Accessibility / Report Error

Biological, physicochemical and antibacterial properties of pure honey harvested at the municipality of Seraïdi (Annaba, north east of Algeria)

Abstract

The aim of our work is to assess physicochemical and antibacterial potential of two local honeys compared with two imported honeys. A carbohydrate profile was carried out by HPLC. All honeys are acid and the free acidity of Zriba (36 ± 13 méq.kg-1), Sidi Achour (36.66 ± 0.57 méq.kg-1) were in standards well above those of imported honey: San Francisco (7 méq.kg-1), Elshifa (20 méq.kg-1). Refractive index complied with the standards. Sidi Achour honey was denser (1.4206) than the others. Ash content of local honey (0.76 ± 0.07) and imported honey San Francisco (0.72 ± 0.57) were higher than those of Zriba honey (0.41 ± 0.08) and Elshifa (0.25 ± 0.038). All honeys had a sucrose content within the standard. Local honey contained Trehalose and melezitose, and richer in fructose and raffinose, F & G and maltose levels were consistent with standards. Sidi Achour contained the highest turanose content (2.15 ± 0.49%) relative to the studied honey samples. Antibacterial activity showed that all honeys have antibacterial potential when they are pure. Sidi Achour was active against E.coli (24 ± 6.08 mm), S.enteritidis (26.33 ± 1.15 mm), S.aureus (19.66 ± 0.57 mm), B.cereus (13.33 ± 8.73 mm) and E.faecalis (15 ± 1 mm). Zriba honey showed the same antibacterial honey except for B.cereus (7.66 ± 2.88 mm). The imported honeys were active on the growth of only three bacteria: E.coli, S.enteritidis and S.aureus.

Keywords:
local honey; carbohydrate profile; antibacterial activity; Séraïdi; Annaba; Algeria

1 Introduction

Honey is a natural substance produced out of honeydew or nectar from flowers (Buba et al., 2013Buba, F., Gidado, A., & Shugaba, A. (2013). Analysis of biochemical composition of honey samples from North-East Nigeria. Biochemistry and Analytical Biochemistry, 2(3), 139. ), that bees are foraging, convert by combining them with specific substances that they secrete themselves, lay, dehydrate, store and let it improve and ripen within the hive combs (Codex Alimentarius, 2001aCodex Alimentarius. (2001a). Programme mixte FAO/OMS sur les normes alimentaires (commission du Codex Alimentarius): rapport de la trente-troisième session du comité du codex sur l’hygiène alimentaire (ALINORM 01/13A). Organisation Mondiale de la Santé. Retrieved from https://www.fao.org/3/x8735f/x8735f.pdf
https://www.fao.org/3/x8735f/x8735f.pdf...
). Honey is a supersaturated sugar solution, its content is complex and variable and contains at least 181 different substances (El Sohaimy et al., 2015El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Science, 60(2), 279-287. http://dx.doi.org/10.1016/j.aoas.2015.10.015.
http://dx.doi.org/10.1016/j.aoas.2015.10...
; Bucekova et al., 2019Bucekova, M., Jardekova, L., Juricova, V., Bugarova, V., Di Marco, G., Gismondi, A., Leonardi, D., Farkasovska, J., Godocikova, J., Laho, M., Klaudiny, J., Majtan, V., Canini, A., & Majtan, J. (2019). Antibacterial activity of different blossom honeys: new findings. Molecules (Basel, Switzerland), 24(8), 1573. http://dx.doi.org/10.3390/molecules24081573. PMid:31010070.
http://dx.doi.org/10.3390/molecules24081...
), this solution is made up of approximately 83% sugars, chiefly glucose and fructose and about 17% water at an average 3.9 pH (Almasaudi et al., 2017Almasaudi, S. B., Al-Nahari, A. A., Abd El-Ghany, E. S. M., Barbour, E., Al Muhayawi, S. M., Al-Jaouni, S., Azhar, E., Qari, M., Qari, Y. A., & Harakeh, S. (2017). Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi Journal of Biological Sciences, 24(6), 1255-1261. http://dx.doi.org/10.1016/j.sjbs.2016.08.007. PMid:28855819.
http://dx.doi.org/10.1016/j.sjbs.2016.08...
). Honey derived through nectar have a pH between 3.5 and 4.5 whereas those produced from honeydew range from 5 to 5.5 (Mbogning et al., 2011Mbogning, E., Tchoumboue, J., Damesse, F., Sanou Sobze, M., & Canini, A. (2011). Caractéristiques physico-chimiques des miels de la zone Soudano-guinéenne de l’Ouest et de l’Adamaoua Cameroun. Tropicultura, 29(3), 168-175.). The proportion of the various sugars depends on the kind of flowers foraged by the bees (Feknous et al., 2022Feknous, N., Ouchene, L. L., Boumendjel, M., Mekhancha, D. E., Boudida, Y., Chettoum, A., Boumendjel, A., & Messarah, M. (2022). Local honey goat milk yoghurt production. Process and quality control. Food Science and Technology (Campinas), 42, 1-10. http://dx.doi.org/10.1590/fst.26621.
http://dx.doi.org/10.1590/fst.26621...
). Honey also contains minor components like protein, enzymes, amino acids, lipids, vitamins, phenolic acids, flavonoids and minerals (Zhou et al., 2013Zhou, J., Suo, Z., Zhao, P., Cheng, N., Gao, H., Zhao, J., & Cao, W. (2013). Jujube honey from China: physico-chemical characteristics and mineral contents. Journal of Food Science, 78(3), 1750-3841. http://dx.doi.org/10.1111/1750-3841.12049.
http://dx.doi.org/10.1111/1750-3841.1204...
;Feknous & Boumendjel, 2022Feknous, N., & Boumendjel, M. (2022). Natural bioactive compounds of honey and their antimicrobial activity. Czech Journal of Food Sciences, 40(3), 163-178. http://dx.doi.org/10.17221/247/2021-CJFS.
http://dx.doi.org/10.17221/247/2021-CJFS...
). Based on Brudzynski & Lannigan (2012)Brudzynski, K., & Lannigan, R. (2012). Mechanism of honey bacteriostatic action against MRSA and VRE involves hydroxyl radicals generated from honey’s hydrogen peroxide. Frontiers in Microbiology, 3, 36. http://dx.doi.org/10.3389/fmicb.2012.00036. PMid:22347223.
http://dx.doi.org/10.3389/fmicb.2012.000...
and Gregório et al. (2021)Gregório, A., Galhardo, D., Sereia, M. J., Wielewski, P., Gavazzoni, L., Santos, I. F., Sangaleti, G. S. S. G. M. G., Cardoso, E. C., Bortoti, T. L., Zanatta, L. A., Gonçalves, L. M., Suzin, M. A., Santos, A. A., & Toledo, V. A. A. (2021). Antimicrobial activity, physical-chemical and activity antioxidant of honey samples of Apis mellifera from different regions of Paraná, southern Brazil. Food Science and Technology (Campinas), 41(Suppl. 2), 583-590. http://dx.doi.org/10.1590/fst.32820.
http://dx.doi.org/10.1590/fst.32820...
, the composition the quality of honey varies according to the vegetal species and the environmental conditions. Under the Codex Alimentarius (2001b)Codex Alimentarius. (2001b). Standard for honey: codex standard 12-1981: revised codex standard for honey, standards and standard methods. Organisation Mondiale de la Santé. Retrieved from https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012e.pdf
https://www.fao.org/fao-who-codexaliment...
, the study of the physicochemical parameters makes it possible to verify its quality and its botanical origin. Several physicochemical parameters are checked: The sugar and moisture content, the ash content, electrical conductivity, hydroxy methyl furfural content (HMF); acidity and diastase activity (Silva et al., 2016Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: chemical composition, stability and authenticity. Food Chemistry, 196(1), 309-323. http://dx.doi.org/10.1016/j.foodchem.2015.09.051. PMid:26593496.
http://dx.doi.org/10.1016/j.foodchem.201...
). Honey is an outstanding antibacterial agent with a high biotechnological potential (Gregório et al., 2020Gregório, A., Galhardo, D., Sereia, M. J., Wielewski, P., Gavazzoni, L., Santos, I. F., Sangaleti, G. S. S. G. M. G., Cardoso, E. C., Bortoti, T. L., Zanatta, L. A., Gonçalves, L. M., Suzin, M. A., Santos, A. A., & Toledo, V. D. A. A. (2020). Antimicrobial activity, physical-chemical and activity antioxidant of honey samples of Apis mellifera from different regions of Paraná, Southern Brazil. Food Science and Technology (Campinas), 41(Suppl. 2), 583-590. http://dx.doi.org/10.1590/fst.32820.
http://dx.doi.org/10.1590/fst.32820...
) and is a great dietary supplement (Pasupuleti et al., 2017Pasupuleti, V. R., Sammugam, L., Ramesh, N., & Gan, S. H. (2017). Honey, propolis, and royal jelly. A comprehensive review of their biological actions and health benefits. Oxidative Medicine and Cellular Longevity, 2017, 1259510. http://dx.doi.org/10.1155/2017/1259510. PMid:28814983.
http://dx.doi.org/10.1155/2017/1259510...
). It is also used as a natural sweetener in probiotic food since it allows driving growth of lactic bacteria while concomitantly blocking growth of pathogenic bacteria like Shigella, Listeria monocytogenes and Staphylococcus aureus (Feknous et al., 2022Feknous, N., Ouchene, L. L., Boumendjel, M., Mekhancha, D. E., Boudida, Y., Chettoum, A., Boumendjel, A., & Messarah, M. (2022). Local honey goat milk yoghurt production. Process and quality control. Food Science and Technology (Campinas), 42, 1-10. http://dx.doi.org/10.1590/fst.26621.
http://dx.doi.org/10.1590/fst.26621...
). For millennia, popular medicine uses honey to relieve aches (Desmoulière, 2013Desmoulière, A. (2013). Le miel, de remarquables propriétés cicatrisantes. Actualites Pharmaceutiques, 531(531), 17. http://dx.doi.org/10.1016/j.actpha.2013.10.003.
http://dx.doi.org/10.1016/j.actpha.2013....
). Its structure gives it - in addition to nutritional and energy attributes- some antioxidant, antibacterial properties (Missio da Silva et al., 2016Missio da Silva, P., Gauche, C., Gonzaga, L. V., Oliveira Costa, A. C., & Fett, R. (2016). Honey chemical composition, stability and authenticity. food chemistry, 196:309-323. Cultural and Food Chemistry, 46, 393-400.) as well as an anti-hypertensive potential (Erejuwa et al., 2012Erejuwa, O. O., Sulaiman, S. A., Wahab, M. S., Salam, S. K., Salleh, M. S., & Gurtu, S. (2012). Hepatoprotective effect of tualang honey supplementation in streptozotocin-induced diabetic rats. International Journal of Applied Research in Natural Products, 2012(4), 37-41.) and hepatoprotective (Al-Waili et al., 2006Al-Waili, N. S., Saloom, K. Y., Akmal, M., Al-Waili, F., Al-Waili, T. N., Al-Waili, A. N., & Ali, A. (2006). Honey ameliorates influence of hemorrhage and food restriction on renal and hepatic functions, and hematological and biochemical variables. International Journal of Food Sciences and Nutrition, 57(5-6), 353-362. http://dx.doi.org/10.1080/09637480600802371. PMid:17135025.
http://dx.doi.org/10.1080/09637480600802...
). This natural product has an inhibitory effect against a broad spectrum of Gram+, Gram- bacteria and against antibiotic-resistant bacteria (Hammond et al., 2016Hammond, E. N., Duster, M., Musuuza, J. S., & Safdar, N. (2016). Effect of United States Buckwheat honey on antibiotic-resistant hospital acquired pathogens. The Pan African Medical Journal, 25, 212. http://dx.doi.org/10.11604/pamj.2016.25.212.10414. PMid:28292167.
http://dx.doi.org/10.11604/pamj.2016.25....
). The antibacterial potential of honey arise from its physicochemical properties (Hegazi et al., 2017Hegazi, A. G., Al Guthami, F. M., Al Gethami, A. F., Allah, F. M. A., Saleh, A. A., & Fouad, E. A. (2017). Potential antibacterial activity of some Saudi Arabia honey. Veterinary World, 10(2), 233-237. http://dx.doi.org/10.14202/vetworld.2017.233-237. PMid:28344408.
http://dx.doi.org/10.14202/vetworld.2017...
): low pH, high viscosity, high osmotic pressure (Kwakman and Zaat, 2012Kwakman, P. H., & Zaat, S. (2012). Antibacterial components of honey. IUBMB Life, 64(1), 48-55. http://dx.doi.org/10.1002/iub.578. PMid:22095907.
http://dx.doi.org/10.1002/iub.578...
), hydrogen peroxide (Nolan et al., 2019Nolan, V. C., Harrison, J., & Cox, J. A. G. (2019). Dissecting the antimicrobial composition of honey. Antibiotics (Basel, Switzerland), 8(4), 251. http://dx.doi.org/10.3390/antibiotics8040251. PMid:31817375.
http://dx.doi.org/10.3390/antibiotics804...
), organic acids, enzymes (amylase, catalase, glucose-oxydase and lysozyme), phenols, fatty acids, acids (ascorbic acid, benzoic acid), flavonoids, vitamins, carotenoids (Wasihun & Kasa, 2016Wasihun, A. G., & Kasa, B. G. (2016). Evaluation of antibacterial activity of honey against multidrug resistant bacteria in Ayder Referral and Teaching Hospital, Northern Ethiopia. SpringerPlus, 5(1), 842. http://dx.doi.org/10.1186/s40064-016-2493-x. PMid:27386291.
http://dx.doi.org/10.1186/s40064-016-249...
;Oluwapelumi et al., 2017Oluwapelumi, O. B., Morayo, A., Buru, A. S., Richard, A. Y., Funmilayo, A. J., & Funmi, A. A. (2017). Antimicrobial Activities of Different Honeys Sold in Ado-Ekiti on Bacteria Associated with Upper Respiratory Tract Infections. International Journal of Current Microbiology and Applied Sciences, 6(2), 1-10. http://dx.doi.org/10.20546/ijcmas.2017.602.001.
http://dx.doi.org/10.20546/ijcmas.2017.6...
; Dinkov, 2017Dinkov, D. (2017). Perspection of Royal Jelly and Bee Honey as new antibacterial therapy agents of hospital infections. J. Clin. Path. Labe Med., 1(1), 5-8.) and to the presence of defensin and methylglyoxal (Martinotti and Ranzato, 2018Martinotti, S., & Ranzato, E. (2018). Review honey, wound repair and regenerative medicine. Journal of Functional Biomaterials, 9(2), 34. http://dx.doi.org/10.3390/jfb9020034. PMid:29738478.
http://dx.doi.org/10.3390/jfb9020034...
). For this purpose, we have studied the biological, physicochemical quality and the antimicrobial potential of four (04) honey samples: two (02) local honeys (called Zriba honey and Sidi Achour honey) and two (02) imported honeys (called San Francisco and Elshifa honeys). Both local ones come from the mountain municipality of Séraïdi located in the city of Annaba (Algeria). Both imported honeys are available in the Algerian market.

2 Material and methods

2.1 Sampling

The two local honey (Zriba and Sidi Achour), have been harvested in Edough Mountains in the municipality of Séraïdi, city of Annaba at the north east of Algeria. One was collected at high altitude (Zriba honey), in autumn of year 2018, the other one in low altitude (Sidi Achour honey in the summer of that same year. As to the two honeys available in the market, they are imported from King Saoudi Arabia (Elshifa) and Spain (San Francisco). The collected samples were stored in sterile polyethylene bottles at + 4 °C.

2.2 Locating apiaries

The beekeeping operator has two sites in the municipality of Séraïdi as shown in the map below (Figure 1).

Figure 1
Apiaries localization in Seraïdi.
  • The first site at high altitude, Zriba (36°56'7.51” N; 7°40'53.41” E), is located in the forest in the massif of Edough far from any major urban area, at 05 km by road from the village of Séraïdi on a local winding road i.e. at more than 2 km as the crow flies from the nearest urban community, away from any industrial area.

  • The second site is at low altitude, Sidi Achour (36°52'16.71” N ; 7°42'7.58” E), at the foothills of Mountain Edough, in a forest zone of Eucalyptus at around 850 m west of the urban area of Sidi Achour.

2.3 Plant inventory

A plant inventory has been drawn up on from April 2021 to March 2022 for the region surrounding the bees’ foraging area over a radius of 2 km. A listing was set up chiefly for flowering plants known for their melliferous power. To do so, identification of plants was done based on the Herbarium of de Bélair (2019)de Bélair. (2019). Herbier GdB. Retrieved from https://gdebelair.com/.
https://gdebelair.com/...
.

2.4 Analysis of physicochemical quality of honey

Dosage of sugars

Determining sugars of the two local honeys was achieved by high-performance liquid chromatography (HPLC) at the analyses and beekeeping ecology laboratory C.E.T.A.M in France. The study of the other physicochemical parameters of honey was achieved at the Quality control and fraud prevention laboratory. All of the physicochemical parameters were performed in three (03) repetitions.

Free acidity

A few drops of phenolphtalein (C20H14O4 à 1%) were added to 10 gram of honey previously dissolved in 75 mL of distilled water in a beaker. We fill the burette with a sodium hydroxide solution NaOH at 0.1 N and adjust itto zero. The sample is titrated with NaOH at 0.1 N until we obtain a permanent pink color. The result is expressed in milliequivanlents per kilogram of honey and determined by the following Formula 1:

F r e e a c i d i t y = V o l u m e o f 0.1 N N a O H i n m l x 10 (1)

pH

pH of honey was measured with a pH-meter with an immersion probe.

Electrical conductivity at 20 °C

Electrical conductivity of honey is measured by way of a conductivity meter. The result of which is expressed in millisiemens per centimeter (mS.cm-1).

Brix level

Brix and refractive index were measured using ABBE universal refractometer.

Water content

Water content is established by referring to the official journal (Journal Officiel de la République Algérienne, 2017Journal Officiel de la République Algérienne - JORA. (2017). Arrêté du 24 octobre 2017 rendant obligatoire la méthode de détermination des cendres totales dans les épices. Retrieved from https://www.joradp.dz/ftp/jo-francais/2018/f2018003.pdf
https://www.joradp.dz/ftp/jo-francais/20...
), which spells out the relationship between the refractive index and the water content.

Ash content

Ash contents were sought according to Journal Officiel de la République Algérienne (2017)Journal Officiel de la République Algérienne - JORA. (2017). Arrêté du 24 octobre 2017 rendant obligatoire la méthode de détermination des cendres totales dans les épices. Retrieved from https://www.joradp.dz/ftp/jo-francais/2018/f2018003.pdf
https://www.joradp.dz/ftp/jo-francais/20...
in the following way: In a capsule, we drop 5 Gram of honey and a quantity of alcohol. We put the assays in a muffle furnace during 2hours at 500°C, then we cool them down in the desiccator (capsules containing ashes are weighed). The total ash content (WTA) is expressed in weight percent in line with the Equation 2:

W T A = ( m 3 m 1 / m 2 m 1 ) x 1 0 0 % (2)

Where m1: weight in Grams of empty capsule; m2: weight in Grams of the capsule and obtained residues after steaming.

In order to find out on a moisture-free basis, the result is multiplied by [100% / 100% - C] where C is water content expressed in percentage.

Density

Honey density was calculated according to the following equation [D=D2/D1] where D1 = the weight of pycnometer with distilled water - the weight of empty pycnometer; D2 = The weight of pycnometer with honey - the weight of empty pycnometer.

2.5 Analyzing the antibacterial power of honey

The antibacterial activity of four honey samples was analyzed by the diffusion method. Gram+ and Gram- pathogenic bacteria were tested, two (02) food-borne bacteria: Salmonella enteritidis and Enterococcus feacalis supplied by the regional veterinary laboratory of El-Tarf along with three (03) reference strains supplied by The Pasteur Institute in Algiers: Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778 and Escherichia coli ATCC 25922.

Preparing honey dilutions

For each type of honey, four (04) dilutions were prepared with sterile distilled water in order to get the following concentrations: 25% honey, 50% honey, 75% honey and 100% honey.

Diffusion method in agar medium

Preparing inoculums and seeding

In an effort to prepare a bacterial suspension, we extract some well-isolated and identical colonies from each 24 h pure culture that we seed in 5 to 10 mL of sterile physiological water at 0,9%. The prepared homogenized bacterial suspension must have an opacity that equals 05 Mac Farland or an OD of 0.08 to 0.10 read at 625 nm. Seeding must be achieved within the 15 min following the preparation of inoculums. We dip a sterile cotton swab in the bacterial suspension. We wring it out by firmly pressing it against the inner wall of the tube so as to dump as much as possible and we rub out all of the dry agar surface up and down while streaking down. We repeat this operation twice, by rotating the box each time at 60°. In case we seed several Petri dishes, the cotton swab must be reloaded every time. We apply four (04) sterile discs on each seeded agar. We add 25 μL of each honey dilution to every disc and incubate the boxes at 37 °C during 24 hours in a bacteriological incubator.

Interpretation

After incubating, the diameters of inhibition areas were measured using a caliper.

3 Results and discussion

3.1 Plant inventory of the region

The Table 1 below lists the melliferous species discovered.

Table 1
Plant inventory of the sampling area.

As to the honey of organic quality, we have carried out a plant inventory of Edough where lies the beekeeping operation yard Zeriba. We could pinpoint 111 melliferous species; a very significant source of nectar and pollen. These results are identical to our precedent study (Feknous et al., 2022Feknous, N., Ouchene, L. L., Boumendjel, M., Mekhancha, D. E., Boudida, Y., Chettoum, A., Boumendjel, A., & Messarah, M. (2022). Local honey goat milk yoghurt production. Process and quality control. Food Science and Technology (Campinas), 42, 1-10. http://dx.doi.org/10.1590/fst.26621.
http://dx.doi.org/10.1590/fst.26621...
). Our results are very close to Hamel & Boulemtafes (2017)Hamel, T., & Boulemtafes, A. (2017). Plantes butinées par les abeilles à la péninsule de l’Edough (Nord-Est algérien). Livestock Research for Rural Development, 29(9), 1-13. who identified 107 species in the same region. This number of melliferous plants is higher than that of the study performed in the Algerian South-west by Laallam et al. (2011)Laallam, H., Boughediri, L., & Bissati, S. (2011). Inventaire des Plantes Mellifères du Sud Ouest Algérien. Revue Synthèse, 23(C), 81-89. in the light of which 66 melliferous species were spotted. The obtained results are encouraging. This can be explained by the appropriate location of the beekeeping yard. The latter, thanks to its vegetation criteria complies with the requirements put out by European Union (2021)European Union (2021). Beekeeping sector: results of the pilot study on honey bee selection. . Retrieved from https://agriculture.ec.europa.eu/news/beekeeping-sector-results-pilot-study-honey-bee-selection-2022-03-15_en
https://agriculture.ec.europa.eu/news/be...
and United State Department of Agriculture (2017aUnited State Department of Agriculture (2017a). National Organic Program. Retrieved from https://www.ams.usda.gov/about-ams/programs-offices/national-organic-program
https://www.ams.usda.gov/about-ams/progr...
, bUnited State Department of Agriculture (2017b). Authorized Certification Official. Retrieved from https://www.aphis.usda.gov/aphis/ourfocus/planthealth/SA_Export/SA_ACNS/CT_Accreditation-Certification
https://www.aphis.usda.gov/aphis/ourfocu...
) for bee-keeping and the production of honey of organic quality. Indeed, many of these meliferious plants are also considered as aromatic and medicinal one's (Hamel et al., 2018Hamel, T., Zaafour, M., & Boumendjel, M. (2018). Ethnomedical knowledge and traditional uses of aromatic and medicinal plants of the wetlands complex of the guerbes-sanhadja plain (Wilaya of Skikda in Northeastern Algeria). Herbal Medicine., 4(1), 1-9. http://dx.doi.org/10.21767/2472-0151.100035.
http://dx.doi.org/10.21767/2472-0151.100...
;Taibi et al., 2018Taibi, F., Boumendjel, M., Moncef, Z., Omar, S., Taha, K., Amel, D., Safa, A., Hassiba, R., Hanène, C., Nacira, S., Amel, B., & Mahfoud, M. (2018). Conservation of stored food using plant’s extracts. Effect of oregano (Origanum vulgaris) essential oil on the reproduction and development of flour moth (Ephestia kuehniella). Cellular and Molecular Biology, 64(10), 5-11. http://dx.doi.org/10.14715/cmb/2018.64.10.2.
http://dx.doi.org/10.14715/cmb/2018.64.1...
;Boumendjel et al., 2021Boumendjel, M., Boucheker, A., Feknous, S., Taibi, F., Rekioua, N., Bouzeraa, N., Chibi, A., Feknous, N., Baraoui, A., N’har, S., Toubal, A., Taguida, A., Zaidi, H., Sekiou, O., Bouziane, I., Metai, A., Bouaziz, M., Benselhoub, A., Boumendjel, A., & Messarah, M. (2021). Adaptogenic activity of Cinnamomum camphora, Eucalyptus globulus, Lavandula stoechas and Rosmarinus officinalis essential oil used in North-African folk medicine. Cellular and Molecular Biology, 67(2), 83-88. http://dx.doi.org/10.14715/cmb/2021.67.2.12. PMid:34817335.
http://dx.doi.org/10.14715/cmb/2021.67.2...
;Rekioua et al., 2022Rekioua, N., Boumendjel, M., Taibi, F., Samar, M. F., Mediouni Ben Jemaa, J., Benaliouch, F., Negro, C., Nicoli, F., De Bellis, L., Boushih, E., & Haouel, S. (2022). Insecticidal effect of Eucalyptus globulus and Rosmarinus officinalis essential oils on a stored food pest Ephestia kuehniella (Lepidoptera, Pyralidea). Cellular and Molecular Biology, 68(4), 144-157. http://dx.doi.org/10.14715/cmb/2022.68.4.18. PMid:35988266.
http://dx.doi.org/10.14715/cmb/2022.68.4...
), thus adding quality to the honey harvested.

3.2 The carbohydrate Profile of honey

The dosing results of the above-mentioned honey sugars are included in table # 2 below.

Monosaccharides

The average contents of fructose and glucose (Table 2) are higher than those of other identified monosaccharides (isomaltose, maltose, trehalose, turanose, erlose, melezitose and raffinose). Lobreau-Callen et al. (2000)Lobreau-Callen, D., Clément, M. C., & Marmion, V. (2000). Les miels. Techniques de l'ingénieur, TIB432DUO, f7000. Retrieved from https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/filiere-de-production-produits-d-origine-animale-42432210/les-miels-f7000/
https://www.techniques-ingenieur.fr/base...
point out that honey contains higher glucose and fructose contents vis-à-vis the other monosaccharides. According to Shin & Ustunol (2005)Shin, H. S., & Ustunol, Z. (2005). Carbohydrate composition of honey from different floral sources and their influence on growth of selected intestinal bacteria: An in vitro comparison. Food Research International, 38(6), 721-728. http://dx.doi.org/10.1016/j.foodres.2005.01.007.
http://dx.doi.org/10.1016/j.foodres.2005...
fructose has a slight prominence than glucose in honey, indeed, fructose was at 33.95 ± 0.21% in Zriba honey and at 36.6 ± 0.42% in Sidi Achour honey, at 38.8 ± 0.2% in Elshifa honey whereas at 40.5 ± 0.5% in San Francisco honey. These rates are slightly higher than those found in glucose which respectively are at: 33.46 ± 0.42%, 24.1 ± 2.4%, 34.2 ± 2% and at 30.8 ± 0.2%. Total sugars levels (F+G) fluctuated from 59.05 ± 0.45% to 60.7 ± 3.25% for local honey and from 71 ± 0.7% to 73 ± 2.2% as far as imported honey are concerned.

Table 2
HPLC profile of glucid percentage (n=3).

The Codex Alimentarius (2001a) restrictsCodex Alimentarius. (2001a). Programme mixte FAO/OMS sur les normes alimentaires (commission du Codex Alimentarius): rapport de la trente-troisième session du comité du codex sur l’hygiène alimentaire (ALINORM 01/13A). Organisation Mondiale de la Santé. Retrieved from https://www.fao.org/3/x8735f/x8735f.pdf
https://www.fao.org/3/x8735f/x8735f.pdf...
at 60% total fructose and glucose, we notice that imported honey exhibited a higher total on this limit unlike local honey which remained consistent with the international standards.

F/G ratio displays the characteristics of some honeys. This ratio was at 1.35 ± 0.01 for Zriba honey and 1.52 ± 0.12 for Sidi Achour honey. The latter is richer in fructose (Polus, 2008Polus, P. (2008). Anomalies de cristallisation: séparation de phase et arborescence. L’abeille de France, 944, 83-84.) relative to that of Zriba. As to imported honey, their F/G ratio was lower than that of local honey (1.13 ± 0.017 for the Saudi honey Elshifa and 1.31 ± 0.01 for the Spanish honey San Francisco).

Disaccharides

The sucrose content in local honey was lower at 1% against 3.9 ± 0.6% in Elshifa honey and at 4.3 ± 0.3% in San Francisco honey. All honey (local or imported) meet the recommendations established by the Codex Alimentarius which sets a maximum limit of 5% for any type of honey and 10% for Eucalyptus honey because a high sucrose rate indicates that bees have been fed with sucrose syrup, or an early honey harvest, in which the sucrose has not been fully transformed into glucose and fructose. According To Cavia et al. (2006)Cavia, M. M., Fernández-Muiño, M. A., Alonso-Torre, S. R., Moreno, G., & Mato, I. (2006). An attempt to establish reliable « Best before » dates for honeys originating in both continental and oceanic climates. Apiacta, 41, 86-98., maltose content was considerably greater than sucrose content. Based on the same author, when honey are pure, they often contain 2 to 3 times more (even 10 times more) of maltose than sucrose. The average maltose content found in Zriba honey was 0.6 ± 0.14% whereas in Sidi Achour honey it was 0.35 ± 0.21%. These contents are stronger than those of Sucrose which were 1% lower (Table 2). Maltose contents in the two imported honey (El Shifa and San Francisco) were respectively 2.8 ± 0.2% and de 2.4 ± 0.4%, well below sucrose contents.

Zriba and Sidi Achour, EL Shifa and San Fransisco honey exhibited respectively different isomaltose rates 1.35 ± 0.07%, 0.95 ± 0.49%, 1.1 ± 0.2% and 1.2 ± 0.3%.

Trehalose was not present in the imported honey but identified in local honey (Zriba and Sidi Achour) at these respective contents 0.55 ± 0.07% and 0.7%. This disaccharide was spotted in Eucalyptus honey by Makhloufi et al. (2010)Makhloufi, C., Kerkvliet, J. D., D’albore, G. R., Choukri, A., & Samar, R. (2010). Characterization of Algerian honey by palynological and physico-chemical methods. Apidologie, 41(5), 509-521. http://dx.doi.org/10.1051/apido/2010002.
http://dx.doi.org/10.1051/apido/2010002...
.

Sidi Achour local honey contains in average the highest turanose content 2.15 ± 0.49% in relation with samples of the other studied honeys, then comes Elshifa honey with an average content of 2.02 ± 0.2%. Zriba local honey as well as San Francisco’s contained respectively: 1.8 ± 0.56% and 1.2 ± 0.2%.

Trisaccharids

The international regulation does not provide any standard for trisaccharids like erlose, raffinose and melezitose. The lowest erlose content was found in local honey Sidi Achour (0.1%), followed by Zriba honey (0.1%) with a 0,2% content, as to both imported honey, their content was 0,3% (Table 1). The carbohydrate profile showed that local honey Zriba (1.25 ± 0.77%) and Sidi Achour (0.7 ± 0.28%) carry higher raffinose contents than that of imported honey Elshifa (0.2 ± 0.02%) and some traces in San Francisco honey. Regarding melezitose, it was not detected in imported honey yet this trisaccharid was present in local honey at 0.6% in Zriba honey while 0.35 ± 0.07% in Sidi Achour honey (Table 1).

3.3 Physicochemical parameters:

The results of the various studied physicochemical parameters are broken down in Table 3.

Table 3
Physicochemical parameters for studied honeys (n=3).

pH

According to Mbogning et al. (2011)Mbogning, E., Tchoumboue, J., Damesse, F., Sanou Sobze, M., & Canini, A. (2011). Caractéristiques physico-chimiques des miels de la zone Soudano-guinéenne de l’Ouest et de l’Adamaoua Cameroun. Tropicultura, 29(3), 168-175., nectar honey have pH ranging from 3.5 to 4.5 while those of honeydew lie between 5 to 5.5. pH values of all studied honey were acid, the average value was 4.07 (Elshifa), 4.07 ± 0.12 (Zriba), 4.25 (Sidi Achour) and 4.06 ± 0.12 (San Francisco). Ibrahim Khalil et al. (2012)Ibrahim Khalil, M. D., Moniruzzaman, M., Boukraa, L., Benhanifia, M., Asiful Islam, M. D., Nazmul Islam, M. D., Sulaiman, S. A., & Hua Gan, S. (2012). Physicochemical and antioxidant properties of algerian honey. Journal Molecules, 17(9), 11199-11215. http://dx.doi.org/10.3390/molecules170911199. PMid:22996344.
http://dx.doi.org/10.3390/molecules17091...
indicate that honey is naturally acid irrespective of its geographical origin. This is likely related to the presence of organic acids that contribute to its flavor and stability against microbial spoilage.

Free acidity

As per the Codex Alimentarius (2001a) freeCodex Alimentarius. (2001a). Programme mixte FAO/OMS sur les normes alimentaires (commission du Codex Alimentarius): rapport de la trente-troisième session du comité du codex sur l’hygiène alimentaire (ALINORM 01/13A). Organisation Mondiale de la Santé. Retrieved from https://www.fao.org/3/x8735f/x8735f.pdf
https://www.fao.org/3/x8735f/x8735f.pdf...
acidity must be lower than 50 méq.kg-1, our honey samples showed a free acidity within the standards. All values were less than 50 méq.kg-1. Sidi Achour honey displayed a slightly elevated free acidity (36.66 ± 0.57 méq.kg-1) in comparison to Zriba honey which was 36 ± 13 méq.kg-1, followed by Elshifa valued at 20 méq.kg-1. The lowest value was San Francisco’s (7 méq.kg-1). Acidity of local honey was thus not artificially modified (Lobreau-Callen et al., 2000Lobreau-Callen, D., Clément, M. C., & Marmion, V. (2000). Les miels. Techniques de l'ingénieur, TIB432DUO, f7000. Retrieved from https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/filiere-de-production-produits-d-origine-animale-42432210/les-miels-f7000/
https://www.techniques-ingenieur.fr/base...
;Feknous et al., 2021Feknous, N., Douaoui, G., Hafafni, N., Chettoum, A., Mekhancha, D. E., Boudida, Y., & Boumendjel, M. (2021). Benchmarking of collected honeys from El-Tarf, Ain Karma, Bouhadjar & Zitouna (department of El-Tarf, North east, Algeria). PhytoChem and BioSub Journal, 15(1), 238-246.). Honey’s natural acidity goes up when honey ages and whenever it is altered by fermentation (Schweitzer, 2004Schweitzer. Laboratoire d'analyse et d'Ecologie Apicole. (2004). Le monde des miellats. Revue l'abeille de France, 908, 1-2. ).

Electrical conductivity

According to Zerrouk et al. (2014)Zerrouk, S., Seijo, M. K., Boughediri, L., Escuredo, O., & Rodríguez-Flores, M. C. (2014). Palynological characterisation of Algerian honeys according to their geographical and botanical origin. Grana Journal, 53(2), 147-158. http://dx.doi.org/10.1080/00173134.2014.897751.
http://dx.doi.org/10.1080/00173134.2014....
, honey’s electrical conductivity is closely associated with the concentration of mineral salts, organic acids and proteins. It is regarded as a high variability parameter based on the floral engine and one of the best differentiation parameters between all types of flowers honey and honey dew. Sidi Achour honey displayed a higher electrical conductivity value of (6.9 mS.cm-1) than that of Zriba (5.66 mS.cm-1). Imported honeys (Elshifa and San Francisco) appeared to present a lower electrical conductivity estimated at 2.74 and at 2.65 mS.cm-1respectively. The maximum limit recommended by the European standards is 0.8 mS/cm (Official Journal of the European Communities, 2001Official Journal of the European Communities. (2001). Council Directive 2001/110/EC of 20 December 2001 relating to honey (12/01/2002). L 010 47-52. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001L0110&qid=1648837522092&from=EN
https://eur-lex.europa.eu/legal-content/...
).

The electrical conductivity is all the higher than honey is rich in ionisable substances like mineral matter (Lobreau-Callen et al., 2000Lobreau-Callen, D., Clément, M. C., & Marmion, V. (2000). Les miels. Techniques de l'ingénieur, TIB432DUO, f7000. Retrieved from https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/filiere-de-production-produits-d-origine-animale-42432210/les-miels-f7000/
https://www.techniques-ingenieur.fr/base...
).

Brix level

We notice that low altitude honey Sidi Achour contains a higher dry matter rate (80.7%) than that of the high altitude Zriba having a value of 78.83%. Both imported honey revealed a slightly lower Brix level to local honey: Elshifa (80.33%) and San Francisco (80.63%).

Density

Our samples provided varying density values ranging from 1.39 (San Francisco) to 1.42 (Sidi Achour). These density values are within the standards since for an average moisture content of 17.2% at 20 °C, the average density is 1.42 and usually varies from 1.39 to 1.44 depending on the type of analyzed honey (Lobreau-Callen et al., 2000Lobreau-Callen, D., Clément, M. C., & Marmion, V. (2000). Les miels. Techniques de l'ingénieur, TIB432DUO, f7000. Retrieved from https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/filiere-de-production-produits-d-origine-animale-42432210/les-miels-f7000/
https://www.techniques-ingenieur.fr/base...
).

Moisture content

Moisture content is closely linked to the quality of honey, its viscosity, its crystallization, its fermentation and its flavor (Nombré et al., 2010Nombré, I., Schweitzer, P., Boussim, J. I., & Rasolodimby, J. M. (2010). Impacts of storage conditions on physicochemical characteristics of honey samples from Burkina Faso. African Journal of Food Science, 4(7), 458-463.). According to Tchoumboue et al. (2001)Tchoumboue, J., Tchouamo, I. R., Pinta, J. Y., & Njia, M. N. (2001). Caractéristiques socio-économiques et techniques de l’apiculture dans les hautes terres de l’Ouest Cameroun. Tropicultura, 19(3), 141-146., high moisture contents arise from a premature harvest or a lack of stabilization of the postharvest produce. The average moisture content of Zriba honey was at 19.4%; Sidi Achour’s was 18.00%, Elshifa 17.93% and San Francisco 17.66%. Moisture contents of our honey are 20% lower than the maximum limit recommended by the Codex Alimentarius (2001a)Codex Alimentarius. (2001a). Programme mixte FAO/OMS sur les normes alimentaires (commission du Codex Alimentarius): rapport de la trente-troisième session du comité du codex sur l’hygiène alimentaire (ALINORM 01/13A). Organisation Mondiale de la Santé. Retrieved from https://www.fao.org/3/x8735f/x8735f.pdf
https://www.fao.org/3/x8735f/x8735f.pdf...
.

Refractive Index

The two local honeys (Zriba and Sidi Achour) had respectively the following refractive indexes: 1.4880 and 1.4918. Imported honey showed the same average value of the refractive index rated at 1.49. These values remain within the standards since as per Lobreau-Callen et al. (2000)Lobreau-Callen, D., Clément, M. C., & Marmion, V. (2000). Les miels. Techniques de l'ingénieur, TIB432DUO, f7000. Retrieved from https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/filiere-de-production-produits-d-origine-animale-42432210/les-miels-f7000/
https://www.techniques-ingenieur.fr/base...
; the refractive index varies with temperature and moisture content from 1.4915 to 1.5041 for moisture content from 13 to 18%.

Ash content

With regards to local honey, the ash content of the analyzed samples fluctuated from 0.41 (Zriba) to 0.76% (Sidi Achour). The ash content of the imported honey varied from 0.25% (Elshifa) to 0.72% Nanda et al. (2003)Nanda, V., Sarkar, B. C., Sharma, H. K., & Bawa, A. S. (2003). Physico-chemical properties and estimation of mineral content in honey produced from different plants in Northern India. Journal of Food Composition and Analysis, 16(5), 613-619. http://dx.doi.org/10.1016/S0889-1575(03)00062-0.
http://dx.doi.org/10.1016/S0889-1575(03)...
, report that the standard threshold for ash content of nectar honey is 0.6%. The findings are consistent with the authorized limit set by the Codex Alimentarius (2001a)Codex Alimentarius. (2001a). Programme mixte FAO/OMS sur les normes alimentaires (commission du Codex Alimentarius): rapport de la trente-troisième session du comité du codex sur l’hygiène alimentaire (ALINORM 01/13A). Organisation Mondiale de la Santé. Retrieved from https://www.fao.org/3/x8735f/x8735f.pdf
https://www.fao.org/3/x8735f/x8735f.pdf...
. San Francisco honey and Sidi Achour honey registered respectively higher ash contents than the standard.

3.4 Antibacterial activity

The antimicrobial potential of honey depends on several factors like: floral source (Latifa et al., 2020Latifa, H., Saada, A., & Arezki, M. (2020). Antimicrobial potential of ziziphus and euphorbia honeys harvested in semi-arid region of Algeria and their possible use in soft medicine. Journal of Microbiology, Biotechnology and Food Sciences, 9(6), 1114-1118. http://dx.doi.org/10.15414/jmbfs.2020.9.6.1114-1118.
http://dx.doi.org/10.15414/jmbfs.2020.9....
), acid pH (Abdulrhman et al., 2013Abdulrhman, M. M., El-Hefnawy, M. H., Aly, R. H., Shatla, R. H., Mamdouh, R. M., Mahmoud, D. M., & Mohamed, W. S. (2013). Metabolic effects of honey in type 1 diabetes mellitus: a randomized crossover pilot study. Journal of Medicinal Food, 16(1), 66-72. http://dx.doi.org/10.1089/jmf.2012.0108. PMid:23256446.
http://dx.doi.org/10.1089/jmf.2012.0108...
), high sugar concentration (Belhaj et al., 2015Belhaj, O., Oumato, J., & Zrira, S. (2015). Etude physico-chimiques de quelques types de miels marocains. Institut Agronomique et Vétérinaire Hassan II, Rabat, Maroc, 3(3), 71-75.), Hydrogen peroxide (Chua et al., 2015Chua, L. S., Lee, J. Y., & Chan, G. F. (2015). Characterization of the proteins in honey. Analytical Letters, 48(4), 697-709. http://dx.doi.org/10.1080/00032719.2014.952374.
http://dx.doi.org/10.1080/00032719.2014....
), Methylglyoxal (Daniels et al., 2016Daniels, B. J., Prijic, G., Meidinger, S., Loomes, K. M., Stephens, J. M., Schlothauer, R. C., Furkert, D. P., & Brimble, M. A. (2016). Isolation, structural elucidation, and synthesis of lepteridine from ma̅nuka (Leptospermum scoparium) Honey. Journal of Agricultural and Food Chemistry, 64(24), 5079-5084. http://dx.doi.org/10.1021/acs.jafc.6b01596. PMid:27210444.
http://dx.doi.org/10.1021/acs.jafc.6b015...
), defensin (Ilyasov et al., 2012Ilyasov, R. A., Gaifullina, L. R., Saltykova, E. S., Poskryakov, A. V., & Nikolenko, A. G. (2012). Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. Journal of Apicultural Science, 56(1), 115-124. http://dx.doi.org/10.2478/v10289-012-0013-y.
http://dx.doi.org/10.2478/v10289-012-001...
), phenolic acids (Kwakman & Zaat, 2012Kwakman, P. H., & Zaat, S. (2012). Antibacterial components of honey. IUBMB Life, 64(1), 48-55. http://dx.doi.org/10.1002/iub.578. PMid:22095907.
http://dx.doi.org/10.1002/iub.578...
), flavonoids (Couquet et al., 2013Couquet, Y., Desmoulière, A., & Rigal, M. L. (2013). Les propriétés antibactériennes et cicatrisantes du miel. Actualites Pharmaceutiques, 52(531), 22-25. http://dx.doi.org/10.1016/j.actpha.2013.10.005.
http://dx.doi.org/10.1016/j.actpha.2013....
), lysozyme (Bruneau, 2006Bruneau, E. (2006). Antibiotiques dans le miel. Abeille & Cie., 110, 26-28.) and volatile compounds (Abd El-Moaty, 2010Abd El-Moaty, H. I. (2010). Essential oil and iridoide glycosides of Nepeta septemcrenata Erenb. Journal of Natural Products, 3, 103-111.).

The results of in vitro evaluation of antibacterial activity for local and imported honey samples in the presence of Gram+ and Gram - bacteria by the diffusion method in agar media are summarized in Table 4 below.

Table 4
Antibacterial activity for local and imported honey samples.

Al-Hasani (2018)Al-Hasani, H. M. H. (2018). Study antibacterial activity of honey against some common species of pathogenic bacteria. Iraqi Journal of Science, 59(1A), 30-37. have shown that diameters of inhibiting areas in bacteria diminish gradually as honey concentrations drop. Sidi Achour 100% pure honey had an inhibiting action on the growth of all the tested strains, this inhibitive action was observed at 75% concentration of the same honey on Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Enterococcus faecalis, except Bacillus cereus (9.33 ± 4.71 mm).

At 50% concentration, this honey has no longer any inhibitive effect on the growth of Gram+ bacteria: S. aureus, B. cereus and E. faecalis which displayed respectively the following diameters: 6.33 ± 0.57 mm, 7.66 ± 2.88 mm and 9 ± 2.64 mm. At 25% concentration, all Gram- et Gram+ bacteria have given small diameters of around 7.33 ± 2.30 mm, 6.33 ± 0.57 mm, 6 ± 0 mm, 6.66 ± 1.15 mm and 7.66 ± 2.88 mm (Table 4). Overall, the obtained results show that almost all types of honey had an inhibiting effect on the growth of bacterial strains when their concentrations were high at 75% and at 100%. Many studies through the word demonstrated the antibacterial efficiency of honey (Bueno-Costa et al., 2016Bueno-Costa, F. M., Zambiazi, R. C., Bohmer, B. W., Chaves, F. C., Silva, W. P. D., Zanusso, J. T., & Dutra, I. (2016). Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. Lebensmittel-Wissenschaft + Technologie, 65, 333-340. http://dx.doi.org/10.1016/j.lwt.2015.08.018.
http://dx.doi.org/10.1016/j.lwt.2015.08....
). This effect is reduced when honey concentrations drop to 50% and at 25%. Indeed, Elshifa 100% pure honey had an inhibitive action on the growth of three bacteria (Table 4): E. coli (26.00 ± 5.56 mm), Salmonella enteritidis (25.00 ± 2.00 mm) and S. aureus (11.33 ± 6.65 mm). At 75% concentration, the measured diameters were respectively 22.00 ± 6.17 mm, 20.33 ± 6.15 mm and 12.00 ± 6.08mm. The reference strain S. aureus along with San Fransisco honey recorded greater diameters than those posted by Elshifa honey (15.33 ± 9.01 for 100% and 12.33 ± 5.68 mm for 75%). On Elshifa honey, these enterotoxigenic bacteria showed a diameter of 9.00 ± 2.44 mm at 50% concentration and a diameter of 7.33 ± 2.30 mm at 25% concentration of the same honey. Many authors outlined in their researches honey’s antibacterial activity on staphylococci. According to Nagi et al. (2009)Nagi, A. A., Amghalia, E., Shamsudin, M. N., Abdullah, R., Mohammed, R., & Sekawi, Z. (2009). Antibacterial activity of honey against methicillin resistant Staphylococcus aureus. Research Journal of Biological Sciences, 4(8), 943-947., honey is an effective bactericide to fight against resistant bacteria like S. aureus methicillin-resistant (SARM).Grecka et al. (2018)Grecka, K., Kuś, P. M., Worobo, R. W., & Szweda, P. (2018). Study of the anti-staphylococcal potential of honeys produced in northern Poland. Molecules (Basel, Switzerland), 23(2), 260. http://dx.doi.org/10.3390/molecules23020260. PMid:29382105.
http://dx.doi.org/10.3390/molecules23020...
found that honey produced by Polish apiaries can be used as an alternative agent for treating staphylococcal infections. Wadi & Geregandi (2020)Wadi, M., & Geregandi, T. (2020). Efficacy of bee honey on wound healing: split skin graft with hyper-granulation tissue. Journal of Natural Remedies, 20(2), 71-78. http://dx.doi.org/10.18311/jnr/2020/24172.
http://dx.doi.org/10.18311/jnr/2020/2417...
demonstrated that the growth of this Gram+ was strongly inhibited after a topical application of honey on an infected wound by this bacterial pathogen. All of the tested honey (San Francisco, Elshifa, Zriba and Sidi Achour) had an inhibitive effect against this pathogenic germ to high concentrations (75% and 100%), and Zriba honey as well at 50%.

Bacillus cereus is a bacterium involved in food-borne diseases and food poisoning. It secretes several virulence factors like: Enterotoxins, hemolysins and phospholipases (Kilcullen et al., 2016Kilcullen, K., Teunis, A., Popova, T. G., & Popov, S. G. (2016). cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 against human lung epithelial cells under microaerobic growth conditions. Frontiers in Microbiology, 7, 69. http://dx.doi.org/10.3389/fmicb.2016.00069. PMid:26870026.
http://dx.doi.org/10.3389/fmicb.2016.000...
). In addition to the ground, we find microorganisms in the insects’intestines (Swiecicka & Mahillon, 2006Swiecicka, I., & Mahillon, J. (2006). Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiology Ecology, 56(1), 132-140. http://dx.doi.org/10.1111/j.1574-6941.2006.00063.x. PMid:16542411.
http://dx.doi.org/10.1111/j.1574-6941.20...
), in the meals-ready-to-eat and rice (Altayar & Sutherland, 2006Altayar, M., & Sutherland, A. D. (2006). Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. Journal of Applied Microbiology, 100(1), 7-14. http://dx.doi.org/10.1111/j.1365-2672.2005.02764.x. PMid:16405680.
http://dx.doi.org/10.1111/j.1365-2672.20...
). Based on our results, only the 100% concentrated Sidi Achour local honey had an inhibiting effect on this food-borne pathogen with a diameter of 13.33 ± 8.73 mm.

Enterococci are responsible of skin infections, soft tissues and surgical wounds in intensive care units (Arias & Murray, 2012Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews. Microbiology, 10(4), 266-278. http://dx.doi.org/10.1038/nrmicro2761. PMid:22421879.
http://dx.doi.org/10.1038/nrmicro2761...
). Enterococcus faecalis was sensitive to two local honeys (Zriba and Sidi Achour) at 100% and 75% concentrations.

Imported honey (San Francisco and Elshifa) did not impact its growth regardless of the tested concentrations.

Table 3 shows the inhibiting effect of imported honey (San Francisco) on the growth of Salmonella enteritidis with diameters 29.33 ± 2.51 mm (100%), 21.33 ± 5.13 mm (75%), 13.00 ± 6.24 mm (50%).

Salmonella is a food-borne bacterium, most involved in food intoxications worldwide (Eng et al., 2015Eng, S., Pusparajah, P., Ab Mutalib, N., Ser, H., Chan, K., & Lee, L. (2015). Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8(3), 284-293. http://dx.doi.org/10.1080/21553769.2015.1051243.
http://dx.doi.org/10.1080/21553769.2015....
; Rajan et al., 2017Rajan, K., Shi, Z., & Ricke, S. C. (2017). Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Critical Reviews in Microbiology, 43(3), 370-392. http://dx.doi.org/10.1080/1040841X.2016.1223600. PMid:27869522.
http://dx.doi.org/10.1080/1040841X.2016....
).

Food-borne infections caused by this disease-causing agent have not seen their number decrease during the last 15 years (Chen et al., 2017Chen, I. H., Horikawa, S., Bryant, K., Riggs, R., Chin, B. A., & Barbaree, J. M. (2017). Bacterial assessment of phage magnetoelastic sensors for Salmonella enterica Typhimurium detection in chicken meat. Food Control, 71, 273-278. http://dx.doi.org/10.1016/j.foodcont.2016.07.003.
http://dx.doi.org/10.1016/j.foodcont.201...
). The two local honeys (Zriba and Sidi Achour) along with imported honey (Elshifa and San Francisco) had an inhibiting effect on this pathogenic bacterium in the three concentrations 50%, 75% and 100%. Our findings are similar to those that Hussain et al. (2015)Hussain, M. B., Hannan, A., Akhtar, N., Fayyaz, G. Q., Imran, M., Saleem, S., & Qureshi, I. A. (2015). Evaluation of the antibacterial activity of selected Pakistani honeys against multi-drug resistant Salmonella typhi. Complementary and Alternative Medicine, 15(1), 32. http://dx.doi.org/10.1186/s12906-015-0549-z. PMid:25880671.
http://dx.doi.org/10.1186/s12906-015-054...
came up with when testing Pakistani honey, by Sowa et al. (2017)Sowa, P., Grabek-Lejko, D., Wesołowska, M., Swacha, S., & Dżugan, M. (2017). Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey. Letters in Applied Microbiology, 65(1), 82-89. http://dx.doi.org/10.1111/lam.12749. PMid:28426165.
http://dx.doi.org/10.1111/lam.12749...
with Polish honey, by Hegazi Ahmed et al. (2020)Hegazi Ahmed, G., Al Guthami Faiz, M., Al Gethami Ahmed, F. M., & Fouad Ehab, A. (2020). Antibacterial and Antioxidant Activities of Some Saudi Arabia Honey Products. Majallah-i Mikrub/Shinasi-i Pizishki-i Iran, 14(5), 490-500. http://dx.doi.org/10.30699/ijmm.14.5.490.
http://dx.doi.org/10.30699/ijmm.14.5.490...
with honey coming from Saudi Arabia and by Cilia et al. (2020)Cilia, G., Fratini, F., Marchi, M., Sagona, S., Turchi, B., Adamchuk, L., Felicioli, A., & Kačániová, M. (2020). Antibacterial activity of honey samples from Ukraine. Veterinary Sciences, 7(4), 181. http://dx.doi.org/10.3390/vetsci7040181. PMid:33233581.
http://dx.doi.org/10.3390/vetsci7040181...
with honey from Ukraine.

San Francisco honey concentrated at 25% and at 50% did not have any inhibitive effect on E. coli as opposed to the strong 75% and 100% concentrations.

Several researchers like Adebolu (2005)Adebolu, T. (2005). Effect of natural honey on local isolates of diarrhea-causing bacteria in south western Nigeria. African Journal of Biotechnology, 4(5), 1172-1174., Sherlock et al. (2010)Sherlock, O., Dolan, A., Athman, R., Power, A., Gethin, G., Cowman, S., & Humphreys, H. (2010). Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine, 10(1), 47. http://dx.doi.org/10.1186/1472-6882-10-47. PMid:20813024.
http://dx.doi.org/10.1186/1472-6882-10-4...
, Voidarou et al. (2011)Voidarou, C., Alexopoulos, A., Plessas, S., Karapanou, A., Mantzourani, I., Stavropoulou, E., Fotou, K., Tzora, A., Skoufos, I., & Bezirtzoglou, E. (2011). Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe, 17(6), 375-379. http://dx.doi.org/10.1016/j.anaerobe.2011.03.012. PMid:21524711.
http://dx.doi.org/10.1016/j.anaerobe.201...
, Belhaj et al. (2016)Belhaj, O., El Abbadi, I., & Ouchbani, T. (2016). Contribution à l’étude de l’activité antibactérienne du miel naturel d’origine marocaine. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 4(3), 12-22., Hegazi et al. (2017)Hegazi, A. G., Al Guthami, F. M., Al Gethami, A. F., Allah, F. M. A., Saleh, A. A., & Fouad, E. A. (2017). Potential antibacterial activity of some Saudi Arabia honey. Veterinary World, 10(2), 233-237. http://dx.doi.org/10.14202/vetworld.2017.233-237. PMid:28344408.
http://dx.doi.org/10.14202/vetworld.2017...
, Matzen et al. (2018)Matzen, R. D., Leth-Espensen, J. Z., Jansson, T., Nielsen, D. S., Lund, M. N., & Matzen, S. H. (2018). The antibacterial effect in vitro of honey derived from various danish flora. Dermatology Research and Practice, 2018, 7021713. http://dx.doi.org/10.1155/2018/7021713. PMid:30018636.
http://dx.doi.org/10.1155/2018/7021713...
and Hegazi Ahmed et al. (2020)Hegazi Ahmed, G., Al Guthami Faiz, M., Al Gethami Ahmed, F. M., & Fouad Ehab, A. (2020). Antibacterial and Antioxidant Activities of Some Saudi Arabia Honey Products. Majallah-i Mikrub/Shinasi-i Pizishki-i Iran, 14(5), 490-500. http://dx.doi.org/10.30699/ijmm.14.5.490.
http://dx.doi.org/10.30699/ijmm.14.5.490...
revealed in their works the antibacterial potential of several honey against E. coli. The same thing was noticed in our study: All types of tested honey had an inhibitive effect on the growth of this Gram- in the three concentrations 100%, 75% and 50%. This germ was inhibited as well by both honey Zriba and Elshifa concentrated at 25%.

All of the tested Gram + and Gram- bacteria were sensitive to Zriba local honey concentrated at 100% and 75%, except B. cereus that showed respectively a diameter of 7.66 ± 2.88 mm and 6.33 ± 0.57 mm (Table 3).

At 50% concentration, Zriba local honey did not inhibit B. cereus and E. faecalis which disclosed a resistance with respectively diameters 6.00 ± 0.00 mm and 8.33 ± 4.04 mm.

This diluted honey at 25% seems to have an inhibiting effect only on: E. coli with a diameter of 10.33 ± 5.13 mm.

This diameter was greater than the other bacteria which recorded 7 ± 1.73 mm for Salmonella enteritidis, 6.33 ± 0.57 mm for S. aureus, 6.00 ± 0.00 mm for B. cereus and 7.33 ± 2.30 mm for E. faecalis.

4 Conclusion

Audit results enabled to assert that Zriba apiaries bring forward a very encouraging overall compliance before the prescriptive regulation of organic production used in reference thanks to its geographical situation and management approach. The physicochemical, organic quality along with an assessment of the antibacterial activity of the two local honeys harvested at the municipality of Séraïdi located at the North-East of Algeria and two imported honey available in the Algerian market were studied. The physicochemical parameters disclosed that all types of honey were acid, that the free acidity of local honey was within the standards and far greater to that of imported honey. The findings also showed that Brix values, refractive index, moisture content in all honey were compliant with the international standards. Sidi Achour honey was denser compared to the other analyzed honey. Ash content of the same local honey and that of imported honey San Fransisco were higher than that of Zriba and Elshifa honey. The carbohydrate profile showed indicated that all honey had sucrose content within the standards, that local honey contained trehalose and melezitose. These honeys were richer in fructose and raffinose and that the F+G rates and maltose were consistent with the standards relative to imported honey. Sidi Achour local honey contained the highest average content of turanose vis-à-vis the samples of the other honey. The study of in vitro antibacterial activity disclosed that both local honey (Zriba and Sidi Achour) together with the two imported honey (Elshifa and San Francisco) had an inhibitive effect on: Salmonella enteritidis, E. coli at three concentrations 50%, 75% and 100%; S. aureus in two concentrations 75% and 100%; E. feacalis sensitive only to two local honey at 100% and 75% whereas imported honey did not impact its growth at the four tested concentrations. As to B. cereus, only 100% pure local honey Sidi Achour had an inhibitive effect on this food-borne pathogen with a diameter of 13.33 ± 8.73 mm. We can conclude that local honey were richer in sugars with physicochemical parameters within the standards, more active and evidenced an inhibitive effect against the tested germs in comparison with imported honey.

Aknowledgements

The present work was supported by DGRSDT (General Directorate of Scientific Research and Technological Development, Algeria).

  • Practical Application: This study shows the importance of consuming organic mountain honeys as they provide better protection against certain strains of bacteria and therefore have better biological activities.

References

  • Abd El-Moaty, H. I. (2010). Essential oil and iridoide glycosides of Nepeta septemcrenata Erenb. Journal of Natural Products, 3, 103-111.
  • Abdulrhman, M. M., El-Hefnawy, M. H., Aly, R. H., Shatla, R. H., Mamdouh, R. M., Mahmoud, D. M., & Mohamed, W. S. (2013). Metabolic effects of honey in type 1 diabetes mellitus: a randomized crossover pilot study. Journal of Medicinal Food, 16(1), 66-72. http://dx.doi.org/10.1089/jmf.2012.0108 PMid:23256446.
    » http://dx.doi.org/10.1089/jmf.2012.0108
  • Adebolu, T. (2005). Effect of natural honey on local isolates of diarrhea-causing bacteria in south western Nigeria. African Journal of Biotechnology, 4(5), 1172-1174.
  • Al-Hasani, H. M. H. (2018). Study antibacterial activity of honey against some common species of pathogenic bacteria. Iraqi Journal of Science, 59(1A), 30-37.
  • Almasaudi, S. B., Al-Nahari, A. A., Abd El-Ghany, E. S. M., Barbour, E., Al Muhayawi, S. M., Al-Jaouni, S., Azhar, E., Qari, M., Qari, Y. A., & Harakeh, S. (2017). Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi Journal of Biological Sciences, 24(6), 1255-1261. http://dx.doi.org/10.1016/j.sjbs.2016.08.007 PMid:28855819.
    » http://dx.doi.org/10.1016/j.sjbs.2016.08.007
  • Altayar, M., & Sutherland, A. D. (2006). Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. Journal of Applied Microbiology, 100(1), 7-14. http://dx.doi.org/10.1111/j.1365-2672.2005.02764.x PMid:16405680.
    » http://dx.doi.org/10.1111/j.1365-2672.2005.02764.x
  • Al-Waili, N. S., Saloom, K. Y., Akmal, M., Al-Waili, F., Al-Waili, T. N., Al-Waili, A. N., & Ali, A. (2006). Honey ameliorates influence of hemorrhage and food restriction on renal and hepatic functions, and hematological and biochemical variables. International Journal of Food Sciences and Nutrition, 57(5-6), 353-362. http://dx.doi.org/10.1080/09637480600802371 PMid:17135025.
    » http://dx.doi.org/10.1080/09637480600802371
  • Amri, A., Ladjama, A., & Ali, T. (2007). Etude de quelques miels produits à l’est Algérien: aspect physico-chimique et biochimique. Revue de Synthese, 17, 57-63.
  • Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews. Microbiology, 10(4), 266-278. http://dx.doi.org/10.1038/nrmicro2761 PMid:22421879.
    » http://dx.doi.org/10.1038/nrmicro2761
  • Belhaj, O., El Abbadi, I., & Ouchbani, T. (2016). Contribution à l’étude de l’activité antibactérienne du miel naturel d’origine marocaine. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 4(3), 12-22.
  • Belhaj, O., Oumato, J., & Zrira, S. (2015). Etude physico-chimiques de quelques types de miels marocains. Institut Agronomique et Vétérinaire Hassan II, Rabat, Maroc, 3(3), 71-75.
  • Boumendjel, M., Boucheker, A., Feknous, S., Taibi, F., Rekioua, N., Bouzeraa, N., Chibi, A., Feknous, N., Baraoui, A., N’har, S., Toubal, A., Taguida, A., Zaidi, H., Sekiou, O., Bouziane, I., Metai, A., Bouaziz, M., Benselhoub, A., Boumendjel, A., & Messarah, M. (2021). Adaptogenic activity of Cinnamomum camphora, Eucalyptus globulus, Lavandula stoechas and Rosmarinus officinalis essential oil used in North-African folk medicine. Cellular and Molecular Biology, 67(2), 83-88. http://dx.doi.org/10.14715/cmb/2021.67.2.12 PMid:34817335.
    » http://dx.doi.org/10.14715/cmb/2021.67.2.12
  • Brudzynski, K., & Lannigan, R. (2012). Mechanism of honey bacteriostatic action against MRSA and VRE involves hydroxyl radicals generated from honey’s hydrogen peroxide. Frontiers in Microbiology, 3, 36. http://dx.doi.org/10.3389/fmicb.2012.00036 PMid:22347223.
    » http://dx.doi.org/10.3389/fmicb.2012.00036
  • Bruneau, E. (2006). Antibiotiques dans le miel. Abeille & Cie., 110, 26-28.
  • Buba, F., Gidado, A., & Shugaba, A. (2013). Analysis of biochemical composition of honey samples from North-East Nigeria. Biochemistry and Analytical Biochemistry, 2(3), 139.
  • Bucekova, M., Jardekova, L., Juricova, V., Bugarova, V., Di Marco, G., Gismondi, A., Leonardi, D., Farkasovska, J., Godocikova, J., Laho, M., Klaudiny, J., Majtan, V., Canini, A., & Majtan, J. (2019). Antibacterial activity of different blossom honeys: new findings. Molecules (Basel, Switzerland), 24(8), 1573. http://dx.doi.org/10.3390/molecules24081573 PMid:31010070.
    » http://dx.doi.org/10.3390/molecules24081573
  • Bueno-Costa, F. M., Zambiazi, R. C., Bohmer, B. W., Chaves, F. C., Silva, W. P. D., Zanusso, J. T., & Dutra, I. (2016). Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. Lebensmittel-Wissenschaft + Technologie, 65, 333-340. http://dx.doi.org/10.1016/j.lwt.2015.08.018
    » http://dx.doi.org/10.1016/j.lwt.2015.08.018
  • Cavia, M. M., Fernández-Muiño, M. A., Alonso-Torre, S. R., Moreno, G., & Mato, I. (2006). An attempt to establish reliable « Best before » dates for honeys originating in both continental and oceanic climates. Apiacta, 41, 86-98.
  • Chen, I. H., Horikawa, S., Bryant, K., Riggs, R., Chin, B. A., & Barbaree, J. M. (2017). Bacterial assessment of phage magnetoelastic sensors for Salmonella enterica Typhimurium detection in chicken meat. Food Control, 71, 273-278. http://dx.doi.org/10.1016/j.foodcont.2016.07.003
    » http://dx.doi.org/10.1016/j.foodcont.2016.07.003
  • Chua, L. S., Lee, J. Y., & Chan, G. F. (2015). Characterization of the proteins in honey. Analytical Letters, 48(4), 697-709. http://dx.doi.org/10.1080/00032719.2014.952374
    » http://dx.doi.org/10.1080/00032719.2014.952374
  • Cilia, G., Fratini, F., Marchi, M., Sagona, S., Turchi, B., Adamchuk, L., Felicioli, A., & Kačániová, M. (2020). Antibacterial activity of honey samples from Ukraine. Veterinary Sciences, 7(4), 181. http://dx.doi.org/10.3390/vetsci7040181 PMid:33233581.
    » http://dx.doi.org/10.3390/vetsci7040181
  • Codex Alimentarius. (2001a). Programme mixte FAO/OMS sur les normes alimentaires (commission du Codex Alimentarius): rapport de la trente-troisième session du comité du codex sur l’hygiène alimentaire (ALINORM 01/13A) Organisation Mondiale de la Santé. Retrieved from https://www.fao.org/3/x8735f/x8735f.pdf
    » https://www.fao.org/3/x8735f/x8735f.pdf
  • Codex Alimentarius. (2001b). Standard for honey: codex standard 12-1981: revised codex standard for honey, standards and standard methods Organisation Mondiale de la Santé. Retrieved from https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012e.pdf
    » https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012e.pdf
  • Couquet, Y., Desmoulière, A., & Rigal, M. L. (2013). Les propriétés antibactériennes et cicatrisantes du miel. Actualites Pharmaceutiques, 52(531), 22-25. http://dx.doi.org/10.1016/j.actpha.2013.10.005
    » http://dx.doi.org/10.1016/j.actpha.2013.10.005
  • Daniels, B. J., Prijic, G., Meidinger, S., Loomes, K. M., Stephens, J. M., Schlothauer, R. C., Furkert, D. P., & Brimble, M. A. (2016). Isolation, structural elucidation, and synthesis of lepteridine from ma̅nuka (Leptospermum scoparium) Honey. Journal of Agricultural and Food Chemistry, 64(24), 5079-5084. http://dx.doi.org/10.1021/acs.jafc.6b01596 PMid:27210444.
    » http://dx.doi.org/10.1021/acs.jafc.6b01596
  • de Bélair. (2019). Herbier GdB Retrieved from https://gdebelair.com/
    » https://gdebelair.com/
  • Desmoulière, A. (2013). Le miel, de remarquables propriétés cicatrisantes. Actualites Pharmaceutiques, 531(531), 17. http://dx.doi.org/10.1016/j.actpha.2013.10.003
    » http://dx.doi.org/10.1016/j.actpha.2013.10.003
  • Dinkov, D. (2017). Perspection of Royal Jelly and Bee Honey as new antibacterial therapy agents of hospital infections. J. Clin. Path. Labe Med., 1(1), 5-8.
  • El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Science, 60(2), 279-287. http://dx.doi.org/10.1016/j.aoas.2015.10.015
    » http://dx.doi.org/10.1016/j.aoas.2015.10.015
  • Eng, S., Pusparajah, P., Ab Mutalib, N., Ser, H., Chan, K., & Lee, L. (2015). Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8(3), 284-293. http://dx.doi.org/10.1080/21553769.2015.1051243
    » http://dx.doi.org/10.1080/21553769.2015.1051243
  • Erejuwa, O. O., Sulaiman, S. A., Wahab, M. S., Salam, S. K., Salleh, M. S., & Gurtu, S. (2012). Hepatoprotective effect of tualang honey supplementation in streptozotocin-induced diabetic rats. International Journal of Applied Research in Natural Products, 2012(4), 37-41.
  • European Union (2021). Beekeeping sector: results of the pilot study on honey bee selection. . Retrieved from https://agriculture.ec.europa.eu/news/beekeeping-sector-results-pilot-study-honey-bee-selection-2022-03-15_en
    » https://agriculture.ec.europa.eu/news/beekeeping-sector-results-pilot-study-honey-bee-selection-2022-03-15_en
  • Feknous, N., & Boumendjel, M. (2022). Natural bioactive compounds of honey and their antimicrobial activity. Czech Journal of Food Sciences, 40(3), 163-178. http://dx.doi.org/10.17221/247/2021-CJFS
    » http://dx.doi.org/10.17221/247/2021-CJFS
  • Feknous, N., Douaoui, G., Hafafni, N., Chettoum, A., Mekhancha, D. E., Boudida, Y., & Boumendjel, M. (2021). Benchmarking of collected honeys from El-Tarf, Ain Karma, Bouhadjar & Zitouna (department of El-Tarf, North east, Algeria). PhytoChem and BioSub Journal, 15(1), 238-246.
  • Feknous, N., Ouchene, L. L., Boumendjel, M., Mekhancha, D. E., Boudida, Y., Chettoum, A., Boumendjel, A., & Messarah, M. (2022). Local honey goat milk yoghurt production. Process and quality control. Food Science and Technology (Campinas), 42, 1-10. http://dx.doi.org/10.1590/fst.26621
    » http://dx.doi.org/10.1590/fst.26621
  • Grecka, K., Kuś, P. M., Worobo, R. W., & Szweda, P. (2018). Study of the anti-staphylococcal potential of honeys produced in northern Poland. Molecules (Basel, Switzerland), 23(2), 260. http://dx.doi.org/10.3390/molecules23020260 PMid:29382105.
    » http://dx.doi.org/10.3390/molecules23020260
  • Gregório, A., Galhardo, D., Sereia, M. J., Wielewski, P., Gavazzoni, L., Santos, I. F., Sangaleti, G. S. S. G. M. G., Cardoso, E. C., Bortoti, T. L., Zanatta, L. A., Gonçalves, L. M., Suzin, M. A., Santos, A. A., & Toledo, V. D. A. A. (2020). Antimicrobial activity, physical-chemical and activity antioxidant of honey samples of Apis mellifera from different regions of Paraná, Southern Brazil. Food Science and Technology (Campinas), 41(Suppl. 2), 583-590. http://dx.doi.org/10.1590/fst.32820
    » http://dx.doi.org/10.1590/fst.32820
  • Gregório, A., Galhardo, D., Sereia, M. J., Wielewski, P., Gavazzoni, L., Santos, I. F., Sangaleti, G. S. S. G. M. G., Cardoso, E. C., Bortoti, T. L., Zanatta, L. A., Gonçalves, L. M., Suzin, M. A., Santos, A. A., & Toledo, V. A. A. (2021). Antimicrobial activity, physical-chemical and activity antioxidant of honey samples of Apis mellifera from different regions of Paraná, southern Brazil. Food Science and Technology (Campinas), 41(Suppl. 2), 583-590. http://dx.doi.org/10.1590/fst.32820
    » http://dx.doi.org/10.1590/fst.32820
  • Hamel, T., & Boulemtafes, A. (2017). Plantes butinées par les abeilles à la péninsule de l’Edough (Nord-Est algérien). Livestock Research for Rural Development, 29(9), 1-13.
  • Hamel, T., Zaafour, M., & Boumendjel, M. (2018). Ethnomedical knowledge and traditional uses of aromatic and medicinal plants of the wetlands complex of the guerbes-sanhadja plain (Wilaya of Skikda in Northeastern Algeria). Herbal Medicine., 4(1), 1-9. http://dx.doi.org/10.21767/2472-0151.100035
    » http://dx.doi.org/10.21767/2472-0151.100035
  • Hammond, E. N., Duster, M., Musuuza, J. S., & Safdar, N. (2016). Effect of United States Buckwheat honey on antibiotic-resistant hospital acquired pathogens. The Pan African Medical Journal, 25, 212. http://dx.doi.org/10.11604/pamj.2016.25.212.10414 PMid:28292167.
    » http://dx.doi.org/10.11604/pamj.2016.25.212.10414
  • Hegazi Ahmed, G., Al Guthami Faiz, M., Al Gethami Ahmed, F. M., & Fouad Ehab, A. (2020). Antibacterial and Antioxidant Activities of Some Saudi Arabia Honey Products. Majallah-i Mikrub/Shinasi-i Pizishki-i Iran, 14(5), 490-500. http://dx.doi.org/10.30699/ijmm.14.5.490
    » http://dx.doi.org/10.30699/ijmm.14.5.490
  • Hegazi, A. G., Al Guthami, F. M., Al Gethami, A. F., Allah, F. M. A., Saleh, A. A., & Fouad, E. A. (2017). Potential antibacterial activity of some Saudi Arabia honey. Veterinary World, 10(2), 233-237. http://dx.doi.org/10.14202/vetworld.2017.233-237 PMid:28344408.
    » http://dx.doi.org/10.14202/vetworld.2017.233-237
  • Hussain, M. B., Hannan, A., Akhtar, N., Fayyaz, G. Q., Imran, M., Saleem, S., & Qureshi, I. A. (2015). Evaluation of the antibacterial activity of selected Pakistani honeys against multi-drug resistant Salmonella typhi. Complementary and Alternative Medicine, 15(1), 32. http://dx.doi.org/10.1186/s12906-015-0549-z PMid:25880671.
    » http://dx.doi.org/10.1186/s12906-015-0549-z
  • Ibrahim Khalil, M. D., Moniruzzaman, M., Boukraa, L., Benhanifia, M., Asiful Islam, M. D., Nazmul Islam, M. D., Sulaiman, S. A., & Hua Gan, S. (2012). Physicochemical and antioxidant properties of algerian honey. Journal Molecules, 17(9), 11199-11215. http://dx.doi.org/10.3390/molecules170911199 PMid:22996344.
    » http://dx.doi.org/10.3390/molecules170911199
  • Ilyasov, R. A., Gaifullina, L. R., Saltykova, E. S., Poskryakov, A. V., & Nikolenko, A. G. (2012). Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. Journal of Apicultural Science, 56(1), 115-124. http://dx.doi.org/10.2478/v10289-012-0013-y
    » http://dx.doi.org/10.2478/v10289-012-0013-y
  • Journal Officiel de la République Algérienne - JORA. (2017). Arrêté du 24 octobre 2017 rendant obligatoire la méthode de détermination des cendres totales dans les épices Retrieved from https://www.joradp.dz/ftp/jo-francais/2018/f2018003.pdf
    » https://www.joradp.dz/ftp/jo-francais/2018/f2018003.pdf
  • Kilcullen, K., Teunis, A., Popova, T. G., & Popov, S. G. (2016). cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 against human lung epithelial cells under microaerobic growth conditions. Frontiers in Microbiology, 7, 69. http://dx.doi.org/10.3389/fmicb.2016.00069 PMid:26870026.
    » http://dx.doi.org/10.3389/fmicb.2016.00069
  • Kwakman, P. H., & Zaat, S. (2012). Antibacterial components of honey. IUBMB Life, 64(1), 48-55. http://dx.doi.org/10.1002/iub.578 PMid:22095907.
    » http://dx.doi.org/10.1002/iub.578
  • Laallam, H., Boughediri, L., & Bissati, S. (2011). Inventaire des Plantes Mellifères du Sud Ouest Algérien. Revue Synthèse, 23(C), 81-89.
  • Latifa, H., Saada, A., & Arezki, M. (2020). Antimicrobial potential of ziziphus and euphorbia honeys harvested in semi-arid region of Algeria and their possible use in soft medicine. Journal of Microbiology, Biotechnology and Food Sciences, 9(6), 1114-1118. http://dx.doi.org/10.15414/jmbfs.2020.9.6.1114-1118
    » http://dx.doi.org/10.15414/jmbfs.2020.9.6.1114-1118
  • Lobreau-Callen, D., Clément, M. C., & Marmion, V. (2000). Les miels. Techniques de l'ingénieur, TIB432DUO, f7000. Retrieved from https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/filiere-de-production-produits-d-origine-animale-42432210/les-miels-f7000/
    » https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/filiere-de-production-produits-d-origine-animale-42432210/les-miels-f7000/
  • Makhloufi, C., Kerkvliet, J. D., D’albore, G. R., Choukri, A., & Samar, R. (2010). Characterization of Algerian honey by palynological and physico-chemical methods. Apidologie, 41(5), 509-521. http://dx.doi.org/10.1051/apido/2010002
    » http://dx.doi.org/10.1051/apido/2010002
  • Martinotti, S., & Ranzato, E. (2018). Review honey, wound repair and regenerative medicine. Journal of Functional Biomaterials, 9(2), 34. http://dx.doi.org/10.3390/jfb9020034 PMid:29738478.
    » http://dx.doi.org/10.3390/jfb9020034
  • Matzen, R. D., Leth-Espensen, J. Z., Jansson, T., Nielsen, D. S., Lund, M. N., & Matzen, S. H. (2018). The antibacterial effect in vitro of honey derived from various danish flora. Dermatology Research and Practice, 2018, 7021713. http://dx.doi.org/10.1155/2018/7021713 PMid:30018636.
    » http://dx.doi.org/10.1155/2018/7021713
  • Mbogning, E., Tchoumboue, J., Damesse, F., Sanou Sobze, M., & Canini, A. (2011). Caractéristiques physico-chimiques des miels de la zone Soudano-guinéenne de l’Ouest et de l’Adamaoua Cameroun. Tropicultura, 29(3), 168-175.
  • Missio da Silva, P., Gauche, C., Gonzaga, L. V., Oliveira Costa, A. C., & Fett, R. (2016). Honey chemical composition, stability and authenticity. food chemistry, 196:309-323. Cultural and Food Chemistry, 46, 393-400.
  • Nagi, A. A., Amghalia, E., Shamsudin, M. N., Abdullah, R., Mohammed, R., & Sekawi, Z. (2009). Antibacterial activity of honey against methicillin resistant Staphylococcus aureus. Research Journal of Biological Sciences, 4(8), 943-947.
  • Nanda, V., Sarkar, B. C., Sharma, H. K., & Bawa, A. S. (2003). Physico-chemical properties and estimation of mineral content in honey produced from different plants in Northern India. Journal of Food Composition and Analysis, 16(5), 613-619. http://dx.doi.org/10.1016/S0889-1575(03)00062-0
    » http://dx.doi.org/10.1016/S0889-1575(03)00062-0
  • Nolan, V. C., Harrison, J., & Cox, J. A. G. (2019). Dissecting the antimicrobial composition of honey. Antibiotics (Basel, Switzerland), 8(4), 251. http://dx.doi.org/10.3390/antibiotics8040251 PMid:31817375.
    » http://dx.doi.org/10.3390/antibiotics8040251
  • Nombré, I., Schweitzer, P., Boussim, J. I., & Rasolodimby, J. M. (2010). Impacts of storage conditions on physicochemical characteristics of honey samples from Burkina Faso. African Journal of Food Science, 4(7), 458-463.
  • Official Journal of the European Communities. (2001). Council Directive 2001/110/EC of 20 December 2001 relating to honey (12/01/2002). L 010 47-52. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001L0110&qid=1648837522092&from=EN
    » https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001L0110&qid=1648837522092&from=EN
  • Oluwapelumi, O. B., Morayo, A., Buru, A. S., Richard, A. Y., Funmilayo, A. J., & Funmi, A. A. (2017). Antimicrobial Activities of Different Honeys Sold in Ado-Ekiti on Bacteria Associated with Upper Respiratory Tract Infections. International Journal of Current Microbiology and Applied Sciences, 6(2), 1-10. http://dx.doi.org/10.20546/ijcmas.2017.602.001
    » http://dx.doi.org/10.20546/ijcmas.2017.602.001
  • Pasupuleti, V. R., Sammugam, L., Ramesh, N., & Gan, S. H. (2017). Honey, propolis, and royal jelly. A comprehensive review of their biological actions and health benefits. Oxidative Medicine and Cellular Longevity, 2017, 1259510. http://dx.doi.org/10.1155/2017/1259510 PMid:28814983.
    » http://dx.doi.org/10.1155/2017/1259510
  • Polus, P. (2008). Anomalies de cristallisation: séparation de phase et arborescence. L’abeille de France, 944, 83-84.
  • Rajan, K., Shi, Z., & Ricke, S. C. (2017). Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Critical Reviews in Microbiology, 43(3), 370-392. http://dx.doi.org/10.1080/1040841X.2016.1223600 PMid:27869522.
    » http://dx.doi.org/10.1080/1040841X.2016.1223600
  • Rekioua, N., Boumendjel, M., Taibi, F., Samar, M. F., Mediouni Ben Jemaa, J., Benaliouch, F., Negro, C., Nicoli, F., De Bellis, L., Boushih, E., & Haouel, S. (2022). Insecticidal effect of Eucalyptus globulus and Rosmarinus officinalis essential oils on a stored food pest Ephestia kuehniella (Lepidoptera, Pyralidea). Cellular and Molecular Biology, 68(4), 144-157. http://dx.doi.org/10.14715/cmb/2022.68.4.18 PMid:35988266.
    » http://dx.doi.org/10.14715/cmb/2022.68.4.18
  • Schweitzer. Laboratoire d'analyse et d'Ecologie Apicole. (2004). Le monde des miellats. Revue l'abeille de France, 908, 1-2.
  • Sherlock, O., Dolan, A., Athman, R., Power, A., Gethin, G., Cowman, S., & Humphreys, H. (2010). Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine, 10(1), 47. http://dx.doi.org/10.1186/1472-6882-10-47 PMid:20813024.
    » http://dx.doi.org/10.1186/1472-6882-10-47
  • Shin, H. S., & Ustunol, Z. (2005). Carbohydrate composition of honey from different floral sources and their influence on growth of selected intestinal bacteria: An in vitro comparison. Food Research International, 38(6), 721-728. http://dx.doi.org/10.1016/j.foodres.2005.01.007
    » http://dx.doi.org/10.1016/j.foodres.2005.01.007
  • Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: chemical composition, stability and authenticity. Food Chemistry, 196(1), 309-323. http://dx.doi.org/10.1016/j.foodchem.2015.09.051 PMid:26593496.
    » http://dx.doi.org/10.1016/j.foodchem.2015.09.051
  • Sowa, P., Grabek-Lejko, D., Wesołowska, M., Swacha, S., & Dżugan, M. (2017). Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey. Letters in Applied Microbiology, 65(1), 82-89. http://dx.doi.org/10.1111/lam.12749 PMid:28426165.
    » http://dx.doi.org/10.1111/lam.12749
  • Swiecicka, I., & Mahillon, J. (2006). Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiology Ecology, 56(1), 132-140. http://dx.doi.org/10.1111/j.1574-6941.2006.00063.x PMid:16542411.
    » http://dx.doi.org/10.1111/j.1574-6941.2006.00063.x
  • Taibi, F., Boumendjel, M., Moncef, Z., Omar, S., Taha, K., Amel, D., Safa, A., Hassiba, R., Hanène, C., Nacira, S., Amel, B., & Mahfoud, M. (2018). Conservation of stored food using plant’s extracts. Effect of oregano (Origanum vulgaris) essential oil on the reproduction and development of flour moth (Ephestia kuehniella). Cellular and Molecular Biology, 64(10), 5-11. http://dx.doi.org/10.14715/cmb/2018.64.10.2
    » http://dx.doi.org/10.14715/cmb/2018.64.10.2
  • Tchoumboue, J., Tchouamo, I. R., Pinta, J. Y., & Njia, M. N. (2001). Caractéristiques socio-économiques et techniques de l’apiculture dans les hautes terres de l’Ouest Cameroun. Tropicultura, 19(3), 141-146.
  • United State Department of Agriculture (2017a). National Organic Program. Retrieved from https://www.ams.usda.gov/about-ams/programs-offices/national-organic-program
    » https://www.ams.usda.gov/about-ams/programs-offices/national-organic-program
  • United State Department of Agriculture (2017b). Authorized Certification Official. Retrieved from https://www.aphis.usda.gov/aphis/ourfocus/planthealth/SA_Export/SA_ACNS/CT_Accreditation-Certification
    » https://www.aphis.usda.gov/aphis/ourfocus/planthealth/SA_Export/SA_ACNS/CT_Accreditation-Certification
  • Voidarou, C., Alexopoulos, A., Plessas, S., Karapanou, A., Mantzourani, I., Stavropoulou, E., Fotou, K., Tzora, A., Skoufos, I., & Bezirtzoglou, E. (2011). Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe, 17(6), 375-379. http://dx.doi.org/10.1016/j.anaerobe.2011.03.012 PMid:21524711.
    » http://dx.doi.org/10.1016/j.anaerobe.2011.03.012
  • Wadi, M., & Geregandi, T. (2020). Efficacy of bee honey on wound healing: split skin graft with hyper-granulation tissue. Journal of Natural Remedies, 20(2), 71-78. http://dx.doi.org/10.18311/jnr/2020/24172
    » http://dx.doi.org/10.18311/jnr/2020/24172
  • Wasihun, A. G., & Kasa, B. G. (2016). Evaluation of antibacterial activity of honey against multidrug resistant bacteria in Ayder Referral and Teaching Hospital, Northern Ethiopia. SpringerPlus, 5(1), 842. http://dx.doi.org/10.1186/s40064-016-2493-x PMid:27386291.
    » http://dx.doi.org/10.1186/s40064-016-2493-x
  • Zerrouk, S., Seijo, M. K., Boughediri, L., Escuredo, O., & Rodríguez-Flores, M. C. (2014). Palynological characterisation of Algerian honeys according to their geographical and botanical origin. Grana Journal, 53(2), 147-158. http://dx.doi.org/10.1080/00173134.2014.897751
    » http://dx.doi.org/10.1080/00173134.2014.897751
  • Zhou, J., Suo, Z., Zhao, P., Cheng, N., Gao, H., Zhao, J., & Cao, W. (2013). Jujube honey from China: physico-chemical characteristics and mineral contents. Journal of Food Science, 78(3), 1750-3841. http://dx.doi.org/10.1111/1750-3841.12049
    » http://dx.doi.org/10.1111/1750-3841.12049

Publication Dates

  • Publication in this collection
    17 Feb 2023
  • Date of issue
    2023

History

  • Received
    23 Sept 2022
  • Accepted
    12 Dec 2022
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br