Acessibilidade / Reportar erro

Use of bacterial cellulose as a fat replacer in emulsified meat products: review

Abstract

Emulsified meat products have a high fat content. The industry has been looking for strategies to replace fat with healthier products in order to meet consumer demands. This review aims to present studies on the use of BC as a substitute in emulsified meat products. In these studies, BC proved to be a potential fat replacer, as it maintained the same technological and sensory properties found in products with original fat content.

Keywords:
Komagataeibacter xylinus; nata-de-coco; meat products; low-fat meat products; fat replacers

1 Introduction

It is known that emulsified meat products have a high content of saturated fat, which is related to cardiovascular diseases, diabetes, among others. The growing consumer concern about food has led to the development of healthier emulsified meat products, based on the reformulation of the saturated fatty acid profile (Gómez-Estaca et al., 2019Gómez-Estaca, J., Herrero, A. M., Herranz, B., Álvarez, M. D., Jiménez-Colmenero, F., & Cofrades, S. (2019). Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocolloids, 87, 960-969. http://dx.doi.org/10.1016/j.foodhyd.2018.09.029.
http://dx.doi.org/10.1016/j.foodhyd.2018...
; Kumar, 2021Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
). In this type of product, fat can be partially or totally replaced by low-energy ingredients. However, this manipulation can cause adverse effects on quality and, therefore, the replacement of fat is a major challenge for the industry (Varga-Visi & Toxanbayeva, 2017Varga-Visi, É., & Toxanbayeva, B. (2017). Application of fat replacers and their effect on quality of comminuted meat products with low lipid content: a review. Acta Alimentaria, 46(2), 181-186. http://dx.doi.org/10.1556/066.2016.0008.
http://dx.doi.org/10.1556/066.2016.0008...
)

Bacterial cellulose (BC) is a promising ingredient as a substitute for fat, which can be produced by different bacteria, and Komagataeibacter xylinus is one of the most efficient (Arserim-Uçar et al., 2021Arserim-Uçar, D. K., Korel, F., Liu, L. S., & Yam, K. L. (2021). Characterization of bacterial cellulose nanocrystals: effect of acid treatments and neutralization. Food Chemistry, 336, 127597. http://dx.doi.org/10.1016/j.foodchem.2020.127597. PMid:32763732.
http://dx.doi.org/10.1016/j.foodchem.202...
; Lima et al., 2018Lima, H. L. S., Gonçalves, C., Cerqueira, M. Â., Nascimento, E. S., Gama, M. F., Rosa, M. F., Borges, M. F., Pastrana, L. M., & Brígida, A. I. S. (2018). Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 25(10), 6011-6029. http://dx.doi.org/10.1007/s10570-018-1983-0.
http://dx.doi.org/10.1007/s10570-018-198...
). For Shi et al. (2014)Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012.
http://dx.doi.org/10.1016/j.foodhyd.2013...
, BC is a multifunctional additive due to its ability to improve the texture of foods, in addition to producing them with low calories and low cholesterol, and therefore healthier (Li et al., 2020Li, Q., Chen, P., Li, Y., Li, B., & Liu, S. (2020). Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant: a bioinspired oxygen protection strategy. Carbohydrate Polymers, 229, 115395. http://dx.doi.org/10.1016/j.carbpol.2019.115395. PMid:31826411.
http://dx.doi.org/10.1016/j.carbpol.2019...
). This review study aims to evaluate the current scenario in the research of bacterial cellulose as a replacer in emulsified meat products.

The search for articles was carried out in July 2020, with no restriction on the date of publication and in English, Spanish, among other languages. The literature review was based on a bibliographic survey using the MEDLINE (Medical Literature Analysis and Retrieval System Online), PubMed (National Library of Medicine), ScienceDirect, Scopus and Web of Science databases. Google Scholar (GS) was also used in the search for grey literature and to identify additional articles. The search strategy for the articles selected in Table 1 was made using two blocks, the first using terms related to bacterial cellulose ("bacterial cellulose", "nata de coco” (a creamy yellow product) and products of animal origin ("meat products", “meat derivates”). For the combination of terms, Boolean operator “OR” was used in each block and operator “AND” for combination between the blocks. The collected articles were exported to Mendeley Desktop 1.19.4 (MendeleyLtd, London, UK).

Table 1
Recent studies with application of BC in meat products.

2 Emulsified products

Emulsions are thermodynamically unstable systems and, as the contact between oil and water molecules is unfavorable, they can break down over time. In the preparation of kinetically stable emulsions over time, mainly in the food industry, “emulsifiers” or “texture modifiers” are necessary (Calvo et al., 2020Calvo, F., Gómez, J. M., Ricardez-Sandoval, L., & Alvarez, O. (2020). Integrated design of emulsified cosmetic products: a review. Chemical Engineering Research & Design, 161, 279-303. http://dx.doi.org/10.1016/j.cherd.2020.07.014.
http://dx.doi.org/10.1016/j.cherd.2020.0...
; McClements, 2007McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47(7), 611-649. http://dx.doi.org/10.1080/10408390701289292. PMid:17943495.
http://dx.doi.org/10.1080/10408390701289...
). Meat emulsion is a system composed of two or more immiscible phases. This emulsion can be defined as a three-dimensional (3D) network formed by interactions of proteins, fat, water, salts and other components (Santos et al., 2020Santos, M., Ozaki, M. M., Ribeiro, W. O., Paglarini, C. S., Vidal, V. A. S., Campagnol, P. C. B., & Pollonio, M. A. R. (2020). Emulsion gels based on pork skin and dietary fibers as animal fat replacers in meat emulsions: an adding value strategy to byproducts. LWT, 120, 108895. http://dx.doi.org/10.1016/j.lwt.2019.108895.
http://dx.doi.org/10.1016/j.lwt.2019.108...
; Rodrigues et al., 2020Rodrigues, I., Gonçalves, L. A., Carvalho, F., Pires, M., Rocha, Y. J. P., Barros, J. C., Carvalho, L. T. & Trindade, M. A. (2020). Understanding salt reduction in fat-reduced hot dog sausages: network structure, emulsion stability and consumer acceptance. Food Science & Technology International, 26(2), 123-131. http://dx.doi.org/10.1177/1082013219872677. PMid:31510800.
http://dx.doi.org/10.1177/10820132198726...
).

The preparation of the paste is an important step in the process of obtaining emulsified meat products such as mortadella. The term “meat batters” is more used in the industry when referring to emulsified meat products (Jiang & Xiong, 2015Jiang, J., & Xiong, Y. L. (2015). Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage. Meat Science, 109, 56-65. http://dx.doi.org/10.1016/j.meatsci.2015.05.011. PMid:26008711.
http://dx.doi.org/10.1016/j.meatsci.2015...
). The meat emulsion is formed by cutting the meat and, subsequently, with the addition of salt, phosphates and water. This process activates the muscle protein by disrupting the sarcolemma to release myofibrillar proteins, actin and myosin. Myofibrillar proteins have emulsifying properties and interact with other non-meat ingredients, affecting the technological properties of meat emulsion, such as water and fat holding capacities, stability of emulsion and rheological parameters (Kumar, 2021Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
; Marchetti & Andrés, 2021Marchetti, L., & Andrés, S. C. (2021). Use of nanocellulose in meat products. Current Opinion in Food Science, 38, 96-101. http://dx.doi.org/10.1016/j.cofs.2020.11.003.
http://dx.doi.org/10.1016/j.cofs.2020.11...
).

The interaction between water, protein and fat particles is the main factor responsible for the desired quality and the structural organization of an emulsified meat product. The mixture of these finely crushed ingredients and the heat applied through cooking cause protein denaturation, resulting in a homogeneous meat product (Gordon, 1993Gordon, A. (1993). Studying comminuted meat products using corroborative techniques. Food Research International, 26(3), 209-216. http://dx.doi.org/10.1016/0963-9969(93)90055-N.
http://dx.doi.org/10.1016/0963-9969(93)9...
; Pereira et al., 2020Pereira, J., Brohi, S. A., Malairaj, S., Zhang, W., & Zhou, G. H. (2020). Quality of fat-reduced frankfurter formulated with unripe banana by-products and pre-emulsified sunflower oil. International Journal of Food Properties, 23(1), 420-433. http://dx.doi.org/10.1080/10942912.2020.1733014.
http://dx.doi.org/10.1080/10942912.2020....
).

Emulsified meat products have a high fat content (about 20-35% saturated fat) (Câmara et al., 2020Câmara, A. K. F. I., Okuro, P. K., Cunha, R. L., Herrero, A. M., Ruiz-Capillas, C., & Pollonio, M. A. R. (2020). Chia (Salvia hispanica L.) mucilage as a new fat substitute in emulsified meat products: technological, physicochemical, and rheological characterization. LWT, 125, 109193. http://dx.doi.org/10.1016/j.lwt.2020.109193.
http://dx.doi.org/10.1016/j.lwt.2020.109...
; Pinton et al., 2019Pinton, M. B., Correa, L. P., Facchi, M. M. X., Heck, R. T., Leães, Y. S. V., Cichoski, A. J., Lorenzo, J. M., Dos Santos, M., Pollonio, M. A. R., & Campagnol, P. C. B. (2019). Ultrasound: a new approach to reduce phosphate content of meat emulsions. Meat Science, 152, 88-95. http://dx.doi.org/10.1016/j.meatsci.2019.02.010. PMid:30836267.
http://dx.doi.org/10.1016/j.meatsci.2019...
). Fat plays a fundamental role in the technological quality of these products, such as the stabilization of the emulsion, improving the water holding capacity during cooking, in addition to promoting juiciness and firmness (Choi et al., 2009Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Kim, H. W., Jeong, J. Y., & Kim, C. J. (2009). Characteristics of low-fat meat emulsion systems with pork fat replaced by vegetable oils and rice bran fiber. Meat Science, 82(2), 266-271. http://dx.doi.org/10.1016/j.meatsci.2009.01.019. PMid:20416740.
http://dx.doi.org/10.1016/j.meatsci.2009...
; Öztürk-Kerimoğlu et al., 2020Öztürk-Kerimoğlu, B., Kavuşan, H. S., Tabak, D., & Serdaroğlu, M. (2020). Formulating reduced-fat sausages with quinoa or teff flours: effects on emulsion characteristics and product quality. Food Science of Animal Resources, 40(5), 710-721. http://dx.doi.org/10.5851/kosfa.2020.e46. PMid:32968724.
http://dx.doi.org/10.5851/kosfa.2020.e46...
). Fat is an important source of essential fatty acids, linoleic acid (Omega-3) and linolenic acid (Omega-6), in addition to its key role in maintaining healthy skin, regulating cholesterol metabolism and as a precursor to prostaglandins. It is a fundamental nutrient in the transport of fat-soluble vitamins A, D, E and K, and also in the aid of its absorption by the intestine (Warshaw et al., 1996Warshaw, H., Franz, M., Powers, M. A., & Wheeler, M. (1996). Fat replacers: their use in foods and role in diabetes medical nutrition therapy. Diabetes Care, 19(11), 1294-1301. http://dx.doi.org/10.2337/diacare.19.11.1294. PMid:8908400.
http://dx.doi.org/10.2337/diacare.19.11....
; Tufeanu & Tita, 2016Tufeanu, R., & Tita, O. (2016). Possibilities to develop low-fat products: a review. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 3-19. http://dx.doi.org/10.1515/aucft-2016-0001.
http://dx.doi.org/10.1515/aucft-2016-000...
).

Moderate fat intake is beneficial, but excessive consumption is related to chronic diseases, such as cardiovascular diseases, obesity and diabetes (Kim et al., 2021Kim, T. K., Lee, M. H., Kim, S. M., Kim, M. J., Jung, S., Yong, H. I., & Choi, Y. S. (2021). Physiochemical properties of reduced-fat duck meat emulsion systems: effects of preemulsification with vegetable oils and duck skin. Poultry Science, 100(2), 1291-1298. http://dx.doi.org/10.1016/j.psj.2020.10.044. PMid:33518086.
http://dx.doi.org/10.1016/j.psj.2020.10....
; Silva-Vazquez et al., 2018Silva-Vazquez, R., Flores-Giron, E., Quintero-Ramos, A., Hume, M. E., & Mendez-Zamora, G. (2018). Effect of inulin and pectin on physicochemical characteristics and emulsion stability of meat batters. CyTA: Journal of Food, 16(1), 306-310. http://dx.doi.org/10.1080/19476337.2017.1403490.
http://dx.doi.org/10.1080/19476337.2017....
; Szpicer et al., 2020Szpicer, A., Onopiuk, A., Półtorak, A., & Wierzbicka, A. (2020). The influence of oat β-glucan content on the physicochemical and sensory properties of low-fat beef burgers. CyTA: Journal of Food, 18(1), 315-327. http://dx.doi.org/10.1080/19476337.2020.1750095.
http://dx.doi.org/10.1080/19476337.2020....
). The consumption of saturated fat should correspond to less than 10% of the total caloric intake, with the lowest possible consumption of trans fat and replacing saturated fat with mono and polyunsaturated fats (López-Pedrouso et al., 2021López-Pedrouso, M., Lorenzo, J. M., Gullón, B., Campagnol, P. C. B., & Franco, D. (2021). Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Current Opinion in Food Science, 40, 40-45. http://dx.doi.org/10.1016/j.cofs.2020.06.003.
http://dx.doi.org/10.1016/j.cofs.2020.06...
; Tufeanu & Tita, 2016Tufeanu, R., & Tita, O. (2016). Possibilities to develop low-fat products: a review. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 3-19. http://dx.doi.org/10.1515/aucft-2016-0001.
http://dx.doi.org/10.1515/aucft-2016-000...
).

In recent years consumers have become more concerned about health and nutrition, and therefore are changing eating habits towards healthier foods (Kwon et al., 2021Kwon, H. C., Shin, D. M., Yune, J. H., Jeong, C. H., & Han, S. G. (2021). Evaluation of gels formulated with whey proteins and sodium dodecyl sulfate as a fat replacer in low-fat sausage. Food Chemistry, 337, 127682. http://dx.doi.org/10.1016/j.foodchem.2020.127682. PMid:32795852.
http://dx.doi.org/10.1016/j.foodchem.202...
; Szpicer et al., 2020Szpicer, A., Onopiuk, A., Półtorak, A., & Wierzbicka, A. (2020). The influence of oat β-glucan content on the physicochemical and sensory properties of low-fat beef burgers. CyTA: Journal of Food, 18(1), 315-327. http://dx.doi.org/10.1080/19476337.2020.1750095.
http://dx.doi.org/10.1080/19476337.2020....
). According to Kumar (2021)Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
the healthy food market is expected to grow enormously in the next decade, being driven by health concerns. Due to this new trend in consumption the industry has been looking for several strategies to develop meat products with low saturated fat content (Barbut et al., 2019Barbut, S., Marangoni, A. G., Thode, U., & Tiensa, B. E. (2019). Using canola oil organogels as fat replacement in liver pâté. Journal of Food Science, 84(9), 2646-2651. http://dx.doi.org/10.1111/1750-3841.14753. PMid:31429478.
http://dx.doi.org/10.1111/1750-3841.1475...
; Kwon et al., 2021Kwon, H. C., Shin, D. M., Yune, J. H., Jeong, C. H., & Han, S. G. (2021). Evaluation of gels formulated with whey proteins and sodium dodecyl sulfate as a fat replacer in low-fat sausage. Food Chemistry, 337, 127682. http://dx.doi.org/10.1016/j.foodchem.2020.127682. PMid:32795852.
http://dx.doi.org/10.1016/j.foodchem.202...
). However, the reformulation of these products can cause changes in technological parameters, such as emulsion stability, water holding capacity, loss of water and fat during cooking, and therefore, it can alter sensory characteristics, such as taste, odor, mouthfeel, juiciness and general acceptance of the product (Álvarez & Barbut, 2013Álvarez, D., & Barbut, S. (2013). Effect of inulin, β-Glucan and their mixtures on emulsion stability, color and textural parameters of cooked meat batters. Meat Science, 94(3), 320-327. http://dx.doi.org/10.1016/j.meatsci.2013.02.011. PMid:23567131.
http://dx.doi.org/10.1016/j.meatsci.2013...
; Kumar, 2021Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
; Marchetti et al., 2017Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 14, 52-59. http://dx.doi.org/10.1016/j.foostr.2017.06.004.
http://dx.doi.org/10.1016/j.foostr.2017....
). Moreover, the reduction or substitution of fat can cause an increase in the cost of the final product (Bolger et al., 2017Bolger, Z., Brunton, N. P., Lyng, J. G., & Monahan, F. J. (2017). Comminuted meat products—consumption, composition, and approaches to healthier formulations. Food Reviews International, 33(2), 143-166. http://dx.doi.org/10.1080/87559129.2016.1149861.
http://dx.doi.org/10.1080/87559129.2016....
).

To reduce fat and preserve the technological and sensory characteristics of the emulsified meat product, studies are investigating the use of new ingredients to replace fat. These ingredients are fat substitutes that guarantee the same technological characteristics provided by fat. These ingredients must also be recognized as safe and healthy to ensure the functionality of the replaced fat (Kumar, 2021Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
; Tufeanu & Tita, 2016Tufeanu, R., & Tita, O. (2016). Possibilities to develop low-fat products: a review. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 3-19. http://dx.doi.org/10.1515/aucft-2016-0001.
http://dx.doi.org/10.1515/aucft-2016-000...
). According to Varga-Visi & Toxanbayeva (2017)Varga-Visi, É., & Toxanbayeva, B. (2017). Application of fat replacers and their effect on quality of comminuted meat products with low lipid content: a review. Acta Alimentaria, 46(2), 181-186. http://dx.doi.org/10.1556/066.2016.0008.
http://dx.doi.org/10.1556/066.2016.0008...
a substitute must provide fewer calories than the fat used, but the resulting product must have technological and sensory properties similar to commercial products.

In fat replacement, several strategies have been tested to improve the lipid profile of formulations. Substitutes are classified by their composition: based on proteins, carbohydrates or lipids (Brewer, 2012Brewer, M. S. (2012). Reducing the fat content in ground beef without sacrificing quality: a review. Meat Science, 91(4), 385-395. http://dx.doi.org/10.1016/j.meatsci.2012.02.024. PMid:22444664.
http://dx.doi.org/10.1016/j.meatsci.2012...
; Yousefi et al., 2018Yousefi, M., Khorshidian, N., & Hosseini, H. (2018). An overview of the functionality of inulin in meat and poultry products. Nutrition & Food Science, 48(5), 819-835. http://dx.doi.org/10.1108/NFS-11-2017-0253.
http://dx.doi.org/10.1108/NFS-11-2017-02...
). Most carbohydrate-based substitutes are dietary fibers and modified or resistant starches. Protein-based substitutes come from milk, eggs or vegetables. Lipid-based substitutes are used to improve the composition of fatty acids (Varga-Visi & Toxanbayeva, 2017Varga-Visi, É., & Toxanbayeva, B. (2017). Application of fat replacers and their effect on quality of comminuted meat products with low lipid content: a review. Acta Alimentaria, 46(2), 181-186. http://dx.doi.org/10.1556/066.2016.0008.
http://dx.doi.org/10.1556/066.2016.0008...
).

Therefore, it is crucial to unveil the interactions between the ingredients and the ways in which they can be used in formulations for the preparation of stable products (Câmara et al., 2020Câmara, A. K. F. I., Okuro, P. K., Cunha, R. L., Herrero, A. M., Ruiz-Capillas, C., & Pollonio, M. A. R. (2020). Chia (Salvia hispanica L.) mucilage as a new fat substitute in emulsified meat products: technological, physicochemical, and rheological characterization. LWT, 125, 109193. http://dx.doi.org/10.1016/j.lwt.2020.109193.
http://dx.doi.org/10.1016/j.lwt.2020.109...
). To reproduce the different functions of fat in this type of product, it is necessary to consider texture, oral sensation of the food, consistency, color and taste perception (Felfoul et al., 2015Felfoul, I., Bornaz, S., Baccouche, A., Sahli, A., & Attia, H. (2015). Low-fat Gouda cheese made from bovine milk-olive oil emulsion: physicochemical and sensory attributes. Journal of Food Science and Technology, 52(10), 6749-6755. http://dx.doi.org/10.1007/s13197-015-1736-0. PMid:26396425.
http://dx.doi.org/10.1007/s13197-015-173...
). The physicochemical characteristics of fat substitutes must be considered as they play a major role in the quality properties of reformulated products (Fan et al., 2020Fan, R., Zhou, D., & Cao, X. (2020). Evaluation of oat β-glucan-marine collagen peptide mixed gel and its application as the fat replacer in the sausage products. PLoS One, 15(5), e0233447. http://dx.doi.org/10.1371/journal.pone.0233447. PMid:32442194.
http://dx.doi.org/10.1371/journal.pone.0...
).

3 Bacterial Cellulose

Cellulose is a natural polymer that has a molecular formula (C6H10O5)n and consists of ßp (1→4) units linked to D-glucose (Dong et al., 2021Dong, Y. D., Zhang, H., Zhong, G. J., Yao, G., & Lai, B. (2021). Cellulose/carbon composites and their applications in water treatment – a review. Chemical Engineering Journal, 405, 126980. http://dx.doi.org/10.1016/j.cej.2020.126980.
http://dx.doi.org/10.1016/j.cej.2020.126...
; Güzel & Akpınar, 2020Güzel, M., & Akpınar, Ö. (2020). Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. International Journal of Biological Macromolecules, 162, 1597-1604. http://dx.doi.org/10.1016/j.ijbiomac.2020.08.049. PMid:32777420.
http://dx.doi.org/10.1016/j.ijbiomac.202...
). It is the most abundant biocompatible organic product in nature, found in the cell wall of plant cells and has several applications in the food, textile, paper, pharmaceutical and medicine industries (Arserim-Uçar et al., 2021Arserim-Uçar, D. K., Korel, F., Liu, L. S., & Yam, K. L. (2021). Characterization of bacterial cellulose nanocrystals: effect of acid treatments and neutralization. Food Chemistry, 336, 127597. http://dx.doi.org/10.1016/j.foodchem.2020.127597. PMid:32763732.
http://dx.doi.org/10.1016/j.foodchem.202...
; Volova et al., 2018Volova, T. G., Prudnikova, S. V., Sukovatyi, A. G., & Shishatskaya, E. I. (2018). Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Applied Microbiology and Biotechnology, 102(17), 7417-7428. http://dx.doi.org/10.1007/s00253-018-9198-8. PMid:29982923.
http://dx.doi.org/10.1007/s00253-018-919...
). However, it needs to be purified before it can be used to remove hemicellulose and lignin through enzymatic, chemical or mechanical treatments. These processes have a high economic and environmental cost, in addition to altering the functionality of cellulose and limiting its applicability (Fernández et al., 2019Fernández, J., Morena, A. G., Valenzuela, S. V., Pastor, F. I. J., Díaz, P., & Martínez, J. (2019). Microbial cellulose from a Komagataeibacter intermedius strain isolated from commercial wine vinegar. Journal of Polymers and the Environment, 27(5), 956-967. http://dx.doi.org/10.1007/s10924-019-01403-4.
http://dx.doi.org/10.1007/s10924-019-014...
).

Some bacteria have attracted attention as an alternative and sustainable source of cellulose. Cellulose synthesized by bacteria was called bacterial cellulose to be distinguished from plant-derived cellulose (Fernández et al., 2019Fernández, J., Morena, A. G., Valenzuela, S. V., Pastor, F. I. J., Díaz, P., & Martínez, J. (2019). Microbial cellulose from a Komagataeibacter intermedius strain isolated from commercial wine vinegar. Journal of Polymers and the Environment, 27(5), 956-967. http://dx.doi.org/10.1007/s10924-019-01403-4.
http://dx.doi.org/10.1007/s10924-019-014...
; Pang et al., 2020Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. http://dx.doi.org/10.1016/j.eurpolymj.2019.109365.
http://dx.doi.org/10.1016/j.eurpolymj.20...
). According to Lima et al., (2018)Lima, H. L. S., Gonçalves, C., Cerqueira, M. Â., Nascimento, E. S., Gama, M. F., Rosa, M. F., Borges, M. F., Pastrana, L. M., & Brígida, A. I. S. (2018). Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 25(10), 6011-6029. http://dx.doi.org/10.1007/s10570-018-1983-0.
http://dx.doi.org/10.1007/s10570-018-198...
, depending on the context in which it is used, bacterial cellulose may be given different names, for example, “mother of vinegar”, “nata de coco” Zoogloea or biocellulose.

Bacterial cellulose is a linear-chain polysaccharide with the same chemical structure as vegetable cellulose (Gallegos et al., 2016Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T., & Iqbal, H. M. N. (2016). Bacterial cellulose: a sustainable source to develop value-added products - a review. BioResources, 11(2), 5641-5655. http://dx.doi.org/10.15376/biores.11.2.Gallegos.
http://dx.doi.org/10.15376/biores.11.2.G...
). However, bacterial cellulose has advantages regarding physicochemical and mechanical properties, such as tensile strength, thermostability, biocompatibility, high water holding capacity, greater purity due to the absence of hemicellulose and lignin, high degree of polymerization, greater crystallinity (about 70 to 80%) and mechanical stability (Gallegos et al., 2016Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T., & Iqbal, H. M. N. (2016). Bacterial cellulose: a sustainable source to develop value-added products - a review. BioResources, 11(2), 5641-5655. http://dx.doi.org/10.15376/biores.11.2.Gallegos.
http://dx.doi.org/10.15376/biores.11.2.G...
; Guo et al., 2018Guo, Y., Zhang, X., Hao, W., Xie, Y., Chen, L., Li, Z., Zhu, B., & Feng, X. (2018). Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model. Carbohydrate Polymers, 198, 620-630. http://dx.doi.org/10.1016/j.carbpol.2018.06.078. PMid:30093042.
http://dx.doi.org/10.1016/j.carbpol.2018...
; Zhai et al., 2018Zhai, X., Lin, D., Zhao, Y., Li, W., & Yang, X. (2018). Enhanced anti-obesity effects of bacterial cellulose combined with konjac glucomannan in high-fat diet-fed C57BL/6J mice. Food & Function, 9(10), 5260-5272. http://dx.doi.org/10.1039/C8FO01211C. PMid:30238111.
http://dx.doi.org/10.1039/C8FO01211C...
).

According to Jozala et al. (2016)Jozala, A. F., Lencastre-Novaes, L. C., Lopes, A. M., Santos-Ebinuma, V. C., Mazzola, P. G., Pessoa, A. Jr, Grotto, D., Gerenutti, M., & Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063-2072. http://dx.doi.org/10.1007/s00253-015-7243-4. PMid:26743657.
http://dx.doi.org/10.1007/s00253-015-724...
, the biochemical process of the synthesis consists of three stages: first, the carbon compounds of the nutrition medium used by the bacteria are polymerized in linear chains of β-1.4-glucan, then there is the extracellular secretion of linear chains, and finally the organization and crystallization of glucan chains through hydrogen bonds and Van der Waals forces arranged in strips (Shi et al., 2014Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012.
http://dx.doi.org/10.1016/j.foodhyd.2013...
). BC is a biopolymer that has glucose monomers linked by β-1.4 glycosidic bonds with a three-dimensional arrangement formed by 1.5 nm subfibrils mounted on 2-4 nm nanofibrils and organized on 40-60 nm nanofibers (Alves et al., 2016Alves, L. A. A. S., Lorenzo, J. M., Gonçalves, C. A. A., Santos, B. A., Heck, R. T., Cichoski, A. J., & Campagnol, P. C. B. (2016). Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers. Meat Science, 121, 73-78. http://dx.doi.org/10.1016/j.meatsci.2016.06.001. PMid:27288899.
http://dx.doi.org/10.1016/j.meatsci.2016...
; Cacicedo et al., 2016Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071. PMid:26927233.
http://dx.doi.org/10.1016/j.biortech.201...
), as shown in Figure 1.

Figure 1
Formation of bacterial cellulose (a); gelatinous membrane of BC (b); deconstructed BC (c); scanning electron microscopy of BC (d). Adapted from Cacicedo et al. (2016)Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071. PMid:26927233.
http://dx.doi.org/10.1016/j.biortech.201...
and Pereira et al. (2020)Pereira, J., Brohi, S. A., Malairaj, S., Zhang, W., & Zhou, G. H. (2020). Quality of fat-reduced frankfurter formulated with unripe banana by-products and pre-emulsified sunflower oil. International Journal of Food Properties, 23(1), 420-433. http://dx.doi.org/10.1080/10942912.2020.1733014.
http://dx.doi.org/10.1080/10942912.2020....
.

BC was discovered in 1886 by A. J. Brown, who observed the formation of a gelatinous blanket on the surface of the vinegar fermentation broth. The identified structure was chemically similar to vegetable cellulose, and by microscopic analysis, the presence of bacteria distributed throughout the surface area of the film, identified as Acetobacter xylinum (Brown, 1886Brown, A. J. (1886). Brown on acetic ferment. Journal of the Chemical Society Transactions, 49(432), 432-439. http://dx.doi.org/10.1039/CT8864900432.
http://dx.doi.org/10.1039/CT8864900432...
; Klemm et al., 2001Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561-1603. http://dx.doi.org/10.1016/S0079-6700(01)00021-1.
http://dx.doi.org/10.1016/S0079-6700(01)...
) was revealed.

BC is an extracellular polysaccharide that can be produced by several bacteria, including Agrobacterium, Pseudomonas, Rhizobium, Escherichia, Sarcina, Salmonella, Alcaligenes, Achromobacter, Azotobacter, Aerobacter and Komagataeibacter (Jacek et al., 2019Jacek, P., Dourado, F., Gama, M., & Bielecki, S. (2019). Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 12(4), 633-649. http://dx.doi.org/10.1111/1751-7915.13386. PMid:30883026.
http://dx.doi.org/10.1111/1751-7915.1338...
; Naloka et al., 2020Naloka, K., Matsushita, K., & Theeragool, G. (2020). Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. International Journal of Biological Macromolecules, 150, 1113-1120. http://dx.doi.org/10.1016/j.ijbiomac.2019.10.117. PMid:31739023.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). Acetobacter xylinum was the first strain used in the synthesis of CB, later it was reclassified as Glucanoacetobacter xylinuse more recently as Komagataeibacter xylinus (Arserim-Uçar et al., 2021Arserim-Uçar, D. K., Korel, F., Liu, L. S., & Yam, K. L. (2021). Characterization of bacterial cellulose nanocrystals: effect of acid treatments and neutralization. Food Chemistry, 336, 127597. http://dx.doi.org/10.1016/j.foodchem.2020.127597. PMid:32763732.
http://dx.doi.org/10.1016/j.foodchem.202...
; Lima et al., 2018Lima, H. L. S., Gonçalves, C., Cerqueira, M. Â., Nascimento, E. S., Gama, M. F., Rosa, M. F., Borges, M. F., Pastrana, L. M., & Brígida, A. I. S. (2018). Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 25(10), 6011-6029. http://dx.doi.org/10.1007/s10570-018-1983-0.
http://dx.doi.org/10.1007/s10570-018-198...
). Currently, K. xylinus is the most investigated genus due to its ability to produce high concentrations of cellulose using various substrates as a carbon source (Fernández et al., 2019Fernández, J., Morena, A. G., Valenzuela, S. V., Pastor, F. I. J., Díaz, P., & Martínez, J. (2019). Microbial cellulose from a Komagataeibacter intermedius strain isolated from commercial wine vinegar. Journal of Polymers and the Environment, 27(5), 956-967. http://dx.doi.org/10.1007/s10924-019-01403-4.
http://dx.doi.org/10.1007/s10924-019-014...
; Lappa et al., 2019Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods, 8(8), 347. http://dx.doi.org/10.3390/foods8080347. PMid:31443236.
http://dx.doi.org/10.3390/foods8080347...
; Pang et al., 2020Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. http://dx.doi.org/10.1016/j.eurpolymj.2019.109365.
http://dx.doi.org/10.1016/j.eurpolymj.20...
). It is an aerobic, gram-negative rod-shaped bacterium capable of transforming glucose and other organic substrates into cellulose (Chawla et al, 2009Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology, 47(2), 107-124.; Wang et al., 2018aWang, Y., Wang, W., Jia, H., Gao, G., Wang, X., Zhang, X., & Wang, Y. (2018a). Using cellulose nanofibers and its palm oil pickering emulsion as fat substitutes in emulsified sausage. Journal of Food Science, 83(6), 1740-1747. http://dx.doi.org/10.1111/1750-3841.14164. PMid:29745986.
http://dx.doi.org/10.1111/1750-3841.1416...
).

In the production of BC, the Hestrin and Sharmm (HS) medium, composed of glucose, peptone, yeast extract, disodium phosphate, citric acid and pH 6 is commonly used (Cacicedo et al. 2016Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071. PMid:26927233.
http://dx.doi.org/10.1016/j.biortech.201...
). Although it is a medium with excellent production of BC, its use on an industrial scale is limited due to the high cost, and therefore the development of methods to produce BC at a lower cost is necessary (Yim et al., 2017Yim, S. M., Song, J. E., & Kim, H. R. (2017). Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 59, 26-36. http://dx.doi.org/10.1016/j.procbio.2016.07.001.
http://dx.doi.org/10.1016/j.procbio.2016...
). BC production can be done in a static, agitated condition or in bioreactors, and each method has different macroscopic morphology, microstructure and BC properties (Pang et al., 2020Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. http://dx.doi.org/10.1016/j.eurpolymj.2019.109365.
http://dx.doi.org/10.1016/j.eurpolymj.20...
; Wang et al., 2018bWang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z., & Feng, X. (2018b). Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. International Journal of Biological Macromolecules, 118(Pt A), 722-730. http://dx.doi.org/10.1016/j.ijbiomac.2018.06.089. PMid:29944938.
http://dx.doi.org/10.1016/j.ijbiomac.201...
).

The static condition causes accumulation of BC at the gas-liquid interface, that is, cellulose has the same shape as the surface area of the flask used in production (Gao et al., 2020Gao, G., Cao, Y., Zhang, Y., Wu, M., Ma, T., & Li, G. (2020). In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07. Carbohydrate Polymers, 248, 116788. http://dx.doi.org/10.1016/j.carbpol.2020.116788. PMid:32919576.
http://dx.doi.org/10.1016/j.carbpol.2020...
; Shah et al., 2013Shah, N., Ul-Islam, M., Khattak, W. A., & Park, J. K. (2013). Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585-1598. http://dx.doi.org/10.1016/j.carbpol.2013.08.018. PMid:24053844.
http://dx.doi.org/10.1016/j.carbpol.2013...
), and its thickness increases with increasing cultivation time (Wang et al., 2019Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohydrate Polymers, 219, 63-76. http://dx.doi.org/10.1016/j.carbpol.2019.05.008. PMid:31151547.
http://dx.doi.org/10.1016/j.carbpol.2019...
). Production is stopped when a certain thickness is formed at the air-liquid interface. This phenomenon can be caused by the lack of nutrients in the aerobic zone and low oxygen level at the bottom of the BC films (Andriani et al., 2020Andriani, D., Apriyana, A. Y., & Karina, M. (2020). The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27(12), 6747-6766. http://dx.doi.org/10.1007/s10570-020-03273-9.
http://dx.doi.org/10.1007/s10570-020-032...
). According to Shi et al., (2014)Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012.
http://dx.doi.org/10.1016/j.foodhyd.2013...
static conditions are the best to maintain a regular shape and a good morphology. However, this method depends on the surface area of the cultivation medium and requires a longer production time, resulting in low productivity and making production on an industrial scale unfeasible (Huang et al., 2014Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., & Sun, D. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30. http://dx.doi.org/10.1007/s10570-013-0088-z.
http://dx.doi.org/10.1007/s10570-013-008...
; Jozala et al., 2016Jozala, A. F., Lencastre-Novaes, L. C., Lopes, A. M., Santos-Ebinuma, V. C., Mazzola, P. G., Pessoa, A. Jr, Grotto, D., Gerenutti, M., & Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063-2072. http://dx.doi.org/10.1007/s00253-015-7243-4. PMid:26743657.
http://dx.doi.org/10.1007/s00253-015-724...
).

To enhance BC yield, agitated cultivation was used, so that oxygen is continuously mixed into the medium (Pang et al., 2020Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. http://dx.doi.org/10.1016/j.eurpolymj.2019.109365.
http://dx.doi.org/10.1016/j.eurpolymj.20...
). According to Wang et al., (2019)Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohydrate Polymers, 219, 63-76. http://dx.doi.org/10.1016/j.carbpol.2019.05.008. PMid:31151547.
http://dx.doi.org/10.1016/j.carbpol.2019...
this production optimizes the oxygen supply to bacteria during cultivation. BC produced in this condition can have irregular shapes, such as filaments, spheres, granules and fibrous threads (Cheng et al., 2009Cheng, K. C., Catchmark, J. M., & Demirci, A. (2009). Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. Journal of Biological Engineering, 3, 12. http://dx.doi.org/10.1186/1754-1611-3-12. PMid:19630969.
http://dx.doi.org/10.1186/1754-1611-3-12...
; Esa et al., 2014Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119. http://dx.doi.org/10.1016/j.aaspro.2014.11.017.
http://dx.doi.org/10.1016/j.aaspro.2014....
; Shi et al., 2014Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012.
http://dx.doi.org/10.1016/j.foodhyd.2013...
). The disadvantage of this method is the lower degree of polymerization, crystallinity and mechanical resistance when compared to static cultivation (Gullo et al., 2018Gullo, M., La China, S., Falcone, P. M., & Giudici, P. (2018). Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Applied Microbiology and Biotechnology, 102(16), 6885-6898. http://dx.doi.org/10.1007/s00253-018-9164-5. PMid:29926141.
http://dx.doi.org/10.1007/s00253-018-916...
; Shah et al. 2013Shah, N., Ul-Islam, M., Khattak, W. A., & Park, J. K. (2013). Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585-1598. http://dx.doi.org/10.1016/j.carbpol.2013.08.018. PMid:24053844.
http://dx.doi.org/10.1016/j.carbpol.2013...
).

The cost-benefit ratio of the culture medium in terms of BC yield, composition and volume of the medium should be considered for the production of BC. The composition of the culture medium can directly affect the yield of the technological process and, therefore, is the critical point for the production of any bioproduct, including BC (Jozala et al., 2016Jozala, A. F., Lencastre-Novaes, L. C., Lopes, A. M., Santos-Ebinuma, V. C., Mazzola, P. G., Pessoa, A. Jr, Grotto, D., Gerenutti, M., & Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063-2072. http://dx.doi.org/10.1007/s00253-015-7243-4. PMid:26743657.
http://dx.doi.org/10.1007/s00253-015-724...
).

According to Zhai et al., (2018)Zhai, X., Lin, D., Zhao, Y., Li, W., & Yang, X. (2018). Enhanced anti-obesity effects of bacterial cellulose combined with konjac glucomannan in high-fat diet-fed C57BL/6J mice. Food & Function, 9(10), 5260-5272. http://dx.doi.org/10.1039/C8FO01211C. PMid:30238111.
http://dx.doi.org/10.1039/C8FO01211C...
, the safety of bacterial cellulose has been reviewed by the Food and Drug Administration (FDA), and since 1992 it has been recognized as safe or GRAS (Generally Recognized as Safe). Furthermore, due to its high chemical purity, it does not require any purification step that can cause changes in its structural and physico-chemical properties (Gullo et al., 2018Gullo, M., La China, S., Falcone, P. M., & Giudici, P. (2018). Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Applied Microbiology and Biotechnology, 102(16), 6885-6898. http://dx.doi.org/10.1007/s00253-018-9164-5. PMid:29926141.
http://dx.doi.org/10.1007/s00253-018-916...
). Thus, BC is a suitable material for technological applications, particularly in the fields of medicine and pharmacology, such as medicine capsule casing (Ullah et al., 2016Ullah, H., Santos, H. A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291-2314. http://dx.doi.org/10.1007/s10570-016-0986-y.
http://dx.doi.org/10.1007/s10570-016-098...
), ecologically correct fabric in the textile industry (Kamiński et al., 2020Kamiński, K., Jarosz, M., Grudzień, J., Pawlik, J., Zastawnik, F., Pandyra, P., & Kołodziejczyk, A. M. (2020). Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles. Cellulose, 27(9), 5353-5365. http://dx.doi.org/10.1007/s10570-020-03128-3.
http://dx.doi.org/10.1007/s10570-020-031...
), biological dressings (Stasiak-Różańska & Płoska, 2018Stasiak-Różańska, L., & Płoska, J. (2018). Study on the use of microbial cellulose as a biocarrier for 1,3-dihydroxy-2-propanone and its potential application in industry. Polymers, 10(4), 438. http://dx.doi.org/10.3390/polym10040438. PMid:30966473.
http://dx.doi.org/10.3390/polym10040438...
), in the production of contact lenses (Gullo et al., 2018Gullo, M., La China, S., Falcone, P. M., & Giudici, P. (2018). Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Applied Microbiology and Biotechnology, 102(16), 6885-6898. http://dx.doi.org/10.1007/s00253-018-9164-5. PMid:29926141.
http://dx.doi.org/10.1007/s00253-018-916...
), among others.

In Southwest Asia, BC is traditionally used to produce “nata-de-coco”, a dietary fiber served as a gelatin cube used in desserts, fruit cocktails and jams (Esa et al., 2014Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119. http://dx.doi.org/10.1016/j.aaspro.2014.11.017.
http://dx.doi.org/10.1016/j.aaspro.2014....
). The final name of the product is derived from the juices used in the fermentation, with “nata-de-coco” more popularly known (Dourado et al. 2017Dourado, F., Gama, M., & Rodrigues, A. C. (2017). A Review on the toxicology and dietetic role of bacterial cellulose. Toxicology Reports, 4, 543-553. http://dx.doi.org/10.1016/j.toxrep.2017.09.005. PMid:29090119.
http://dx.doi.org/10.1016/j.toxrep.2017....
; Piadozo, 2016Piadozo, M. E. S. (2016). Nata de Coco Industry in the Philippines. In M. Gama, F. Dourado & S. Bielecki (Eds.), Bacterial nanocellulose: from biotechnology to bio-economy (pp. 215-229). Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-444-63458-0.00013-5). Several food applications have been developed for BC, e.g. in ice creams as a rheology modifier, in confectionery products as a fat replacer, as artificial meat for vegetarian consumers, as an emulsion stabilizer or carrier for the immobilization of probiotics and enzymes (Lappa et al., 2019Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods, 8(8), 347. http://dx.doi.org/10.3390/foods8080347. PMid:31443236.
http://dx.doi.org/10.3390/foods8080347...
; Zhai et al., 2018Zhai, X., Lin, D., Zhao, Y., Li, W., & Yang, X. (2018). Enhanced anti-obesity effects of bacterial cellulose combined with konjac glucomannan in high-fat diet-fed C57BL/6J mice. Food & Function, 9(10), 5260-5272. http://dx.doi.org/10.1039/C8FO01211C. PMid:30238111.
http://dx.doi.org/10.1039/C8FO01211C...
). The main applications of BC as a fat replacer in meat products are shown in Table 1.

4 Use in meat products

According to Colmenero (2000)Colmenero, F. J. (2000). Relevant factors in strategies for fat reduction in meat products. Trends in Food Science & Technology, 11(2), 56-66. http://dx.doi.org/10.1016/S0924-2244(00)00042-X.
http://dx.doi.org/10.1016/S0924-2244(00)...
, the viability of products with fat reduction depends on a series of factors that determine to what degree, from a technological point of view, fat can be reduce. These factors include the desired fat level, the nature of the product to be reformulated, and the type of processing required. Several strategies are being currently investigated to reduce this component in food. In this regard, BC has a promising role as a potential fat replacer in meat products (Fontana et al., 2017Fontana, J. D., Koop, H. S., Tiboni, M., Grzybowski, A., Pereira, A., Kruger, C. D., Silva, M. G. R., & Wielewski, L. P. (2017). New insights on bacterial cellulose. In A. M. Grumezescu & A. M. Holban (Eds.), Food biosynthesis (pp. 213-249). Cambridge: Elsevier Academic Press. http://dx.doi.org/10.1016/B978-0-12-811372-1.00007-5.
http://dx.doi.org/10.1016/B978-0-12-8113...
). Table 1 shows the main studies carried out with BC in the preparation of meat products. The main objective common to all investigated studies was to evaluate the effect of the addition of BC to the meat product to replace fat on the quality parameters of the referred product.

When it comes to the reformulation of products with substitution and/or low fat content, the texture profile must be considered. This parameter is related to the quality of the food, as it impacts the acceptance of the product by consumers (Marchetti & Andrés, 2021Marchetti, L., & Andrés, S. C. (2021). Use of nanocellulose in meat products. Current Opinion in Food Science, 38, 96-101. http://dx.doi.org/10.1016/j.cofs.2020.11.003.
http://dx.doi.org/10.1016/j.cofs.2020.11...
; Saldaña et al., 2015Saldaña, E., Behrens, J. H., Serrano, J. S., Ribeiro, F., de Almeida, M. A., & Contreras-Castillo, C. J. (2015). Microstructure, texture profile and descriptive analysis of texture for traditional and light mortadella. Food Structure, 6, 13-20. http://dx.doi.org/10.1016/j.foostr.2015.09.001.
http://dx.doi.org/10.1016/j.foostr.2015....
). Changes in texture as a result of this reduction are a factor related to quality, which must be monitored in the development of a product (Öztürk-Kerimoğlu et al., 2020Öztürk-Kerimoğlu, B., Kavuşan, H. S., Tabak, D., & Serdaroğlu, M. (2020). Formulating reduced-fat sausages with quinoa or teff flours: effects on emulsion characteristics and product quality. Food Science of Animal Resources, 40(5), 710-721. http://dx.doi.org/10.5851/kosfa.2020.e46. PMid:32968724.
http://dx.doi.org/10.5851/kosfa.2020.e46...
). Another important parameter to be assessed is the consumers perception of acceptance of the reformulated product. Reformulation with fat reduction and its replacement with a gel-type compound can result in a firmer, drier and more elastic product than the control (Varga-Visi & Toxanbayeva, 2017Varga-Visi, É., & Toxanbayeva, B. (2017). Application of fat replacers and their effect on quality of comminuted meat products with low lipid content: a review. Acta Alimentaria, 46(2), 181-186. http://dx.doi.org/10.1556/066.2016.0008.
http://dx.doi.org/10.1556/066.2016.0008...
).

Emulsion capacity refers to the amount of oil dispersed in an aqueous solution containing emulsifier, without breaking the emulsion. The duration of this process influences the stability of the emulsion and the quality of the final product, determining both the protein and fat binding as well as the tendency to exude water and fat during cooking (Álvarez et al., 2007Álvarez, D., Castillo Zambudio, M., Garrido Fernández, M., Bañón Arias, S., Nieto López, G., Díaz Molins, P., & Payne, F. (2007). Efecto de la composición y el de procesado sobre las propiedades tecnológicas y ópticas de las emulsiones cárnicas. Anales de Veterinaria de Murcia, 34(23), 25-34.; McClements, 2007McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47(7), 611-649. http://dx.doi.org/10.1080/10408390701289292. PMid:17943495.
http://dx.doi.org/10.1080/10408390701289...
). The protein matrix’s ability to immobilize fat and water determines cooking loss or cooking yield in emulsion-type products (Kumar, 2021Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
). Cooking performance had a positive effect when BC was added to the reformulation of the product (Lin & Lin, 2004Lin, K. W., & Lin, H. Y. (2004). Quality characteristics of chinese-style meatball containing bacterial cellulose (nata). Journal of Food Science, 69(3), SNQ107-SNQ111. http://dx.doi.org/10.1111/j.1365-2621.2004.tb13378.x.
http://dx.doi.org/10.1111/j.1365-2621.20...
; Marchetti et al., 2017Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 14, 52-59. http://dx.doi.org/10.1016/j.foostr.2017.06.004.
http://dx.doi.org/10.1016/j.foostr.2017....
; Yu & Lin, 2014Yu, S.-Y., & Lin, K.-W. (2014). Influence of bacterial cellulose (nata) on the physicochemical and sensory properties of frankfurter. Journal of Food Science, 79(6), C1117-C1122. http://dx.doi.org/10.1111/1750-3841.12494. PMid:24888552.
http://dx.doi.org/10.1111/1750-3841.1249...
). In addition to the water holding capacity in the meat protein matrix, the tangled and disordered networks of cellulose fibers can cross-link with the proteins and form a 3D network, contributing to the loss of fat and water, and reducing the loss through cooking (Marchetti & Andrés 2021Marchetti, L., & Andrés, S. C. (2021). Use of nanocellulose in meat products. Current Opinion in Food Science, 38, 96-101. http://dx.doi.org/10.1016/j.cofs.2020.11.003.
http://dx.doi.org/10.1016/j.cofs.2020.11...
).

The use of 10, 20 and 30% BC in Chinese-style meatballs reduced the hardness of the product (Lin & Lin, 2004Lin, K. W., & Lin, H. Y. (2004). Quality characteristics of chinese-style meatball containing bacterial cellulose (nata). Journal of Food Science, 69(3), SNQ107-SNQ111. http://dx.doi.org/10.1111/j.1365-2621.2004.tb13378.x.
http://dx.doi.org/10.1111/j.1365-2621.20...
). The water holding capacity of BC provided high humidity, favoring the reduction of hardness (Akoğlu et al., 2015Akoğlu, A., Çakir, İ., Akoğlu, İ. T., Karahan, A. G., & Çakmakçi, M. L. (2015). Effect of bacterial cellulose as a fat replacer on some quality characteristics of fat reduced sucuk. Gida: The Journal of Food, 40(3), 133-140.). However, BC added in higher levels increased hardness in sausages with low lipid and sodium content (Marchetti et al. 2017Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 14, 52-59. http://dx.doi.org/10.1016/j.foostr.2017.06.004.
http://dx.doi.org/10.1016/j.foostr.2017....
), Sucuk type sausages (Akoğlu et al., 2015Akoğlu, A., Çakir, İ., Akoğlu, İ. T., Karahan, A. G., & Çakmakçi, M. L. (2015). Effect of bacterial cellulose as a fat replacer on some quality characteristics of fat reduced sucuk. Gida: The Journal of Food, 40(3), 133-140.) and Frankfurt sausages (Yu & Lin 2014Yu, S.-Y., & Lin, K.-W. (2014). Influence of bacterial cellulose (nata) on the physicochemical and sensory properties of frankfurter. Journal of Food Science, 79(6), C1117-C1122. http://dx.doi.org/10.1111/1750-3841.12494. PMid:24888552.
http://dx.doi.org/10.1111/1750-3841.1249...
). According to Shi et al., (2014)Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012.
http://dx.doi.org/10.1016/j.foodhyd.2013...
, bacterial cellulose is a type of dietary fiber with gelling capacity that forms a rigid gel network and, for this reason, can provide greater hardness and stiffness in these products (Marchetti et al., 2017Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 14, 52-59. http://dx.doi.org/10.1016/j.foostr.2017.06.004.
http://dx.doi.org/10.1016/j.foostr.2017....
; Wang et al., 2018bWang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z., & Feng, X. (2018b). Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. International Journal of Biological Macromolecules, 118(Pt A), 722-730. http://dx.doi.org/10.1016/j.ijbiomac.2018.06.089. PMid:29944938.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). A similar result was obtained by Hu et al. (2016)Hu, H., Pereira, J., Xing, L., Hu, Y., Qiao, C.-L., Zhou, G., & Zhang, W. (2016). Effects of regenerated cellulose emulsion on the quality of emulsified sausage. LWT, 70, 315-321. http://dx.doi.org/10.1016/j.lwt.2016.02.055.
http://dx.doi.org/10.1016/j.lwt.2016.02....
who increased hardness in all formulations when they replaced 25, 50, 75 and 100% of regenerated cellulose in sausages. The addition of regenerated cellulose contributed to the formation of a more resistant network, which generated a harder texture.

Cooking loss is related to the protein matrix's ability to retain water and fat in emulsion-type products (Varga-Visi & Toxanbayeva, 2017Varga-Visi, É., & Toxanbayeva, B. (2017). Application of fat replacers and their effect on quality of comminuted meat products with low lipid content: a review. Acta Alimentaria, 46(2), 181-186. http://dx.doi.org/10.1556/066.2016.0008.
http://dx.doi.org/10.1556/066.2016.0008...
). However, in foods with fat replacement, this process may not occur due to the reduction of the emulsification capacity of the non-meat ingredients used as substitutes (Kumar, 2021Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
). In this regard, dietary fibers are effective due to their ability to retain water and fat (Álvarez & Barbut, 2013Álvarez, D., & Barbut, S. (2013). Effect of inulin, β-Glucan and their mixtures on emulsion stability, color and textural parameters of cooked meat batters. Meat Science, 94(3), 320-327. http://dx.doi.org/10.1016/j.meatsci.2013.02.011. PMid:23567131.
http://dx.doi.org/10.1016/j.meatsci.2013...
; Talukder, 2015Talukder, S. (2015). Effect of dietary fiber on properties and acceptance of meat products: a review. Critical Reviews in Food Science and Nutrition, 55(7), 1005-1011. http://dx.doi.org/10.1080/10408398.2012.682230. PMid:24915339.
http://dx.doi.org/10.1080/10408398.2012....
).

Frankfurt-type sausages (Marchetti et al., 2017Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 14, 52-59. http://dx.doi.org/10.1016/j.foostr.2017.06.004.
http://dx.doi.org/10.1016/j.foostr.2017....
), Chinese-type meatballs (Lin & Lin, 2004Lin, K. W., & Lin, H. Y. (2004). Quality characteristics of chinese-style meatball containing bacterial cellulose (nata). Journal of Food Science, 69(3), SNQ107-SNQ111. http://dx.doi.org/10.1111/j.1365-2621.2004.tb13378.x.
http://dx.doi.org/10.1111/j.1365-2621.20...
) and mahi-mahi surimi (Lin et al., 2011Lin, S., Chen, L.-C., & Chen, H.-H. (2011). Physical characteristics of surimi and bacterial cellulose composite gel. Journal of Food Process Engineering, 34(4), 1363-1379. http://dx.doi.org/10.1111/j.1745-4530.2009.00533.x.
http://dx.doi.org/10.1111/j.1745-4530.20...
) showed a water retention capacity higher than that of the control formulation and the original structure of the products was maintained after using BC as a fat replacer. The same occurred with the addition of 2 g/100 g of different sources of vegetable cellulose in sausages pre-emulsified with soybean oil, in which the water retention capacity increased when cellulose was included (Li et al., 2020Li, Q., Chen, P., Li, Y., Li, B., & Liu, S. (2020). Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant: a bioinspired oxygen protection strategy. Carbohydrate Polymers, 229, 115395. http://dx.doi.org/10.1016/j.carbpol.2019.115395. PMid:31826411.
http://dx.doi.org/10.1016/j.carbpol.2019...
).

According to Kumar (2021)Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
some non-meat ingredients may present greater water retention due to their ability to interact with the polar groups of the protein matrix. In Bologna-type mortadella, when inulin-based emulsion gels were used, the exudated liquid was close to zero due to the water and fat retention capacity, a characteristic related to inulin (Paglarini et al., 2021Paglarini, C. S., Vidal, V. A. S., Ribeiro, W., Badan Ribeiro, A. P., Bernardinelli, O. D., Herrero, A. M., Ruiz-Capillas, C., Sabadini, E., & Pollonio, M. A. R. (2021). Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage. Journal of the Science of Food and Agriculture, 101(2), 505-517. http://dx.doi.org/10.1002/jsfa.10659. PMid:32648307.
http://dx.doi.org/10.1002/jsfa.10659...
). In addition to their technological benefits, the addition of dietary fiber as a substitute is known because they are functional ingredients that improve the nutritional properties of reformulated products (Paglarini et al., 2021Paglarini, C. S., Vidal, V. A. S., Ribeiro, W., Badan Ribeiro, A. P., Bernardinelli, O. D., Herrero, A. M., Ruiz-Capillas, C., Sabadini, E., & Pollonio, M. A. R. (2021). Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage. Journal of the Science of Food and Agriculture, 101(2), 505-517. http://dx.doi.org/10.1002/jsfa.10659. PMid:32648307.
http://dx.doi.org/10.1002/jsfa.10659...
; Talukder, 2015Talukder, S. (2015). Effect of dietary fiber on properties and acceptance of meat products: a review. Critical Reviews in Food Science and Nutrition, 55(7), 1005-1011. http://dx.doi.org/10.1080/10408398.2012.682230. PMid:24915339.
http://dx.doi.org/10.1080/10408398.2012....
).

Frankfurt-type sausages with 10, 20 and 30% BC developed by Yu & Lin (2014)Yu, S.-Y., & Lin, K.-W. (2014). Influence of bacterial cellulose (nata) on the physicochemical and sensory properties of frankfurter. Journal of Food Science, 79(6), C1117-C1122. http://dx.doi.org/10.1111/1750-3841.12494. PMid:24888552.
http://dx.doi.org/10.1111/1750-3841.1249...
obtained lower values for loss of cooking, when compared to the control formulation. In the case of sausages with low sodium and fat content to which BC was added, cooking performance results similar to those of the control formulation were obtained (Marchetti et al., 2017Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 14, 52-59. http://dx.doi.org/10.1016/j.foostr.2017.06.004.
http://dx.doi.org/10.1016/j.foostr.2017....
). Ström (2013), who used microfibrillated cellulose in hamburgers, reported that cooking losses were reduced when a higher content of hydrocolloid was added. In contrast, in Chinese-style meatballs, the increase in levels of 10 to 30% of “nata” resulted in a significant increase in cooking loss compared to the control formulation (Lin & Lin, 2004Lin, K. W., & Lin, H. Y. (2004). Quality characteristics of chinese-style meatball containing bacterial cellulose (nata). Journal of Food Science, 69(3), SNQ107-SNQ111. http://dx.doi.org/10.1111/j.1365-2621.2004.tb13378.x.
http://dx.doi.org/10.1111/j.1365-2621.20...
). It is possible that the cooking loss was caused by the fact that BC was no longer able to retain water in the protein matrix during emulsification and heating, resulting in the release of water (Yu & Lin, 2014Yu, S.-Y., & Lin, K.-W. (2014). Influence of bacterial cellulose (nata) on the physicochemical and sensory properties of frankfurter. Journal of Food Science, 79(6), C1117-C1122. http://dx.doi.org/10.1111/1750-3841.12494. PMid:24888552.
http://dx.doi.org/10.1111/1750-3841.1249...
).

Color is an important parameter that affects consumers' purchasing decision (Marchetti & Andrés, 2021Marchetti, L., & Andrés, S. C. (2021). Use of nanocellulose in meat products. Current Opinion in Food Science, 38, 96-101. http://dx.doi.org/10.1016/j.cofs.2020.11.003.
http://dx.doi.org/10.1016/j.cofs.2020.11...
; Meza et al., 2020Meza, G., Sanchez, C. N., Orvananos-Guerrero, M. T., & Dominguez-Soberanes, J. (2020). Analysis of Meat Color Change using Computer Vision. 2020 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2020. New York: Institute of Electrical and Electronics Engineers. http://dx.doi.org/10.1109/ROPEC50909.2020.9258756; Y. Wang et al. 2018bWang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z., & Feng, X. (2018b). Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. International Journal of Biological Macromolecules, 118(Pt A), 722-730. http://dx.doi.org/10.1016/j.ijbiomac.2018.06.089. PMid:29944938.
http://dx.doi.org/10.1016/j.ijbiomac.201...
). According to Kumar (2021)Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001.
http://dx.doi.org/10.1080/87559129.2019....
, color attributes depend on the light scattering properties of a food product surface affected by different ingredients. Sausages with low lipid and sodium content (Marchetti et al. 2017Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 14, 52-59. http://dx.doi.org/10.1016/j.foostr.2017.06.004.
http://dx.doi.org/10.1016/j.foostr.2017....
) and Sucuk sausages (Akoğlu et al., 2015Akoğlu, A., Çakir, İ., Akoğlu, İ. T., Karahan, A. G., & Çakmakçi, M. L. (2015). Effect of bacterial cellulose as a fat replacer on some quality characteristics of fat reduced sucuk. Gida: The Journal of Food, 40(3), 133-140.) showed a reduction in the L* parameter of the samples with the addition of “nata”. The reduction of animal fat results in decrease in the L * parameter, which is related to the lack of the shiny aspect associated with the presence of fat. The opposite was observed in Frankfurt sausages where there was an increase in the parameter L * in the samples added with “nata” compared to the control formulation. In this case, luminosity increased due to the addition of water (Yu & Lin, 2014Yu, S.-Y., & Lin, K.-W. (2014). Influence of bacterial cellulose (nata) on the physicochemical and sensory properties of frankfurter. Journal of Food Science, 79(6), C1117-C1122. http://dx.doi.org/10.1111/1750-3841.12494. PMid:24888552.
http://dx.doi.org/10.1111/1750-3841.1249...
).

Sucuk sausages had no differences in odor, color, flavor and texture compared to the control treatment. The treatment with 20% BC showed an increase in hardness and obtained a reduced acceptability value. This can be explained by the non-addition of fat (0% fat and 20% of BC) in the formulation, which increased hardness as observed in the texture profile parameter (Akoğlu et al., 2015Akoğlu, A., Çakir, İ., Akoğlu, İ. T., Karahan, A. G., & Çakmakçi, M. L. (2015). Effect of bacterial cellulose as a fat replacer on some quality characteristics of fat reduced sucuk. Gida: The Journal of Food, 40(3), 133-140.).

Frankfurt sausages with 30% BC had the least firmness and the greatest juiciness compared to other formulations. The explanation for this is that the water content present in the cellulose favored a greater softening. However, despite these differences, the sausage obtained good sensory acceptance, not differing statistically when compared to the sausages of the control formulation (Yu & Lin, 2014Yu, S.-Y., & Lin, K.-W. (2014). Influence of bacterial cellulose (nata) on the physicochemical and sensory properties of frankfurter. Journal of Food Science, 79(6), C1117-C1122. http://dx.doi.org/10.1111/1750-3841.12494. PMid:24888552.
http://dx.doi.org/10.1111/1750-3841.1249...
). The same occurred in the samples of Chinese-type meatballs. The sample with 30% BC was the least firm and the most juicy, and with the least acceptance in the general acceptability attribute, whereas the formulations of 10 and 20% BC did not differ from the control sample.

As for sensory acceptance, the main effect of BC could be related to the texture of the reformulated product, since it is a tasteless, odorless and colorless product (Marchetti & Andrés, 2021Marchetti, L., & Andrés, S. C. (2021). Use of nanocellulose in meat products. Current Opinion in Food Science, 38, 96-101. http://dx.doi.org/10.1016/j.cofs.2020.11.003.
http://dx.doi.org/10.1016/j.cofs.2020.11...
).

Based on the results of the studies analyzed in Table 1, it can be concluded that it is possible to produce sausage products with low fat content and with properties very similar to commercial products. The inclusion of 10 or 20% of BC proved to be successful in replacing fat, as it did not change the color, softness and flavor of the analyzed products.

5 Future perceptions

Meat products are an excellent source of nutrients necessary for health. However, due to the high fat content they are associated with chronic diseases. Currently, the most favorable attempt to deal with this issue is based on the reformulation of these products, reducing the fat content of the composition. In the studies reported in the present review, bacterial cellulose proved to be a promising ingredient as a fat replacer in meat products. However, despite the possible applications of BC as a fat replacer, challenges still need to be solved. The space required for production, the improvement in yield and the cost of production are some of the obstacles related to the application of BC on an industrial scale (Andriani et al., 2020Andriani, D., Apriyana, A. Y., & Karina, M. (2020). The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27(12), 6747-6766. http://dx.doi.org/10.1007/s10570-020-03273-9.
http://dx.doi.org/10.1007/s10570-020-032...
; Cacicedo et al., 2016Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071. PMid:26927233.
http://dx.doi.org/10.1016/j.biortech.201...
; Esa et al., 2014Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119. http://dx.doi.org/10.1016/j.aaspro.2014.11.017.
http://dx.doi.org/10.1016/j.aaspro.2014....
).

The future objectives of the development of research in BC are investigating ways to improve production yield, exploring new methodologies to determine another bacterial strain with a higher rate of yield and investigating possible ways to reduce production costs. To solve this problem, we depend on advancements in biotechnology, in order to expand its use in the food segment.

  • Practical Application: Review of articles that used bacterial cellulose as fat replacer in meat products.

References

  • Akoğlu, A., Çakir, İ., Akoğlu, İ. T., Karahan, A. G., & Çakmakçi, M. L. (2015). Effect of bacterial cellulose as a fat replacer on some quality characteristics of fat reduced sucuk. Gida: The Journal of Food, 40(3), 133-140.
  • Álvarez, D., & Barbut, S. (2013). Effect of inulin, β-Glucan and their mixtures on emulsion stability, color and textural parameters of cooked meat batters. Meat Science, 94(3), 320-327. http://dx.doi.org/10.1016/j.meatsci.2013.02.011 PMid:23567131.
    » http://dx.doi.org/10.1016/j.meatsci.2013.02.011
  • Álvarez, D., Castillo Zambudio, M., Garrido Fernández, M., Bañón Arias, S., Nieto López, G., Díaz Molins, P., & Payne, F. (2007). Efecto de la composición y el de procesado sobre las propiedades tecnológicas y ópticas de las emulsiones cárnicas. Anales de Veterinaria de Murcia, 34(23), 25-34.
  • Alves, L. A. A. S., Lorenzo, J. M., Gonçalves, C. A. A., Santos, B. A., Heck, R. T., Cichoski, A. J., & Campagnol, P. C. B. (2016). Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers. Meat Science, 121, 73-78. http://dx.doi.org/10.1016/j.meatsci.2016.06.001 PMid:27288899.
    » http://dx.doi.org/10.1016/j.meatsci.2016.06.001
  • Andriani, D., Apriyana, A. Y., & Karina, M. (2020). The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27(12), 6747-6766. http://dx.doi.org/10.1007/s10570-020-03273-9
    » http://dx.doi.org/10.1007/s10570-020-03273-9
  • Arserim-Uçar, D. K., Korel, F., Liu, L. S., & Yam, K. L. (2021). Characterization of bacterial cellulose nanocrystals: effect of acid treatments and neutralization. Food Chemistry, 336, 127597. http://dx.doi.org/10.1016/j.foodchem.2020.127597 PMid:32763732.
    » http://dx.doi.org/10.1016/j.foodchem.2020.127597
  • Barbut, S., Marangoni, A. G., Thode, U., & Tiensa, B. E. (2019). Using canola oil organogels as fat replacement in liver pâté. Journal of Food Science, 84(9), 2646-2651. http://dx.doi.org/10.1111/1750-3841.14753 PMid:31429478.
    » http://dx.doi.org/10.1111/1750-3841.14753
  • Bolger, Z., Brunton, N. P., Lyng, J. G., & Monahan, F. J. (2017). Comminuted meat products—consumption, composition, and approaches to healthier formulations. Food Reviews International, 33(2), 143-166. http://dx.doi.org/10.1080/87559129.2016.1149861
    » http://dx.doi.org/10.1080/87559129.2016.1149861
  • Brewer, M. S. (2012). Reducing the fat content in ground beef without sacrificing quality: a review. Meat Science, 91(4), 385-395. http://dx.doi.org/10.1016/j.meatsci.2012.02.024 PMid:22444664.
    » http://dx.doi.org/10.1016/j.meatsci.2012.02.024
  • Brown, A. J. (1886). Brown on acetic ferment. Journal of the Chemical Society Transactions, 49(432), 432-439. http://dx.doi.org/10.1039/CT8864900432
    » http://dx.doi.org/10.1039/CT8864900432
  • Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071 PMid:26927233.
    » http://dx.doi.org/10.1016/j.biortech.2016.02.071
  • Calvo, F., Gómez, J. M., Ricardez-Sandoval, L., & Alvarez, O. (2020). Integrated design of emulsified cosmetic products: a review. Chemical Engineering Research & Design, 161, 279-303. http://dx.doi.org/10.1016/j.cherd.2020.07.014
    » http://dx.doi.org/10.1016/j.cherd.2020.07.014
  • Câmara, A. K. F. I., Okuro, P. K., Cunha, R. L., Herrero, A. M., Ruiz-Capillas, C., & Pollonio, M. A. R. (2020). Chia (Salvia hispanica L.) mucilage as a new fat substitute in emulsified meat products: technological, physicochemical, and rheological characterization. LWT, 125, 109193. http://dx.doi.org/10.1016/j.lwt.2020.109193
    » http://dx.doi.org/10.1016/j.lwt.2020.109193
  • Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology, 47(2), 107-124.
  • Cheng, K. C., Catchmark, J. M., & Demirci, A. (2009). Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. Journal of Biological Engineering, 3, 12. http://dx.doi.org/10.1186/1754-1611-3-12 PMid:19630969.
    » http://dx.doi.org/10.1186/1754-1611-3-12
  • Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Kim, H. W., Jeong, J. Y., & Kim, C. J. (2009). Characteristics of low-fat meat emulsion systems with pork fat replaced by vegetable oils and rice bran fiber. Meat Science, 82(2), 266-271. http://dx.doi.org/10.1016/j.meatsci.2009.01.019 PMid:20416740.
    » http://dx.doi.org/10.1016/j.meatsci.2009.01.019
  • Colmenero, F. J. (2000). Relevant factors in strategies for fat reduction in meat products. Trends in Food Science & Technology, 11(2), 56-66. http://dx.doi.org/10.1016/S0924-2244(00)00042-X
    » http://dx.doi.org/10.1016/S0924-2244(00)00042-X
  • Dong, Y. D., Zhang, H., Zhong, G. J., Yao, G., & Lai, B. (2021). Cellulose/carbon composites and their applications in water treatment – a review. Chemical Engineering Journal, 405, 126980. http://dx.doi.org/10.1016/j.cej.2020.126980
    » http://dx.doi.org/10.1016/j.cej.2020.126980
  • Dourado, F., Gama, M., & Rodrigues, A. C. (2017). A Review on the toxicology and dietetic role of bacterial cellulose. Toxicology Reports, 4, 543-553. http://dx.doi.org/10.1016/j.toxrep.2017.09.005 PMid:29090119.
    » http://dx.doi.org/10.1016/j.toxrep.2017.09.005
  • Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119. http://dx.doi.org/10.1016/j.aaspro.2014.11.017
    » http://dx.doi.org/10.1016/j.aaspro.2014.11.017
  • Fan, R., Zhou, D., & Cao, X. (2020). Evaluation of oat β-glucan-marine collagen peptide mixed gel and its application as the fat replacer in the sausage products. PLoS One, 15(5), e0233447. http://dx.doi.org/10.1371/journal.pone.0233447 PMid:32442194.
    » http://dx.doi.org/10.1371/journal.pone.0233447
  • Felfoul, I., Bornaz, S., Baccouche, A., Sahli, A., & Attia, H. (2015). Low-fat Gouda cheese made from bovine milk-olive oil emulsion: physicochemical and sensory attributes. Journal of Food Science and Technology, 52(10), 6749-6755. http://dx.doi.org/10.1007/s13197-015-1736-0 PMid:26396425.
    » http://dx.doi.org/10.1007/s13197-015-1736-0
  • Fernández, J., Morena, A. G., Valenzuela, S. V., Pastor, F. I. J., Díaz, P., & Martínez, J. (2019). Microbial cellulose from a Komagataeibacter intermedius strain isolated from commercial wine vinegar. Journal of Polymers and the Environment, 27(5), 956-967. http://dx.doi.org/10.1007/s10924-019-01403-4
    » http://dx.doi.org/10.1007/s10924-019-01403-4
  • Fontana, J. D., Koop, H. S., Tiboni, M., Grzybowski, A., Pereira, A., Kruger, C. D., Silva, M. G. R., & Wielewski, L. P. (2017). New insights on bacterial cellulose. In A. M. Grumezescu & A. M. Holban (Eds.), Food biosynthesis (pp. 213-249). Cambridge: Elsevier Academic Press. http://dx.doi.org/10.1016/B978-0-12-811372-1.00007-5
    » http://dx.doi.org/10.1016/B978-0-12-811372-1.00007-5
  • Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T., & Iqbal, H. M. N. (2016). Bacterial cellulose: a sustainable source to develop value-added products - a review. BioResources, 11(2), 5641-5655. http://dx.doi.org/10.15376/biores.11.2.Gallegos
    » http://dx.doi.org/10.15376/biores.11.2.Gallegos
  • Gao, G., Cao, Y., Zhang, Y., Wu, M., Ma, T., & Li, G. (2020). In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07. Carbohydrate Polymers, 248, 116788. http://dx.doi.org/10.1016/j.carbpol.2020.116788 PMid:32919576.
    » http://dx.doi.org/10.1016/j.carbpol.2020.116788
  • Gómez-Estaca, J., Herrero, A. M., Herranz, B., Álvarez, M. D., Jiménez-Colmenero, F., & Cofrades, S. (2019). Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocolloids, 87, 960-969. http://dx.doi.org/10.1016/j.foodhyd.2018.09.029
    » http://dx.doi.org/10.1016/j.foodhyd.2018.09.029
  • Gordon, A. (1993). Studying comminuted meat products using corroborative techniques. Food Research International, 26(3), 209-216. http://dx.doi.org/10.1016/0963-9969(93)90055-N
    » http://dx.doi.org/10.1016/0963-9969(93)90055-N
  • Gullo, M., La China, S., Falcone, P. M., & Giudici, P. (2018). Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Applied Microbiology and Biotechnology, 102(16), 6885-6898. http://dx.doi.org/10.1007/s00253-018-9164-5 PMid:29926141.
    » http://dx.doi.org/10.1007/s00253-018-9164-5
  • Guo, Y., Zhang, X., Hao, W., Xie, Y., Chen, L., Li, Z., Zhu, B., & Feng, X. (2018). Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model. Carbohydrate Polymers, 198, 620-630. http://dx.doi.org/10.1016/j.carbpol.2018.06.078 PMid:30093042.
    » http://dx.doi.org/10.1016/j.carbpol.2018.06.078
  • Güzel, M., & Akpınar, Ö. (2020). Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. International Journal of Biological Macromolecules, 162, 1597-1604. http://dx.doi.org/10.1016/j.ijbiomac.2020.08.049 PMid:32777420.
    » http://dx.doi.org/10.1016/j.ijbiomac.2020.08.049
  • Hu, H., Pereira, J., Xing, L., Hu, Y., Qiao, C.-L., Zhou, G., & Zhang, W. (2016). Effects of regenerated cellulose emulsion on the quality of emulsified sausage. LWT, 70, 315-321. http://dx.doi.org/10.1016/j.lwt.2016.02.055
    » http://dx.doi.org/10.1016/j.lwt.2016.02.055
  • Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., & Sun, D. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30. http://dx.doi.org/10.1007/s10570-013-0088-z
    » http://dx.doi.org/10.1007/s10570-013-0088-z
  • Jacek, P., Dourado, F., Gama, M., & Bielecki, S. (2019). Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 12(4), 633-649. http://dx.doi.org/10.1111/1751-7915.13386 PMid:30883026.
    » http://dx.doi.org/10.1111/1751-7915.13386
  • Jiang, J., & Xiong, Y. L. (2015). Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage. Meat Science, 109, 56-65. http://dx.doi.org/10.1016/j.meatsci.2015.05.011 PMid:26008711.
    » http://dx.doi.org/10.1016/j.meatsci.2015.05.011
  • Jozala, A. F., Lencastre-Novaes, L. C., Lopes, A. M., Santos-Ebinuma, V. C., Mazzola, P. G., Pessoa, A. Jr, Grotto, D., Gerenutti, M., & Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063-2072. http://dx.doi.org/10.1007/s00253-015-7243-4 PMid:26743657.
    » http://dx.doi.org/10.1007/s00253-015-7243-4
  • Kamiński, K., Jarosz, M., Grudzień, J., Pawlik, J., Zastawnik, F., Pandyra, P., & Kołodziejczyk, A. M. (2020). Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles. Cellulose, 27(9), 5353-5365. http://dx.doi.org/10.1007/s10570-020-03128-3
    » http://dx.doi.org/10.1007/s10570-020-03128-3
  • Kim, T. K., Lee, M. H., Kim, S. M., Kim, M. J., Jung, S., Yong, H. I., & Choi, Y. S. (2021). Physiochemical properties of reduced-fat duck meat emulsion systems: effects of preemulsification with vegetable oils and duck skin. Poultry Science, 100(2), 1291-1298. http://dx.doi.org/10.1016/j.psj.2020.10.044 PMid:33518086.
    » http://dx.doi.org/10.1016/j.psj.2020.10.044
  • Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561-1603. http://dx.doi.org/10.1016/S0079-6700(01)00021-1
    » http://dx.doi.org/10.1016/S0079-6700(01)00021-1
  • Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312. http://dx.doi.org/10.1080/87559129.2019.1704001
    » http://dx.doi.org/10.1080/87559129.2019.1704001
  • Kwon, H. C., Shin, D. M., Yune, J. H., Jeong, C. H., & Han, S. G. (2021). Evaluation of gels formulated with whey proteins and sodium dodecyl sulfate as a fat replacer in low-fat sausage. Food Chemistry, 337, 127682. http://dx.doi.org/10.1016/j.foodchem.2020.127682 PMid:32795852.
    » http://dx.doi.org/10.1016/j.foodchem.2020.127682
  • Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods, 8(8), 347. http://dx.doi.org/10.3390/foods8080347 PMid:31443236.
    » http://dx.doi.org/10.3390/foods8080347
  • Li, Q., Chen, P., Li, Y., Li, B., & Liu, S. (2020). Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant: a bioinspired oxygen protection strategy. Carbohydrate Polymers, 229, 115395. http://dx.doi.org/10.1016/j.carbpol.2019.115395 PMid:31826411.
    » http://dx.doi.org/10.1016/j.carbpol.2019.115395
  • Lima, H. L. S., Gonçalves, C., Cerqueira, M. Â., Nascimento, E. S., Gama, M. F., Rosa, M. F., Borges, M. F., Pastrana, L. M., & Brígida, A. I. S. (2018). Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 25(10), 6011-6029. http://dx.doi.org/10.1007/s10570-018-1983-0
    » http://dx.doi.org/10.1007/s10570-018-1983-0
  • Lin, K. W., & Lin, H. Y. (2004). Quality characteristics of chinese-style meatball containing bacterial cellulose (nata). Journal of Food Science, 69(3), SNQ107-SNQ111. http://dx.doi.org/10.1111/j.1365-2621.2004.tb13378.x
    » http://dx.doi.org/10.1111/j.1365-2621.2004.tb13378.x
  • Lin, S., Chen, L.-C., & Chen, H.-H. (2011). Physical characteristics of surimi and bacterial cellulose composite gel. Journal of Food Process Engineering, 34(4), 1363-1379. http://dx.doi.org/10.1111/j.1745-4530.2009.00533.x
    » http://dx.doi.org/10.1111/j.1745-4530.2009.00533.x
  • López-Pedrouso, M., Lorenzo, J. M., Gullón, B., Campagnol, P. C. B., & Franco, D. (2021). Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Current Opinion in Food Science, 40, 40-45. http://dx.doi.org/10.1016/j.cofs.2020.06.003
    » http://dx.doi.org/10.1016/j.cofs.2020.06.003
  • Marchetti, L., & Andrés, S. C. (2021). Use of nanocellulose in meat products. Current Opinion in Food Science, 38, 96-101. http://dx.doi.org/10.1016/j.cofs.2020.11.003
    » http://dx.doi.org/10.1016/j.cofs.2020.11.003
  • Marchetti, L., Muzzio, B., Cerrutti, P., Andrés, S. C., & Califano, A. N. (2017). Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Structure, 14, 52-59. http://dx.doi.org/10.1016/j.foostr.2017.06.004
    » http://dx.doi.org/10.1016/j.foostr.2017.06.004
  • McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47(7), 611-649. http://dx.doi.org/10.1080/10408390701289292 PMid:17943495.
    » http://dx.doi.org/10.1080/10408390701289292
  • Meza, G., Sanchez, C. N., Orvananos-Guerrero, M. T., & Dominguez-Soberanes, J. (2020). Analysis of Meat Color Change using Computer Vision. 2020 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2020 New York: Institute of Electrical and Electronics Engineers. http://dx.doi.org/10.1109/ROPEC50909.2020.9258756
  • Naloka, K., Matsushita, K., & Theeragool, G. (2020). Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. International Journal of Biological Macromolecules, 150, 1113-1120. http://dx.doi.org/10.1016/j.ijbiomac.2019.10.117 PMid:31739023.
    » http://dx.doi.org/10.1016/j.ijbiomac.2019.10.117
  • Okiyama, A., Motoki, M., & Yamanaka, S. (1993). Bacterial cellulose IV. Application to processed foods. Food Hydrocolloids, 6(6), 503-511. http://dx.doi.org/10.1016/S0268-005X(09)80074-X
    » http://dx.doi.org/10.1016/S0268-005X(09)80074-X
  • Öztürk-Kerimoğlu, B., Kavuşan, H. S., Tabak, D., & Serdaroğlu, M. (2020). Formulating reduced-fat sausages with quinoa or teff flours: effects on emulsion characteristics and product quality. Food Science of Animal Resources, 40(5), 710-721. http://dx.doi.org/10.5851/kosfa.2020.e46 PMid:32968724.
    » http://dx.doi.org/10.5851/kosfa.2020.e46
  • Paglarini, C. S., Vidal, V. A. S., Ribeiro, W., Badan Ribeiro, A. P., Bernardinelli, O. D., Herrero, A. M., Ruiz-Capillas, C., Sabadini, E., & Pollonio, M. A. R. (2021). Using inulin-based emulsion gels as fat substitute in salt reduced Bologna sausage. Journal of the Science of Food and Agriculture, 101(2), 505-517. http://dx.doi.org/10.1002/jsfa.10659 PMid:32648307.
    » http://dx.doi.org/10.1002/jsfa.10659
  • Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. http://dx.doi.org/10.1016/j.eurpolymj.2019.109365
    » http://dx.doi.org/10.1016/j.eurpolymj.2019.109365
  • Pereira, J., Brohi, S. A., Malairaj, S., Zhang, W., & Zhou, G. H. (2020). Quality of fat-reduced frankfurter formulated with unripe banana by-products and pre-emulsified sunflower oil. International Journal of Food Properties, 23(1), 420-433. http://dx.doi.org/10.1080/10942912.2020.1733014
    » http://dx.doi.org/10.1080/10942912.2020.1733014
  • Piadozo, M. E. S. (2016). Nata de Coco Industry in the Philippines. In M. Gama, F. Dourado & S. Bielecki (Eds.), Bacterial nanocellulose: from biotechnology to bio-economy (pp. 215-229). Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-444-63458-0.00013-5
  • Pinton, M. B., Correa, L. P., Facchi, M. M. X., Heck, R. T., Leães, Y. S. V., Cichoski, A. J., Lorenzo, J. M., Dos Santos, M., Pollonio, M. A. R., & Campagnol, P. C. B. (2019). Ultrasound: a new approach to reduce phosphate content of meat emulsions. Meat Science, 152, 88-95. http://dx.doi.org/10.1016/j.meatsci.2019.02.010 PMid:30836267.
    » http://dx.doi.org/10.1016/j.meatsci.2019.02.010
  • Rodrigues, I., Gonçalves, L. A., Carvalho, F., Pires, M., Rocha, Y. J. P., Barros, J. C., Carvalho, L. T. & Trindade, M. A. (2020). Understanding salt reduction in fat-reduced hot dog sausages: network structure, emulsion stability and consumer acceptance. Food Science & Technology International, 26(2), 123-131. http://dx.doi.org/10.1177/1082013219872677 PMid:31510800.
    » http://dx.doi.org/10.1177/1082013219872677
  • Saldaña, E., Behrens, J. H., Serrano, J. S., Ribeiro, F., de Almeida, M. A., & Contreras-Castillo, C. J. (2015). Microstructure, texture profile and descriptive analysis of texture for traditional and light mortadella. Food Structure, 6, 13-20. http://dx.doi.org/10.1016/j.foostr.2015.09.001
    » http://dx.doi.org/10.1016/j.foostr.2015.09.001
  • Santos, M., Ozaki, M. M., Ribeiro, W. O., Paglarini, C. S., Vidal, V. A. S., Campagnol, P. C. B., & Pollonio, M. A. R. (2020). Emulsion gels based on pork skin and dietary fibers as animal fat replacers in meat emulsions: an adding value strategy to byproducts. LWT, 120, 108895. http://dx.doi.org/10.1016/j.lwt.2019.108895
    » http://dx.doi.org/10.1016/j.lwt.2019.108895
  • Shah, N., Ul-Islam, M., Khattak, W. A., & Park, J. K. (2013). Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585-1598. http://dx.doi.org/10.1016/j.carbpol.2013.08.018 PMid:24053844.
    » http://dx.doi.org/10.1016/j.carbpol.2013.08.018
  • Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012
    » http://dx.doi.org/10.1016/j.foodhyd.2013.07.012
  • Silva-Vazquez, R., Flores-Giron, E., Quintero-Ramos, A., Hume, M. E., & Mendez-Zamora, G. (2018). Effect of inulin and pectin on physicochemical characteristics and emulsion stability of meat batters. CyTA: Journal of Food, 16(1), 306-310. http://dx.doi.org/10.1080/19476337.2017.1403490
    » http://dx.doi.org/10.1080/19476337.2017.1403490
  • Stasiak-Różańska, L., & Płoska, J. (2018). Study on the use of microbial cellulose as a biocarrier for 1,3-dihydroxy-2-propanone and its potential application in industry. Polymers, 10(4), 438. http://dx.doi.org/10.3390/polym10040438 PMid:30966473.
    » http://dx.doi.org/10.3390/polym10040438
  • Ström, G., Öhgren, C., & Ankerfors, M. (2013). Nanocellulose as an additive in foodstuff. Innventia Rep, 403, 1-25.
  • Szpicer, A., Onopiuk, A., Półtorak, A., & Wierzbicka, A. (2020). The influence of oat β-glucan content on the physicochemical and sensory properties of low-fat beef burgers. CyTA: Journal of Food, 18(1), 315-327. http://dx.doi.org/10.1080/19476337.2020.1750095
    » http://dx.doi.org/10.1080/19476337.2020.1750095
  • Talukder, S. (2015). Effect of dietary fiber on properties and acceptance of meat products: a review. Critical Reviews in Food Science and Nutrition, 55(7), 1005-1011. http://dx.doi.org/10.1080/10408398.2012.682230 PMid:24915339.
    » http://dx.doi.org/10.1080/10408398.2012.682230
  • Tufeanu, R., & Tita, O. (2016). Possibilities to develop low-fat products: a review. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 3-19. http://dx.doi.org/10.1515/aucft-2016-0001
    » http://dx.doi.org/10.1515/aucft-2016-0001
  • Ullah, H., Santos, H. A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291-2314. http://dx.doi.org/10.1007/s10570-016-0986-y
    » http://dx.doi.org/10.1007/s10570-016-0986-y
  • Varga-Visi, É., & Toxanbayeva, B. (2017). Application of fat replacers and their effect on quality of comminuted meat products with low lipid content: a review. Acta Alimentaria, 46(2), 181-186. http://dx.doi.org/10.1556/066.2016.0008
    » http://dx.doi.org/10.1556/066.2016.0008
  • Volova, T. G., Prudnikova, S. V., Sukovatyi, A. G., & Shishatskaya, E. I. (2018). Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Applied Microbiology and Biotechnology, 102(17), 7417-7428. http://dx.doi.org/10.1007/s00253-018-9198-8 PMid:29982923.
    » http://dx.doi.org/10.1007/s00253-018-9198-8
  • Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohydrate Polymers, 219, 63-76. http://dx.doi.org/10.1016/j.carbpol.2019.05.008 PMid:31151547.
    » http://dx.doi.org/10.1016/j.carbpol.2019.05.008
  • Wang, X., Guo, C., Hao, W., Ullah, N., Chen, L., Li, Z., & Feng, X. (2018b). Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. International Journal of Biological Macromolecules, 118(Pt A), 722-730. http://dx.doi.org/10.1016/j.ijbiomac.2018.06.089 PMid:29944938.
    » http://dx.doi.org/10.1016/j.ijbiomac.2018.06.089
  • Wang, Y., Wang, W., Jia, H., Gao, G., Wang, X., Zhang, X., & Wang, Y. (2018a). Using cellulose nanofibers and its palm oil pickering emulsion as fat substitutes in emulsified sausage. Journal of Food Science, 83(6), 1740-1747. http://dx.doi.org/10.1111/1750-3841.14164 PMid:29745986.
    » http://dx.doi.org/10.1111/1750-3841.14164
  • Warshaw, H., Franz, M., Powers, M. A., & Wheeler, M. (1996). Fat replacers: their use in foods and role in diabetes medical nutrition therapy. Diabetes Care, 19(11), 1294-1301. http://dx.doi.org/10.2337/diacare.19.11.1294 PMid:8908400.
    » http://dx.doi.org/10.2337/diacare.19.11.1294
  • Yim, S. M., Song, J. E., & Kim, H. R. (2017). Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 59, 26-36. http://dx.doi.org/10.1016/j.procbio.2016.07.001
    » http://dx.doi.org/10.1016/j.procbio.2016.07.001
  • Yousefi, M., Khorshidian, N., & Hosseini, H. (2018). An overview of the functionality of inulin in meat and poultry products. Nutrition & Food Science, 48(5), 819-835. http://dx.doi.org/10.1108/NFS-11-2017-0253
    » http://dx.doi.org/10.1108/NFS-11-2017-0253
  • Yu, S.-Y., & Lin, K.-W. (2014). Influence of bacterial cellulose (nata) on the physicochemical and sensory properties of frankfurter. Journal of Food Science, 79(6), C1117-C1122. http://dx.doi.org/10.1111/1750-3841.12494 PMid:24888552.
    » http://dx.doi.org/10.1111/1750-3841.12494
  • Zhai, X., Lin, D., Zhao, Y., Li, W., & Yang, X. (2018). Enhanced anti-obesity effects of bacterial cellulose combined with konjac glucomannan in high-fat diet-fed C57BL/6J mice. Food & Function, 9(10), 5260-5272. http://dx.doi.org/10.1039/C8FO01211C PMid:30238111.
    » http://dx.doi.org/10.1039/C8FO01211C

Publication Dates

  • Publication in this collection
    06 Aug 2021
  • Date of issue
    2022

History

  • Received
    09 June 2021
  • Accepted
    16 June 2021
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br