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1 Introduction
Probiotics are the beneficial microorganisms improving the 

intestinal microbial balance in the host when administrated into the 
gut in sufficient numbers (Ranadheera et al., 2010). The FAO/WHO 
and the International Scientific Association for Probiotics and 
Prebiotics defined probiotics as “[...] live microorganisms that, 
when administered in an adequate amount, confer a health 
benefit on the host” (Hill et al., 2014, p. 506-514). Probiotic food 
products have used worldwide and they are gaining an increasing 
popularity day by day (Sanders et al., 2018). Current trends in the 
consumption of probiotics are associated with increased levels 
of health-consciousness and the availability of probiotics in the 
form of dietary supplements (Chugh  &  Kamal-Eldin,  2020). 
The  probiotics estimated market value in both food and 
supplements was closed out the year 2017 at $45.64 billion 
and forecasted to hit $78.42 billion by the year 2025 (Probiotics 
Market Outlook, 2018).

The most extensively studied and used probiotics are lactic 
acid bacteria, mainly Lactobacillus and Bifidobacterium species. 
These genera are generally recognized as safe (GRAS) as there are 
no or minor health risk to consumers (Ranadheera et al., 2018). 
Similarly, many other genera such as Staphylococcus, Enterococcus 
(Sathyabama et al., 2014), Propionibacterium (Cousin et al., 2011), 
Leuconostoc (Diana  et  al.,  2015), Bacillus (Cutting, 2011), 
certain yeast (Asmat et al., 2018) and some filamentous fungi 
(Vibhute et al., 2011) have been also utilized as probiotics over 
the years. Probiotics are available in various pharmaceutical 
and food formulations based on the different carrier matrices 
that are currently widely available (Ranadheera et al., 2017).

A summary of commercially available products containing 
probiotics and recommended for human usage is presented 

in Table 1. Probiotics are available in various forms including 
food and beverages, powders, effervescent and capsules. 
Dairy and non-dairy food products including soy products, 
cereal-based products, fruit and vegetable juices, fermented 
meat and fish products are some of the popular probiotic carriers 
(Ranadheera et al., 2018). Various formulations based on these 
carrier matrices are widely available in the market at present 
(Ranadheera et al., 2017). However, fermented dairy products 
such as yogurt and fermented milk are the most common 
and the traditional modes of delivering probiotics to humans 
(Mitra & Ghosh, 2020; Lucatto et al., 2020). Delivery of probiotics 
through carrier food products seems more efficient due to the 
synergistic effect among the ecapsulants and the food carrier 
which can provide additioonal protection to the probiotics during 
gastrointestinal transit (Ranadheera et al., 2010).

Prebiotics are a type of dietary fibers and have beneficial 
physiological effects on the gastrointestinal microbiota 
(Zhang et al., 2018). The metabolites of dietary fiber formed as a 
result of their fermentation in the colon provide mechanistic links 
between fiber intake and health benefits (Roberfroid et al., 2010). 
The prebiotic products that cause a selective modification in 
the gut microbiota composition and/or activity(ies) could be 
induced in the colon and the extra-intestinal compartments and 
contribute towards reducing the risk of dysbiosis and associated 
intestinal and systemic pathologies (Roberfroid  et  al.,  2010; 
Zucko  et  al.,  2020). Nowadays, the synbiotic approach or 
combination of probiotics and prebiotics in food products is 
gaining a considerable attention as this process boosts the health 
benefits of both probiotics and prebiotics due to their synergistic 
nature (Ranadheera et al., 2017; Shafi et al., 2019).
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Table 1. Commercially available products containing probiotic recommended for human consumption.

Product/Company Strain name Composition Possible application effects

BlueBiotics Ultimate 
care (Blue Biology)

S. boulardii, 
B. coagulans
L. acidophilus,
L. bulgaricus
B. longum,
L. rhamnosus
L. salivaricus,
L. casei
L. plantarum,
B. lactis, B. breve

Maltodextrin, Hypromellose, magnesium 
stearate

Improved digestive function, weight loss, 
lowered cholesterol, normalized blood 
pressure, less sick days

Culturelle Daily 
Probiotic (Culturelle) Lactobacillus GG

Microcrystalline cellulose, sucrose, 
maltodextrin, sodium ascorbate, vegetable 
magnesium stearate, silicon dioxide

Prevent bloating, improve gut health and boost 
immune system

Align Probiotic + 
Prebiotic Gummies 
Supplement

B. coagulans Inulin, sugar Beneficial in maintaining digestive health

Ultimate Flora (Renew 
Life) B. lactis Cellulose, vegetable fiber Positive effects on the balance of microbes in 

the gut

Yakult (Yakult Honsha 
Co. Ltd.), A probiotic 
dairy beverage

L. casei
B. animalis

Sugar, skim milk powder, glucose, natural 
& artificial flavors and water Intestinal flora repositions, improve digestion

Activia Yogurt 
(Danone)

L. bulgaricus,
S. thermophilus

Various fruits (strawberry, peaches, 
vanilla) presented in the form of milk, 
buttermilk, yogurts, fermented milk, juices, 
berry soups, cheese and capsules

Help to regulate the digestive system

Align (Procter Gamble) B. infantis 35624

Microcrystalline, cellulose, hypromellose, 
sucrose, magnesium stearate, sodium 
caseinate, titanium dioxide, trisodium 
citrate dihydrate, propyl gallate 
(antioxidant preservative),

Help to maintain the digestive balance with 
healthy bacteria

SCD Essential
Probiotics™
(Sustainable 
Community 
Development)

B. longum,
L. acidophilus
L. bulgaricus,
L. casei,
L. delbrueckii,
L. fermentum,
L. plantarum, 
Lactococcus lactis,
L. lactis subsp.
diacetylactis,
S. cerevisiae,
S. thermophilus

Purified water, sugar cane molasses, 
rock salt, sea salt, blueberry, cherry and 
pomegranate juice concentrate, brown rice 
extract, SCD Probiotics cultures

Regulate digestion and
support personal wellness

SVELTYGastro Protect 
(Nestle) L. johnsonii La1 A fermented drink milk, flavor, sugars Control H. pylori infection and stomach 

discomfort

LC1 Yoghurt 
(Nestle)

L. johnsonii La1 and
L. acidophilus

A probiotic yogurt, fermented milk,
flavors, sugars

Regulates digestion, protection against 
gastrointestinal pathogens

Actimel (Danon) L. casei (defensis) Milk, sugar, flavors Protection against pathogens

Bioflorin (Cerbios – 
Pharma)

Enterococcus LAB
SF 68

Probiotic active ingredient.
Hard gelatin capsules

Prevention and treatment of intestinal 
disorders

Ginophilus 
(Probionov)

L. casei
L. rhamnosus Lcr 35 Lactose monohydrate

Lowers the pH in the vagina and 
therebyprevent colonization and proliferation 
of harmful pathogenic bacteria

Yógourmet Products 
(Lyo-San, Inc.)

L. casei,
B. bifidus,
L. acidophilus

Starters for yogurt manufacture
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Product/Company Strain name Composition Possible application effects

Biorich (Chr. Hansen 
A/S)

L. acidophilus La-5 and 
B. bifidum Bb-12 Starters for yogurt manufacture

Probiotic Chewy Cereal 
Bars Ganeden BC30 Protein, prebiotics, fiber, omega-3 fatty 

acids,

Chocolate
Probiotic Bars
Chocolate
CrispATTUNE

L. acidophilus,
L. casei,
B. lactis

Milk chocolate coating, organic brown rice 
crisps

Heini`s Yogurt
Cultured Cheese
(Bunker Hill Cheese 
company)

L. acidophilus,
L. casei,
B. lactis

Yogurt cultures, coagulants, probiotic 
cultures and salt

Perkii Probiotics 
Australia

Lactobacillus casei strain 
LC431

Natural fruit juices with no articficial 
colours, flavours or sweetners.

beneficial effects in the gastrointestinal and 
immune system

Adapted and modified from Soccol et al. (2014).

Chocolate is becoming increasingly popular as a carrier 
delivering probiotics to gut (Rad  et  al.,  2016). Chocolate is 
composed of cocoa mass and sugar suspended with cocoa butter 
matrix. The major types, dark, milk and white chocolate differ 
mainly in the content of cocoa solids, milk fat and cocoa butter 
(Possemiers et al., 2010). The popularity of chocolate around the 
world combined with high level of health-related awareness of 
the contemporary consumer is increasing rapidly and the idea 
of the enriching composition of different kinds of chocolate 
with probiotics has high market demand (Min  et  al.,  2019). 
The popularity of chocolate seems to be mostly associated with 
its higher sensory acceptability and positive emotions. Chocolate 
satisfies a broad range of consumers; however, using chocolate 
as a food matrix to carry probiotics has not been thoroughly 
investigated (Min et al., 2019). The carrier substrates exert a 
significant influence on the efficacy of probiotics and regarding 
chocolate such information is also not thoroughly reviewed 
(Rad et al., 2016). This review summarizes the current evidence 
on chocolate-probiotic applications both in the research and 
industrial domains. Besides, therapeutic effects and health 
benefits of probiotics have also been briefly discussed. Since 
probiotics along with prebiotics confer additional health benefits 
on the host when administered together due to their synergistic 
effect (Gibson et al., 2017), hence an account on the effect of 
prebiotics on probiotics efficacy is presented. Finally, as most of 
the publications on novel probiotic chocolate products have been 
focused on encapsulation techniques (Kemsawasd et al., 2016; 
Mirkovic et al., 2018; Nambiar et al., 2018), a brief account on 
efficacy of probiotic encapsulation is also presented.

2 Health and therapeutic effects of probiotics
The therapeutic effects associated with regular probiotic 

consumption is clear and well documented in the literature 
(Hill et al., 2014). In order to achieve the therapeutic effects, 
the proposed functional dose for use as foods or supplements 
is 1×109 colony forming units (CFU) of probiotics per serving, 
and the nominated probiotics mostly include Lactobacillus 
acidophilus, L. casei, L. fermentum, L. gasseri, L. johnsonii, 
L.  paracasei, L.  plantarum, L. rhamnosus and L. salivarius 

and Bifidobacterium adolescentis, B. animalis, B. bifidum, B. breve 
and B. longum (Sanders & Younes, 2018). Many research evidences 
suggest that probiotics create a healthy gut environment and 
a vigorous immune system (Bäckhed  et  al.,  2012; Ritchie & 
Romanuk, 2012). However, in order to achieve health benefits 
of probiotics certain requirements should be fulfilled: (1) 
resistance to the manufacturing process and storage stress and 
maintenance viability in the commercial product until the end 
of the shelf-life, with a threshold of 108-109 CFU/g at the time 
of consumption (Rosa et al., 2016) and (2) persistence to the 
adverse physicochemical conditions in the gastrointestinal tract, 
such as gastric acid and bile secretions.

The survivability of probiotic bacteria actively detracts 
during the gastrointestinal digestion due to harsh conditions. 
Consequently, it has been reported that probiotics can enter 
into viable but non-culturable (VBNC) state when exposed to 
harsh, stressful conditions such as the gastrointestinal digestion 
(Bäckhed  et  al.,  2012; Ritchie & Romanuk, 2012) and this 
may affect the delivering of health benefits to the consumers. 
Consequently, it is recommended to consume probiotics 
several days per week (Harvard Health Publishing, 2019). 
Probiotics have been known for other beneficial health effects, 
and the consumption of probiotics alone or in food can evince 
antioxidant activity and reduce damages caused by oxidation 
(Sanders,   2015). However, the oxidation resistant ability of 
probiotics, especially the underlying mechanisms, is not fully 
understood. As oxidative stress has been linked with altered gut 
microbiota, the positive effects of probiotics on intestinal flora 
composition could be a possible mechanism in this scenario 
(Wang et al., 2017; Vasconcelos et al., 2019).

Similar to animals, probiotics also have their antioxidant 
enzymatic systems (Wang et  al.,  2017). Moreover, probiotics 
can stimulate the antioxidant system in the host and elevate the 
activities of antioxidants efficiently (Khaledabad et al., 2020). 
There are several possible functions of probiotics that include 
the production and secretion of antimicrobial substances, which 
can cause displacement of pathogen colonization in the gut 
(O’Shea et al., 2012; Zendeboodi et al., 2020). Additionally, the 

Table 1. Continued...
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secretion of substances such as protein, short chain fatty acid 
(SCFA), organic acids, cell surface active components and DNA 
from probiotics can exert the same therapeutic effect as probiotics 
do on gastrointestinal disease. These therapeutic agents are known 
as pharmabiotics or probioactive (O’Shea et al., 2012). For examples, 
Agamennone  et  al. (2018) stated that antibiotic-associated 
diarrhea (AAD) was a side-effect frequently linked to the use 
of broad-spectrum antibiotics, and clinical studies showed that 
co-administration of specific probiotics reduced the risk for AAD.

The European Pediatric Association (EPA) summarized 
recommendations and credited guidelines on the use of 
probiotics for children with selected clinical conditions. However, 
particular caution is necessary for certain groups, including 
premature infants, immunocompromised and critically ill 
patients (Hojsak et al., 2018). Such caution is needed, since not 
enough evidence is currently available about the positive effect of 
probiotics in these categories of people. Additionally, probiotics 
have been used in the prevention and treatment of lactose 
intolerance (Almeida et al., 2012) and common gastrointestinal 
disorders (Barnes & Yeh, 2015; Roobab et al., 2020) including 
irritable bowel syndrome, Crohn’s disease and peptic ulcers 
(Weichselbaum, 2009), high blood pressure (Sirtori et al., 2015; 
Sarfraz et al., 2019) and serum cholesterol (Kumar et al., 2012; 
Grom et al., 2020). Probiotics are also known for their potential 
anti-carcinogenic properties (Zitvogel et al., 2017).

3 Prebiotics and their impact on probiotics
According to the expert consensus document of the 

International Scientific Society for Probiotic and Prebiotics, 
prebiotics are non-viable substrates that serve as nutrients 
for beneficial microorganisms by the host, including resident, 
indigenous microbes and non-resident, administrated 
probiotic strains (Gibson  et  al.,  2017). In order to be highly 
effective, prebiotic is required to meet three basic criteria: (1) 
the ability to resist host gastrointestinal tract (GIT) digestion 
(Charbonneau et al., 2016), (2) being fermentable by intestinal 
microorganisms (Singla & Chakkaravarthi, 2017) and (3) stimulating 
the growth and activity of some intestinal bacteria, specially 
probiotics. Since prebiotics support the growth and activity of 
probiotics and other fermentative bacteria, understanding the 
role and metabolism of prebiotics by the probiotic bacteria are 
essential for achieving the maximum health benefits associated 
with probiotics intake (Rastall, 2013). Prebiotics target intestinal 
microbiota to improve host health (Chen et al., 2013).

It has been well established that the intestinal microbiota 
(bifidobacteria and lactobacilli) play a crucial role in gastrointestinal 
development and maintaining good health. Naturally human 
gut contains more than 40 billion of microbes which highlights 
the existence of a highly complex microbiota ecosystem with 
the potential for profound effects on metabolism and immune 
function (Shreiner  et  al.,  2015). LAB and certain yeast help 
in maintaining healthy microbiota balance in the human 
gut. The oligosaccharides especially fructooligosaccharides 
and galactooligosaccharides which are known as prebiotics 
preferentially metabolized by Bifidobacteria can be degraded by 
β-fructanosidase and β-galactosidase enzymes. Thus, prebiotics 
helps probiotics survival in a competitive environment in mixed 

culture ecosystems in the human gut (Cani & Everard, 2016). 
The use of probiotics and prebiotics in combination or separately 
can change the microbiota in the host.

Many prebiotic substances are used in the food industry including 
inulin, a polymer of fructose with a terminal glucose, shorter 
chain inulin types (2-8 unites) known as fructooligosaccharides 
and galactooligosaccharides with of ß,2-1 linkage, polydextrose, 
wheat dextrin, acacia gum, psyllium, banana and whole grains 
(Wilson & Whelan, 2017). To date, all known prebiotics are 
carbohydrate compounds, primarily oligosaccharides, known 
to resist digestion in the human small intestine and reach the 
colon where the gut microbiota ferment them. Studies have 
reported that inulin and fructooligofructose, lactulose, and 
resistant starch meet all aspects of prebiotic definition, including 
the stimulation of Bifidobacterium (Slavin, 2013).

Galactooligosaccharides (GOS) are produced enzymatically 
from lactose for commercial food applications, in addition to infant 
formulae to mimic breast milk oligosaccharides. GOS encourage 
the gut bacterial population and reduce intestinal infections 
(Barile & Rastall, 2013). In particular, bovine milk-derived 
oligosaccharides support the growth of probiotic B. animalis 
ssp. lactis and improves intestinal health (Radke et al., 2017). 
Chen et al. (2013) evaluated the prebiotic properties of pectic 
oligosaccharides (POS) using a fecal batch culture fermentation. 
The POS increased the number of bifidobacteria and lactobacilli 
and produced a higher concentration of acetic, lactic, and 
propionic acid than their parent pectin. POS decreased the 
number of Bacteroides and Clostridia while their precursor pectin 
increased these microbes (Vandeputte et al., 2017).

The effects of POS on the growth of probiotic bacteria and the 
production of short-chain fatty acids were comparable to those of 
the most studied prebiotic fructooligosaccharide (Wilson & Whelan, 
2017). POS modified the intestinal microbiota by stimulating 
the growth of species involved in immunity development, such 
as Bifidobacterium spp, Sutturella wadsworthia, and Clostridium 
cluster XIVa microorganisms, and at the same time increased 
the production of the short chain fatty acid, butyrate and 
propionate. Such short chain fatty acids are essential for leptin 
production, lipoprotein metabolism and anti-inflammatory 
activities (Shreiner et al., 2015; Tan et al., 2014).

Interventions to prevent intestinal inflammation may be 
achieved with fermentable prebiotic fibers that enhance beneficial 
bifidobacteria or with soluble fibers that block bacterial-epithelial 
adherence (Simpson & Campbell, 2015). Significant evidences 
confirm that prebiotics increase the bioavailability of minerals and 
stimulate the immune system (Gibson et al., 2017). However, there 
is less clear evidence regarding their prophylactic or therapeutic 
role in gastrointestinal infections. Possible mechanisms have 
been proposed to investigate gut microbiota-host interactions, 
including the role of novel bacteria, the regulation of antimicrobial 
peptide production, the maintenance of the gut barrier function 
and innate intestinal immunity (Cani & Everard, 2016).

Data from community-wide microbiome analysis demonstrated 
a broader effect of the prebiotics on the intestinal microbiota 
including the production of SCFA, immunity development, and 
increasing minerals bioavalability. The promising evidence of 
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using prebiotic supplements to improve probiotics functions 
and gastrointestinal health has increased their popularity 
(Vandeputte et al., 2017; Guimarães et al., 2020). However, limited 
literatures related to the use of prebiotcs in chocolate are available. 
A study by Konar et al. (2018) reported that inulin and polydxtrose 
were the main prebiotics substances applied in chocolate 
encapsulation. Currently, various probiotics microencapsulating 
substances (encapsulants) such as alginate, skimmed milk powder, 
whey protein and hi-maize resistant-starch are invistigated in 
our laboratory. Additionnally, coating of probiotics with dark 
chocolate could be an excellent encapsulant to protect them 
from environmental stress conditions and for optimal delivery 
in the human digestion system (Campagnolo  et  al.,  2017; 
Foong et al., 2013).

4 Probiotic delivery: efficacy of encapsulation
Although probiotics are one of the most promising 

ingredients to produce functional foods and nutraceuticals, 
their low resistance to different environmental and technological 
conditions in food systems is a significant drawback for their 
effective utilization (Sanders  et  al.,  2018). Hence, various 
approaches have been proposed and microencapsulation is an 
excellent method to protect probiotics during processing, storage 
and gastrointestinal transit (Chen et al., 2017). Encapsulation is 
a technique which entraps an active agent into a wall material 
of another substance producing particles on a nano, micro or 
millimeter scale (Ray et al., 2016). Microencapsulation is expected 
to extend the shelf life of probiotics at ambient temperature in 
various food matrices, increase their heat resistance, improve 
their compression and shear stress resistance, and enhance their 
acid tolerance (Šipailienė & Petraityte, 2018).

Efficient systems for protecting and controlling the release 
of encapsulated materials are highly valuable techniques in the 
fields of medicine, food, biotechnology and material sciences. 
A good number of lypoprotectants and cryoprotectants such 
as alginate, carrageenan, polysaccharides, skim milk, whey 
protein and maize starch has been proposed to encapsulate the 
probiotic cells (Haffner et al., 2016). Various microencapsulation 
techniques have been reported in the literature. Das et al. (2011) 
divided these techniques into two major groups, namely chemical 
and physical methods. However, the common tarnishes used 
in the food industry involve spray drying, solvent evaporation, 
supercritical fluid evaporation and air suspension (Das et al., 2011) 
and freeze drying (Saarela et al., 2006).

Microencapsulation of probiotic bacteria in functional foods 
on an industrial scale faces technological, biosafety and financial 
challenges, and questions linked to not only the encapsulation 
process but also to consumer behavior and acceptance patterns 
(Rokka & Rantamäki, 2010). The in vitro gastrointestinal 
model showed that probiotic strains in a specific food matrix 
could offer superior protection for the delivery of the probiotic 
bacteria into the colon (Shreiner et al., 2015). To ascertain the 
protective effect of the whey protein concentrate, probiotic 
strains of L. casei LAFTIL26, L. acidophilus LAFTIL10 or 
B. animalis were subjected to in vitro sequential conditions 
whereas stomach, duodenum and ileum conditions increased the 
viable cell count of L. casei and L. acidophilus; in both systems, 

B. animalis suffered only slight decreases in viable cell count. 
Thus, whey protein concentrate appeared to protect the strains 
during delivery throughout the simulated gastrointestinal system 
(Gerez et al., 2012; Madureira et al., 2011).

The internal gelation technology with alginate and starch 
has been reported to be suitable for protecting Lactobacillus and 
more efficient than alginate only. The effect of two encapsulating 
polysaccharides (sodium alginate and carrageenan) on the 
viability of probiotic bacteria (L. acidophilus) in ice cream 
under simulated gastrointestinal (GIT) conditions significantly 
improved the cell survival of probiotics compared to free cells. 
However, sodium alginate microcapsules exhibited better 
release profile than carrageenan (Afzaal et al., 2019). Prebiotics 
(fructooligosaccharide, lactulose and raffinose) and chitosan 
along with alginate were also tested as a coating material to 
improve encapsulation of a probiotic and microspheres were 
produced to encapsulate L. gasseri and B. bifidum as probiotics 
prebiotic combination (Vandeputte  et  al.,  2017). This work 
showed that the microencapsulation of L. gasseri and B. bifidum 
with alginate-chitosan coating could offer an effective delivery 
of viable bacterial cells to the colon and maintain their survival 
during simulated gastrointestinal conditions. Additionally, the 
combination of soy protein and carbohydrate (maltodextrin) 
as carrier resulted in the best survival rates of probiotics 
during storage.

Addition of prebiotics in the walls of probiotic microcapsules 
provided improved protection for the active organisms. In simulated 
gastrointestinal conditions, (Mokhtari et al., 2017) reported a 
significant (P<0.05) enhancement in the resistance of L. acidophilus 
when applying a layer of S. cerevisiae cell wall compound, which 
can be used as a novel coating materials in the food industry. 
However, the food and nutraceutical industries still confront 
some difficulties for scaling up the use of such encapsulants, 
though the laboratory-based results have been well establised 
(Jankovic et al., 2010). Various encapsulating materials along 
with targeted probiotics, processing techniques and their main 
functionalities are summarrized in Table 2.

5 Chocolate as a probiotic carrier substrate
The incorporation of probiotics, both free and encapsulated 

forms into chocolate and chocolate-based products as carriers 
(Table 3) could offer an excellent alternative to popular 
and major fermented dairy products containing probiotics 
(Ranadheera et al., 2018). Apparently, encapsulation of probiotics in 
chocolate seems much effective in terms of maintaining their 
viability. (Silva et al., 2017) reported that the survival of B. animalis 
subsp lactis and L. acidophilus incorporated into chocolate was 
very high with a viability level of 108 CFU/g. The survival of 
these probiotics was not significantly affected after 120 days 
of storage at 25 °C and the in vitro gastrointestinal digestion of 
probiotic-chocolate did not cause any significant reduction in 
probiotic counts. However, the in vitro digestion of free B. animalis 
subsp lactis and L. acidophilus cultures reduced their counts by 
1.4 and 0.7 log CFU/g, respectively. An in vitro setup was used to 
evaluate the protection of the probiotics during passage through 
the gastrointestinal tract via embedding them in dark and milk 
chocolate or liquid milk (Succi et al., 2017). Both chocolates 



Food Sci. Technol, Campinas, 41(3): 531-543, July-Sep 2021536   536/543

Probiotic chocolate

Table 2. Effects of encapsulating materials and encapsulation techniques on probiotics functions.

Probiotic strain/products Encapsulating materials Processing 
technique Probiotics Function References

L. rhamnosus
L. salivarius
L. plantarum
L. acidophilus
L. paracasei
B. longum
B. lactis Bl 04
B. lactis Bl 07 HOWARU L. 
rhamnosus HOWARU
B. bifidum

Alginate, guar gum, 
xanthan gum, locust bean 
gum, carrageenan, vegetable 
oil, tween 80

Emulsion 
combination bile and acid tolerance Ding & Shah (2009)

L. paracasei ssp paracasei 
F19
B. lactis Bb12

Casein, hi-maize resistance 
starch

Freeze drying 
followed by 
emulsification

Survival after drying and 
storage Heidebach et al. (2010)

L. acidophilous Z1L Free cells - Bile, acid and low pH 
tolerance Sabir et al. (2010)

L. plantarum 299 Whey protein coated with 
alginate Freeze drying Low pH and high bile 

tolerance Gbassi et al. (2009)

B. bifidum
L. gasseri Sodium alginate, chitosan Freeze drying High viability and shelf life 

at 4 °C Chávarri et al. (2010)

L. paracasei ssp. Tolerance
L. delbrueckii ssp. bulgaricus Skim milk, trehalose Freeze drying Good survivability

at 4 °C Jalali et al. (2012)

L. casei NCFB 161 Alginate, gelatinized starch, 
lecithin Freeze drying Long shelf life Donthidi et al. (2010)

B. lactis Maltodextrin, inulin, 
oligofructose Spray drying High viability Paim et al. (2016)

L. casei 01 Alginate, hi-maize resistant 
starch

Emulsion 
technique

High gastrointestinal 
tolerance Pankasemsuk et al. (2016)

L. bulgaricus Whey protein isolate, 
alginate Freeze drying High gastrointestinal 

tolerance Chen et al. (2017)

L. acidophilus NCDC 016 Maltodextrin, gum Arabic Spray drying Temperature tolerance Arepally & Goswami (2019)

S. succinus MabB4
E. fecium FldM3

Sugar beet, chicory, oats 
and Na-alginate emulsion High gastrointestinal 

tolerance Sathyabama et al. (2014)

B. lactis
L. acidophilus Molten fat with lecithin Spray chilling High gastrointestinal 

tolerance Lara Pedroso et al. (2012)

L. acidophilus 5
L. casei 01

GOS, inulin, alginate, 
chitosan Emulsification High survivability at GIT Krasaekoopt & Watcharapoka 

(2014)

B. bifidum Bb12 Whey Spray drying Long viability Castro-Cislaghi et al. (2012)

B. bifidum
L. acidophilus

Cell wall of yeast
(S. cerevisiae)

Calcium alginate 
emulsion High survivability at GIT Mokhtari et al. (2017)

L. reuteri
Pediocucus acidilactici
L. salivarius

Inulin, alginate Extrusion Highly effective against bile 
and acid Atia et al. (2016)

L. plantarum Maltodextrin, wheat 
dextrin, hi-maize Freeze drying Highest cell viability at GIT Chotiko & Sathivel (2016)

L. casei LAFTI L26
L. acidophilus LAFTIL10
B. animalis Bo

Whey cheese matrix Emulsion Highest cell viability at GIT Madureira et al. (2011)

L. acidophilus Sodium alginate, 
carrageenan Gel bead formation Highest cell viability Afzaal et al. (2019)
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with probiotics is rather tricky since some processing steps are 
conducted at high temperatures and these products are usually 
stored at ambient temperature. However, modifying chocolate 
manufacturing process and protecting the probiotic from the 
steps involved in heat treatments could be an effective method 
for making probiotics to be delivered to the gut environment 
in a viable condition and adequate numbers for host health 
(Yonejima et al., 2015).

Another strategy to overcome this problem would be 
the selection of suitable probiotic strains. For example, 
L.  plantarum-LRCC5193 (LP-LRCC5193) isolated from 
Kimchi, a fermented vegetables demonstrated a significantly 
higher degree of heat, acid, and bile acid tolerance compared 
to other lactic acid bacteria (Lim et al., 2018). The lyophilized 
LP-LRCC5193 in chocolate maintained 92.9 log percentage and 
97.2 log percentage survival rate when exposed to stomach juice 

offered superior protection which was 91% and 80% survival 
in milk chocolate for L. helveticus and B. longum, respectively 
compared to 20% and 31% found in milk (Possemiers et al., 2010). 
Unsimilarly, a study by Gadhiya  et  al. (2018) reported that 
chocolate enriched with L. helveticus MTCC 5463 freeze dried 
culture (3% w/w) yielded acceptable organoleptic qualities, but 
the probiotics viability was maintained at 2.42×108 CFU g–1 
only for 15 days when of storage at 10 ± 2 °C.

The synbiotic chocolate mousse supplemented with 
L. paracasei subsp. paracasei LBC 82 showed excellent delivery 
of L. paracasei, and the prebiotic inulin did not interfere with 
its viability or sensory preferences (Gadhiya et al., 2018).

Furthermore, the fortification of chocolate with microencapsulated 
probiotics B. longum resulted in improved stability and viability 
(Champagne  et  al.,  2015). The fortification of confectionery 

Table 3. Chocolates as a carrier for probiotic delivery.

Strain Mode of probiotics Carrier Vehicle Reference

L. acidophilus LH5
Protein and polysaccharide coated 
probiotics

Milk, semisweet and dark 
chocolates Lalicic-Petronijevic et al. (2017)S. thermophilus ST3

B. breve BR2

L. acidophilus La 14 ATCC SD5212
Freeze dried powder White chocolates Konar et al. (2018)

L. paracasei Lpc-32 ATCC SD5275

L. rhamnosus GG

Non-encapsulated delivery Dark chocolates Succi et al. (2017)
L. paracasei F19

L.casei DG

L. reuteri DSM17398

L. acidophilus LA3,

Non-encapsulated delivery Semisweet chocolate Silva et al. (2017)B. animalis subsp. lactis

BLC1

L. plantarum HM47 Spray dried powder encapsulated 
with maltodextrin Milk chocolates Nambiar et al. (2018)

L. helveticus, Microencapsulated freeze-dried 
powder

dark and milk chocolate or liquid 
milk Possemiers et al. (2010)

B. longum

L. acidophilus
Freeze dried powder Milk and dark chocolates Lalicic-Petronijevic et al. (2015)

B. lactis

L. brevis ssp. Coagulans Freeze dried labre powder Milk chocolates Yonejima et al. (2015)

L. rhamnosus Non-encapsulated freeze dried and 
/ encapsulated spray dried powder Dark chocolates Champagne et al. (2015)

B. longum

Bacillus indicus Freeze dried powder with 
maltodextrin and lemon fiber Dark chocolates Erdem et al. (2014)

L. plantarum 546 Microencapsulated
Dark chocolates Mirkovic et al. (2018)

L. plantarum 299v Skim milk (20%) and spray 
draying

L. casei 01 Spray dried powder with skim 
milk

Milk, semisweet and dark 
chocolates Kemsawasd et al. (2016)

L. acidophilus LA5

L. acidophilus NCFM
Freeze dried powder Chocolates Klindt-Toldam et al. (2016)

B. lactis HN019

L. plantarum Non-encapsulated delivery Dark chocolates Foong et al. (2013)
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(pH 2.5, pepsin 0.04%) and intestinal juice (oxgall 0.5%, trypsin 
0.04%, and pancreatin 0.04%) respectively.

A compilation of three probiotic strains (B. breve BR2, 
L. acidophilus LH5 and S. thermophilus ST3) microencapsulated 
with lypoprotectants and incorporated in milk, semisweet and 
dark chocolates as carriers maintained high probiotic viability 
(8-9 log CFU/g) during 360 days of storage at 4 °C and 20 °C 
(Lalicic-Petronijevic et al., 2017). Thus, milk, dark and semisweet 
chocolate products would be excellent vehicles to deliver probiotics 
because of the high viability of probiotics during the shelf-life of 
foods (Erdem et al., 2014). In fact, probiotic dark chocolate has 
higher potential in new product development in the functional 
food market (Possemiers et al., 2010).

Chocolate is rich in natural antioxidants and its nutritional 
quality can be enhanced by the incorporation of probiotics and/or 
prebiotics (Gadhiya et al., 2015). Cocoa and dark chocolate have 
a wide range of potent antioxidants and other nutrients that can 
positively affect human health. Notably, dark chocolate is widely 
recognized as a source of various bioactive compounds, such as 
flavonoids and phenolic acids, which possess high antioxidant 
activities (Foong et al., 2013). The antioxidant compounds in 
chocolate can be serve as a better probiotic carrier than popular 
dairy products for intestinal delivery (Possemiers et al., 2010). 
Consequently, the coating of probiotics in dark chocolate could be 
an excellent solution to protect them from environmental stress 
conditions and for optimal delivery into the human digestive 
system (Foong et al., 2013).

6 Probiotic chocolates: challenges in the industrial 
applications

Chocolates are the most appealing food among the consumers 
produced from cocoa liquor. Considering the demand, the 
food industries are setting their production goals per year 
(Sanders et al., 2018). For the commercialization and scale-up 
the cost-effective production is one of the critical parameters 
to be taken into consideration and the prices of the raw 
materials and technologies as well as health and environmental 
safety procedures are becoming more and more challenging 
(Rokka & Rantamäki, 2010). However, recent developments in 
the food industry showed that chocolate products containing 
encapsulated probiotics is gaining a higher market share 
(Haffner et al., 2016).

Though there is no clear dietary recommendation on 
chocolate consumption, 13-15g per day of probiotic dark 
chocolate has been suggested to be sufficient to ensure the 
balance of the intestinal microflora and antioxidants requirements 
(Petyaev & Bashmakov, 2017; Succi et al., 2017). Lactobacillus 
and Bifidobacterium are the widely used probiotic bacteria 
for probiotic chocolate products at present however, there is 
a significant potential in incorporating other species (Sanders 
& Younes, 2018). Dark, semi-sweet and white chocolates can 
be used as probiotic carriers at the industrial level, and FOS 
like fructan, galactan, inulin, pectin can be added as prebiotics 
which enhances the functionality of these probiotic products. 
The primary challenges for probiotic chocolate similar to other 
probiotic carrier food products are difficulties in maintaining 

their viability until time of consumption (Gadhiya et al., 2015) 
and processing conditions like high temperature.

Consequently, as mentioned previously (section 5) modifying 
chocolate manufacturing process and protecting the probiotic 
during the various steps of chocolate manufacturing, including 
heat treatments, could be an effective method for making 
probiotics to be delivered to the gut environment in a viable 
condition and adequate numbers for host health. Additionally, 
providing protection to probiotic strains via encapsulation 
before addition to food carriers and manufacturing the final 
products are very essential. As free probiotic bacteria are not 
able to survive for a long time in an adverse environment, 
encapsulation with lypoprotectants or cryoprotectants could 
be industrially reliable techniques for the development of 
probiotic chocolate products with an extended shelf life 
(Haffner et al., 2016).

Chocolate has an appealing acceptance for its color, flavor, taste, 
mouthfeel and texture and at the industrial scale of production, 
incorporation of probiotics into chocolates must not alter these 
positive attributes (Sandoval-Castilla et al., 2010). For example, 
the particle size is an essential factor which directly affects the 
textural properties of chocolates (Sandoval-Castilla et al., 2010) 
and incorporation of probiotics should not interfere with these 
aspects in the final product. Currently, the commercially available 
encapsulated probiotic products (pharmaceutical probiotics) 
are expensive and limited to those individuals who can afford 
to pay such a high cost. Probiotics enriched chocolate could a 
cheaper alternative.

However, challenges like microcapsules formation, consumer 
preference and application to industry should be taken into account 
for novel healthy product development (Jankovic et al., 2010). 
Other major challenges for industrial application of probiotics 
in chocolates are the encapsulation technology and the 
encapsulating materials which are expensive. Current market 
trends estimate that the price of encapsulated probiotic bacteria 
maybe two or three times that of non-encapsulated probiotics 
(Agheyisi, 2018). Hence, innovations and novel cost-effective 
technologies and materials for the massive commercialization of 
probiotic chocolate products are needed. The costly ingredients 
and non-food grade label of some of the components in culture 
media limit its use in the food industry.

Thus, alternative and also vegetable-based edible media 
which can produce same colony density or even better than 
the commonly used probiotic culture agar medium (DeMan 
Rogosa Sharpe) should be investigated at the industrial level. 
Additionally, consumer health issues and environmental 
consciousness deserve special attention in the design of future 
carrier matrices and technologies (Ranadheera et al., 2010). 
Techniques for encapsulation are developing, and new 
industrial-scale methods are being made available. Nevertheless, 
further researches are needed to optimize the use of encapsulated 
probiotic cells in various food systems including chocolate 
while considering numerous factors such as nutritional aspects, 
safety and ecological processing conditions at the industrial 
level (Haffner et al., 2016).
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7 Conclusion
The enormous amount of research activities at present on the 

beneficial impact of the gut microbiome on humans lead to 
the development of novel food products that directly supports the 
gut health. Probiotic and prebiotic formulation with chocolates 
is a relatively new area which has not been fully explored, and 
extensive research is needed to verify the therapeutic effects 
of probiotic chocolate products. Novel prebiotics and their 
effect on gut microbiota, rheological, textural, sensory and 
nutritional profile of probiotic chocolate products are needed 
to be investigated to attract health-conscious consumers for 
these products.

In addition, more focus should be given to cost-effective 
probiotic chocolate production technologies and materials 
as these are the driving forces in commercializing probiotic 
products. Microencapsulation has already been proven as one 
of the efficient methods for maintaining high survivability and 
stability of probiotic bacteria since it protects probiotics both 
during food processing and storage as well as under the adverse 
gastrointestinal conditions. Polysaccharides such as starches and 
alginate, gelatin and milk proteins are usually used as matrixes in 
probiotic microencapsulation. Some of these materials possess 
prebiotic properties and can enhance probiotic efficacy when 
encapsulated with probiotics due to synergistic effect. Besides, 
chocolate food matrix also possesses certain prebiotic effects.

Further, chocolate matrix can help to maintain viability 
during gastrointestinal transit. Hence, chocolate can be 
considered as a suitable vehicle in delivering probiotics and 
a good alternative to major popular probiotic food products. 
Lactobacilli and bifidobacteria are the most commonly used 
probiotics in manufacturing probiotic chocolate products at 
present, however there is a significant potential in incorporating 
other probiotic species. As the benefits of probiotics are now well 
documented, the consumers’ demand for food, beverages and 
supplement products enriched with probiotics will continue to 
increase. Consequently, novel products such as chocolate-based 
probiotic food products would play a significant role in the 
future probiotic market.
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