complete connection 
network layer after being converted to a one-dimensional vector. 
In this layer, common neural network algorithms are used. The 
convolution + max-pooling block, known as the convolution 
layer, can be repeated many times to build a deeper network. 
The user also determines the number of Fully connected layers. 
At the first level is the convolution layer, which can extract new 
features from the image using various kernels. This is followed 
by the Max pooling operation, which performs the task of 
reducing the size and number of network parameters. This 
layer’s output is sent to the complete connection network layer 
after being converted to a one-dimensional vector. In this layer, 
common neural network algorithms are used. The convolution 
+ max-pooling block, known as the convolution layer, can be 
repeated many times to build a deeper network. The user also 
determines the number of Fully connected layers. CNNs are a 
class of DNNs mostly used for visual or verbal analysis in machine 
learning (Ciocca et al., 2017). A standard CNN structure for 
image classification is indicated in Figure 1.

Figure 1. For image classification, a standard CNN structure is seen.
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The fruit is a vital source of nutrition for humans. Fruit 
production and sales face the same issues as crop production 
and sales, such as bugs, illness, bruises, and so on. Additionally, 
the fruit is a high-value farm crop. Fruit freshness, nutritional 
quality, and protection assurance are also topics to consider. Fruit 
and vegetable quality identification is a popular and difficult 
research topic right now.

DL is part of a larger family of learning approaches based 
on learning data instead of work-specific algorithms. Learning 
may be unsupervised, semi-supervised or supervised. DL 
architectures such as DNNs, recursive neural networks, and DBNs 
in areas such as natural language processing, computer vision, 
voice recognition, speech recognition, social media filtering, 
bioinformatics, drug design, machine translation, and Boardgame 
programs have been used in which they have provided results 
comparable to human experts and sometimes superior to them. 
Information and communication processing patterns do not 
very clearly inspire DL models in biological nervous systems, 
but they have different structural and functional features from 
human biological brains, that makes them inconsistent. With 
the evidence of neuroscience (Koturwar & Merchant, 2017; 
Pujol et al., 2019).

2 Materials and methods
Food classification and identification are essential tasks 

that aid humans in keeping track of their normal diets. Food 
images are one of the most valuable sources of knowledge about 
the characteristics of food. Furthermore, image sensing is a 
remarkably effective and easy method of retrieving information 
for food presentation research. Food recognition is difficult for 
natural products such as food due to the large variations in food 
type, amount, appearance, coloring, and compositions. Food 
identification and labeling are also affected by the context and 
layout of food products. Image processing is also the most widely 
used food identification pattern and labeling, thanks to CNN’s 
widespread use. Also, it is also possible to download network 
architectures with pre-trained weights from the model zoo 
(Wang et al., 2019; Thenmozhi & Srinivasulu Reddy, 2019). DL 
is one of the most important approaches in machine learning, 
which includes important architectures. CNN is one of the 
architectures of interest in DL that has been widely used in 
digital image processing. Transfer learning is the most common 
method of DL. For example, in this method, we use pre-trained 
models as a starting point in computer vision (Khan et al., 2020). 
The retraining process listed is known as “finetuning,” and it has 
been shown to be an effective method for reducing training time 
and obtaining a more reliable outcome. Food/non-food labeling, 
food type discrimination, and ingredient recognition have also 
benefited from convolutional networks (Alom et al., 2018).

Big data applications in agriculture address important 
sustainability issues, global food security, safety, and efficiency 
improvement. These global issues have undoubtedly broadened 
the scope of big data beyond agriculture to include the entire 
food supply chain. Everything, including various components 
of agriculture and the supply chain, has become wirelessly 
connected due to the Internet’s development, resulting in data 
that is instantly accessible. Operations, transactions, and images 

and videos captured by sensors and robots are primary data 
sources. However, efficient analysis is the key to unlocking the full 
potential of this dataset. Big data has enabled the development of 
risk management applications, sensor deployment, forecasting, 
and benchmarking (Granados-Chinchilla et al., 2017; van der 
Fels-Klerx  et  al., 2012). Anyone in the community can get 
real-time information about disease outbreaks and consumer 
safety measures on the internet at any time. Besides, this data 
analysis provides useful information to large companies that deal 
with food safety and security. Given the relationship between 
the two concepts of food safety and security, food security and 
long-term access to food are incompatible. Food safety and 
security is a global issue that is affecting developing countries 
more and more.

It should be noted that this area can provide a good 
opportunity for young people and startups to develop their 
innovation potential with the future of technology research 
and development of ideas in the fields of manufacturing, 
quality control, maintenance, packaging, and process ease. 
The majority of population problems can be solved with food 
access (Nightingale et al., 2004). Figure 2 shows how elements 
from different data sources can be used to bind data sources 
to create added value. Figure 2 shows data linkages similar to 
those used by WHO in FOSCOLLAB but from different data 
sources (Marvin et al., 2017).

3 Results and discussion
Feature learning or representation learning, in machine 

learning science, is a set of methods that allow the system to 
automatically discover the presentations required for feature 
detection or classification based on raw data. These methods 
replace the manual “feature engineering” methods, allowing the 
machine to learn features and use them to perform a specific task. 
Another feature of DL is the capacity to transmit knowledge. We 
found that the majority of the aforementioned studies utilized 
pre-trained CNN models developed on broad datasets that 
were fine-tuned on their reference datasets, reducing the overall 
complexity and duration needed to train a model. In addition, 
some authors used CNN features to train another classifier, such 
as SVM, in order to migrate information from the CNN method 
to the new classifier. Unlike traditional data analysis approaches, 
DL technology necessitates a more complex model structure 
and computational effort, which has hampered its growth and 
application in the past. Many resources have emerged to assist 
researchers in getting a fast start on developing a DL-based 
APP, thanks to scientists’ efforts and a global emphasis on DL. 
In terms of software assistance, we’d like to recommend a few 
common frameworks for researchers who are having trouble 
programming: Theano, Tensorflow, Caffe, Pytorch, MXNet, 
Keras, and MatConvNet for Matlab (Savaş et al., 2019).

The NVIDIA’s DNN-library and Compute Unified Device 
Architecture (CUDA) Toolkit can speed DL computations 
utilizing both hardware and software. NVIDIA libraries made 
it possible to build the first DL libraries in the CUDA language, 
while there were no such comprehensive libraries for Open 
Computing Language (OpenCL) Advanced Micro Devices 
(AMD). This initial advantage, coupled with full support from 
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NVIDIA, rapidly increased the use of CUDA. This means that 
if you use NVIDIA GPUs, you will easily find a solution if you 
encounter a mistake; if you programmed CUDA yourself, you 
would have support and advice, and you will find that most 
DL Libraries have the best support for NVIDIA GPUs. This is 
a great power for the NVIDIA GPUs.

NVIDIA currently has a policy that allows CUDA to be used 
in data centres only for Tesla GPUs and not for Ray Tracing Texel 
(RTX) or Giga Texel Shader eXtreme (GTX) cards.

NVIDIA has been able to do this without any hindrance, 
which is a sign of its exclusive power. They can do whatever they 
want, and we’ve got to accept that. If you choose NVIDIA graphics 
cards’ major benefits in terms of support, you must also accept 
that you may be under pressure from them. HIP via ROCm is 
capable of managing AMD GPUs and NVIDIA in a common 
programming language, the commands of which are compiled 
in the GPU language before being connected to the GPU. This 
is an important milestone if we have all of our GPU code in the 
HIP. But the storey is going to be more complicated because 
it’s very difficult to use TensorFlow and PyTorch-based code.

The ROCm community is not very large and is therefore 
unable to solve problems quickly. It seems that AMD will have to 
spend more on developing and promoting DL, which is currently 
slow. However, AMD GPUs are more efficient than NVIDIA 
GPUs, and the next generation of AMD GPUs, called Vega 20, is 
a computing processor that uses Tensor cores such as computing 

units. However, the use of AMD GPUs is not recommended 
for ordinary users who simply want to use their GPUs. More 
experienced users should have fewer problems and help fight 
NVIDIA’s proprietary position by supporting ROCm/HIP and 
AMD GPUs developers that will benefit everyone in the long run. 
If you are a GPU programmer and want to make a significant 
contribution to GPU-based computing, AMD GPUs may be the 
best way to make a good effect in the long run. NVIDIA GPUs 
may be a better choice for others.

These tools assist in the acceleration of the DL models 
previously defined. Hardware & software optimization systems 
greatly minimize computing time and allow for real-time 
computation. DL has flaws that cannot be overlooked. The 
refinement activities will be very difficult and slow due to the 
long training cycle and hardware constraints, as well as the 
model’s high complication and multiple hyperparameters. GPUs 
are extremely costly, as are the processors and other hardware 
needed for computational acceleration. Training a DNN with 
just processing power as a computational resource would take 
even longer. DL often necessitates processing a vast amount of 
data, and finding a reliable large dataset is challenging. Compiling 
and annotating data will take a considerable amount of time 
and effort. There would undoubtedly be some errors when such 
free datasets for academic study and challenge competitions are 
gathered and duly labeled by volunteers or experts. Others can 
be downloaded directly from the Web by computers; thus, there 
might undoubtedly be some errors. It’s also worth mentioning 

Figure 2. A link between food safety data sources could serve as an interesting tool in food risk analysis.
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that the trained network could only understand the properties 
of the research dataset.

Some published datasets with incomplete data identify 
the goal challenge. It’s challenging for a model trained on the 
UECFood-256 database to correctly classify meals from all 
other nations worldwide because the database contains a large 
number of Japanese food photographs. Large databases containing 
food photographs worldwide should be generated to achieve a 
more reliable and robust food recognition scheme. While DL 
has been used in food identification, few studies link it to food 
calorie assessment, supply chain, and safety issues. Despite the 
fact that hundreds of papers recorded their DL APP for food 
recognition, RGB image awareness is the only base applied to 
recognize food categories in the case of food recognition issues. 
Since the respondents to some of the above food classification 
studies were mainly computer scientists and image processors, 
general image features gained more consideration than simple 
food image features. To represent the intrinsic specifics of 
food, characterization techniques such as thermal imaging and 
hyperspectral imaging have been used in addition to photographs.

Using a potato as an example, DNN approaches can only 
forecast whether the goal region was harmed based on the average 
spectrum of a sample. It was impossible to judge where the 
exact location was based on the average spectrum of a sample. 
It might be essential to obtain certain crucial information to 
minimize the size of the spectral pictures. Finding any optimal 
bands that better reflect the variations across samples and then 
recombining the resulting layers as new images are one approach 
that focuses on spatial information. Another alternative is to 
use pixel-level spectra to train the network, then reconstruct 
each pixel’s projection mark as an output mask, such as in 
Figure 3. Patel et al. (1996) and Xu et al. (2020) describe how 
one-dimensional convolution is implemented. If the issue at hand 
has little to do with spatial or structure information, this process 

of measuring the predicted values of each point independently 
may be a reasonable way to get around the hardware capacity 
constraint. Furthermore, similar to the solution presented by 
Berisha  et  al. (2019), a combination of spectral and spatial 
properties may be used to solve specific problems.

To train a DL model, more forms of food data are required 
to be used. We can say what sort of food it is and how consistent 
it depends on its density, smell, feel, solidity, flavor, and noises 
upon being struck. There is a range of sensors available for 
non-destructive measurement, including vibration sensors, 
electronic equilibrium, electrical noise, sound sensors, and 
so on, as well as advanced detector technologies (Adão et al., 
2017; Gowen et al., 2012). Following the recognition of photos 
containing food, the next step is to investigate food labeling, 
which is a multiclassification challenge. There were several 
open-access food picture repositories of various types, such as 
UECFood-100, UECFood-256, Food-11, etc. (see Table 1). These 
huge food picture collections may provide plenty of food visual 
features for preparing a DNN model for food classification.

Multisource data fusion has not been thoroughly exploited 
to evaluate food quality and protection utilizing DL. In one 
illustration in this article, a mixture of image and mass information 
of fruits was used to identify fruits more precisely. Multisource 
data fusion focused on more data types from sensing instruments 
may obtain a more robust and reliable food assessment. Liquid 
foods, such as milk, beverages, and other beverages, as well as 
marine goods and fish, poultry, and fruits, will be analyzed in 
prospective studies. As a result, the time dimension must be 
considered. Any problems with static data are challenging to 
describe. For example, images or other data depicting dough 
fermentation’s current state are inadequate to demonstrate the 
issue. It’s sufficient to use criteria from the whole fermentation 
phase at different times.

Figure 3. A spectral picture of a damaged potato is being used for pixel-level labeling using a CNN architecture. DAM: Digital Accessibility Map.
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4 Conclusion
DL has entered the field of AI. This learning has come to aid 

AI in responding more naturally to human needs and needs. AI 
has now come to the aid of human beings. It’s not been many years 
since the creation of AI. But in this short time, human beings 
have used this technology in a variety of fields. DL in today’s 
world goes hand-in-hand with the digital age. The digital age 
is considered to be a time of information boom and explosion. 
Today, human beings have access to a wide range of information 
around the world. Today, the treasure trove of information 
available to humans comes from a variety of sources. Resources 
such as social media, search engine optimization, e-commerce 
platforms, online cinemas, and more are constantly gathering 
human information today. This information is going to be very 
useful for teaching artificial intelligence. This vast amount of 
information can be easily disseminated. Human beings today are 
able to send information about the size of a national library to 
someone on the other side of the world in a matter of minutes. 
In fact, however, this amount of information that exists on the 
Internet without any special classification is so vast that human 
beings will not be able to digest, analyze and learn it. In fact, it 
will take decades for people to learn this amount of information. 
The lifespan of a normal human being will not be enough to 
learn this amount of information.

The exponential development of the Internet, social 
networking, smartphone applications, and other types of 
technology has culminated in increasingly complex methods 
to data collection, enabling more individuals to participate 
and contribute food knowledge such as photographs and text 
explanations, eventually allowing for the proliferation of even 
larger datasets. Food production and protection inspections are 
carried out by academics and research institutions worldwide 
using their own databases. Data collection is restricted by the 
capacity of a single individual, research team, or organization. 
It is planned to incorporate food-related datasets collected 
from consumers, researchers, and institutes worldwide using 
modern sensors and instruments into broad global databases. 
These datasets can be analyzed quickly with DL’s help, which 
will support food researchers and institutes.

We looked at a wide variety of recent articles relating to DL 
implementation in food, illustrating the proposed framework, 

training methods, and final assessment outcome of DL models 
used to process food images, spectrums, text, and other data in 
each sample. We contrasted DNN to other efficient approaches 
in terms of results and found that DL outperformed the other 
methods in the studies we looked at. In our discussion of the 
benefits and pitfalls of DL approaches, as well as the challenges 
and potential futures of DNNs in the food domain, we come to 
an understanding. No other survey of DL applications in the 
food domain exists, according to the authors. This study aims 
to allow researchers and practitioners in this field to conduct 
additional food-related studies using DL approaches, provide 
functional solutions to regression and classification problems, 
and integrate these solutions for the benefit of food protection 
and quality inspection for human health. Finally, we suggest that:

(1) A mixture of DL and multisource data fusion, including 
RGB pictures, spectra, smell, flavor, and so on, would 
be suggested to allow for a more accurate evaluation of 
food;

(2) Future studies can concentrate on the creation of highly 
autonomous data acquisition gears for local and global 
food information sharing portals, as collecting big data 
relevant to food remains problematic due to the usage of 
semi-auto or even manual data acquisition instruments 
and incomplete data processing and sharing platforms;

(3) DL technologies’ data mining capabilities may be tested 
in food-related fields that are seldom explored, such as 
food safety;

(4) Food picture recognition, intelligent meal recommendation 
Applications, and fruit consistency evaluation frameworks 
are all exciting DL cases that can be transformed into 
suitable offers.
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