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1 Introduction
Food industry is the life industry of human beings, and it 

is also an eternal industry. The storage environment of food 
industry will affect the processing quality (Lima et al., 2021). 
According to the Food and Agriculture Organization of the 
United Nations, the global loss rate of post-harvest food at the 
farm, transport, storage and processing stage is 13.8%, which 
is more than 400 billion US dollars a year. Therefore, the study 
of food quality changes and the search for accurate quality 
evaluation methods are conducive to the timely regulation of 
storage environment, and the improvement of food storage 
safety factor.

Wheat is an important food crop in the food industry. 
Its storage system can affect the quality (Scariot et al., 2017). 
Physiological and biochemical indices have long played an 
important role in evaluating the quality of wheat. Some of these 
indices change significantly with storage conditions or time, for 
example, fatty acid values rise rapidly with increasing storage 
temperature, and germination rate and peroxidase activity 
decrease with increasing storage time (Abdullah et al., 2019; 
Zhang et al., 2017a). However, there are many physical and chemical 
indices for wheat, which are random and unrepresentative in 
their selection, and a single physical and chemical index is not 
sufficiently informative to evaluate the quality of wheat, while 
the measured values of some indices are easily disturbed by the 
testing environment, equipment and operational specifications, 
affecting the accuracy of the overall quality of evaluation results 
(Wang et al., 2020). In addition, when multiple physical and 
chemical indices are used to analyze wheat quality, they are 

mostly limited to combining the results of multiple physical 
and chemical indices to analyze quality, without considering 
the differences in the degree of information contribution of 
each physical and chemical index and the complex interaction 
between multiple indices (Wang et al., 2018). Due to the lack 
of comprehensive multi-index evaluation system, it is difficult 
to evaluate wheat quality reasonably and reliably.

Grey system theory is a method used to deal with data 
with uncertain or partially missing information, it can study 
the characteristics and development trend of evaluation objects 
through a small amount of data information and make informed 
judgments and predictions (Zhang et al., 2017b). Among them, grey 
clustering and grey correlation analysis are two typical methods, 
they have been widely used in recent years for comprehensive 
evaluation problems in the fields of transportation, agriculture 
and environment (Li et al., 2017; Dang & Zhang, 2019). This study 
combines the advantages of grey clustering and grey correlation 
analysis, and integrates principal component analysis theory 
and entropy weight method. We propose a new comprehensive 
wheat quality evaluation mode and apply to the evaluation of 
wheat quality.

2. Selection of quality indices and calculation of 
weights
2.1 Factor sets and standardized methods

The deterioration of wheat quality is a complex process in 
which multiple physicochemical indices act together. As there 
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are certain synergies and differences in the effects of each 
physicochemical index, the reasonable selection of physicochemical 
indices has a direct impact on the scientific accuracy of the final 
evaluation results. By reviewing the literature and consulting 
experts, and based on the ease of measurement and recognition, 
eight physical and chemical indices were selected as a set of 
wheat quality evaluation indices, and numbered, as shown in 
Table 1. The type of index indicates the direction of influence 
on the quality evaluation, the positive indices indicating that 
the higher the value, the better the quality, the negative indices 
indicating that the lower the value, the better the quality, and the 
intermediate indices indicating that the quality is better when 
the value is stable around a certain value.

The units and orders of magnitude of wheat indexes were 
different, in order to carry out a comprehensive analysis of these 
indices, the data need to be standardized. As different types of 
indices do not represent the same meaning, in order to facilitate 
the subsequent calculation and analysis, this study combined 
the different index types in Table 1 and used Equations 1-3 to 
standardize each index separately. The method is as follows:

If there are m batches of wheat and l physical and chemical 
index in the original dataset, the standardization matrix is 

( )ij m lZ z ×= , (i = 1, 2, 3, ..., m; j =1, 2, 3, ..., l).

For indices a, b, g and h, the lower the value, the better the 
quality of the wheat.
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For indices as c, e and f, the higher the value, the better the 
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For index d, which requires stability around a desired value, 
the better the quality of the wheat around that value.
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where xij is the jth index of batch i, ˆijx  is the standardized index, 
xjmax and xjmin are the maximum and minimum values of index j 
respectively, and the ideal value of the jth index.

2.2 Establishment of a PCA-based wheat quality evaluation 
index set

There are complex correlations between the physical and 
chemical indices of wheat. If the degree of correlation between 
some indices and all other indices is low, it indicates that they 
provide a weak amount of information for the overall evaluation 
of quality, and when there are more factors in the evaluation 
index set, it will reduce the calculation efficiency of the model 
and increase the difficulty of the problem analysis, so it is 
necessary to analyze the relationship between the indices, so 
as to select the factors prominent in the expression of wheat 
quality. Related studies show that PCA has strong advantages 
in multivariate correlation analysis and validity verification, and 
without the need for a priori knowledge (Yousaf et al., 2021; 
Sun et al., 2020). Therefore, this paper uses PCA to analyze and 
select wheat physical and chemical indices of wheat, as shown 
in the following steps.

1) KMO and Bartlett’s sphericity test.

Before factor analysis, KMO and Bartlett’s spherical test are 
required to verify the suitability for principal component analysis 
(Dinata et al., 2021). The KMO value is used to compare the 
relationship between the simple correlation coefficient and the 
partial correlation coefficient between variables, PCA can be 
performed only when KMO value is greater than 0.5, and the 
closer the value is to 1, the better the analysis effect is. The Bartlett 
sphericity test is used to determine whether there is correlation 
between variables, and generally requires a significance level 
of a P-value less than 0.05, and also requires the cumulative 
contribution of the variance of the principal component factors 
to be no less than 70% (Zhao et al., 2019).

2) Correlation coefficient matrix calculation.

By calculating the correlation coefficient between indices C 
and D through Equation 4, the multi-index correlation coefficient 
matrix can be formed as:

cov( , )
l l

C D

C DH
σ σ ×

 
=   
 

 (4)

where C = 1, 2, 3, ..., l,D = 1, 2, 3, ..., l,cov(C, D) is the covariance, 
σC and σD are the standard deviations of indices C and D, 
respectively.

Table 1. Descriptive statistics for physical and chemical indices of wheat.

No. Physical and 
chemical indices Index description Type of index

a Fatty acid value An index of wheat 
freshness

Negative

b Falling number Greater impact on wheat 
eating quality

Negative

c Sedimentation 
value

Reflects the protein content 
of wheat and its quality

Positive

d Reducing sugar Nutrients required for 
respiration

Intermediate

e Germination rate Reflects the ability to 
germinate under suitable 
conditions

Positive

f Peroxidase A protective enzyme 
against the ageing of 
organisms

Positive

g Electrical 
conductivity

Reflects the degree of 
change in intracellular 
electrolytes

Negative

h Malondialdehyde
End product of internal 
membrane lipid 
peroxidation in wheat

Negative
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3) Cumulative variance contribution rate and index score 
calculation.

The principal components with a cumulative contribution 
rate of not less than 70% were extracted, and a maximum of t 
(t < l) principal components were selected, and the index scores 
in each principal component were calculated with the following 
Equations 5-6:

1 1

t l

sum i i
i i

a λ λ
= =

=∑ ∑  (5)

1 1

( )
t l

j i ij i i
i i

eδ λ λ λ
= =

= ⋅∑ ∑  (6) 

Where λi is the eigenvalue of the ith principal component and eij 
denotes the jth value of the ith eigenvector. Finally, a comprehensive 
analysis of the correlation coefficient matrix and factor scores 
was carried out to complete a reasonable selection of indices.

2.3 Determine the index weight

The degree of influence of different physico-chemical indices 
on the evaluation results varies to a certain extent. In order to 
achieve effective differentiation, each index needs to be assigned 
a suitable weight. As all the physical and chemical indices of 
wheat can evaluate the quality to a certain extent, and as there 
is a lack of specific description and effective definition of the 
influence degree of each index on the quality in existing studies, 
it is necessary to take measures to allocate appropriate weights 
for each index. Traditional subjective weighting methods, such 
as hierarchical analysis (AHP), superior order diagram (PC) 
and Delphi have major limitations and difficult to guarantee the 
scientific validity of the results (Sarkar & Biswas, 2021). To avoid 
this problem, this study adopts the entropy weight method, an 
objective assignment method, to determine the weight of each 
index based on the amount of information provided by each 
index and the degree of variability. The smaller the entropy value, 
the greater the amount of information contained and it should 
be given a larger weight, and conversely the larger the entropy 
value, the smaller the weight should be given (Gu et al., 2021). 
The basic steps are as follows:

1) Let n (j =1, 2, 3, ..., n) be the number of indices after filtering. 
The new matrix ( )ij m nX x ×=  is obtained by removing the 
redundant indices from the above standardized matrix Z, 
which is used as the standardized matrix for the entropy 
weighting method.

2) Equation 7 calculates the entropy value of each physical 
and chemical index.
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value of Ej, the higher the value of the index for wheat quality 
evaluation.

3) Equation 8 calculates the weights of each physical and 
chemical index.
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3 Construction of a grey comprehensive evaluation 
model of wheat quality

The quantitative analysis of wheat quality evaluation indices 
has the problem of grey numbers, and the grey levels of quality 
also have a certain degree of fuzziness and uncertainty, so the 
grey evaluation matrix can be constructed using grey system 
theory, and the final decision can be made. The main steps of the 
constructed grey comprehensive evaluation model are as follows.

3.1 Defining the rubric set and grading criteria

In order to ensure the scientific rationality of the evaluation 
and to meet the actual needs of the evaluation object, before 
evaluating the quality of wheat, it is necessary to determine 
the set of evaluation factors of the grey system and the number 
of levels of grey categories, i.e., the quality of its division into a 
number of levels, and give the scale criteria. Among them, the 
set of rubrics Q can be expressed as Equation 9:

{ }1 2, , , dQ q q q=   (9)

where d is the number of evaluation levels, (k = 1, 2, 3, ..., d).

3.2 Building a grey evaluation weight vector matrix

According to the needs of quality evaluation, d grey grades 
are divided, i.e., corresponding to the number of evaluation 
levels, and then the whitening weight functions of the different 
grey grades are determined so that the range of grey correlation 
coefficient values of the wheat index dataset can be divided into 
d small intervals. The traditional whitening weight functions 
are upper limit measure, moderate measure and lower limit 
measure whitening weight functions, etc (Fidan & Yuksel, 
2020). However, this type of whitening weight function only 
has affiliation with one adjacent interval, while the affiliation 
of the remaining n-2 intervals is 0, which will lead to the loss 
of much important information and affect the final quality 
evaluation results. To avoid this problem, this paper optimizes 
the traditional whitening weight function and transforms the 
straight-sided trapezoid of the whitening weight function into 
a curved-sided trapezoid, thus being able to cover all the grey 
grade intervals and greatly improve the utilization of information. 
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The whitening power functions before and after optimization 
are shown in Figure 1.

3.3 Building a grey correlation matrix

According to grey system theory, before evaluating the 
quality of wheat using multiple physical and chemical indices, 
the ideal assessment value of each physical and chemical index 
needs to be selected as the reference series, noted as x0(j). If all 
the indices in batch i of wheat belong to the kth grey grade, then 
the batch can be evaluated as the kth grade, at this time for any 
index j with x0(j) = 1, then the reference series can be expressed 
as x0(j) = [x0(1), x0(2), x0(3), ..., x0(n)] = [1, 1, 1, ..., 1]. The set 
of physical and chemical indices involved in the evaluation can 
be expressed as xi(j) = [xi(1), xi(2), xi(3), ..., xi(n)]. In addition, 
the value of the resolution factor ρ needs to be set. The value 
of ρ is taken in the range [0,1], the closer ρ is to 1 means that 
the resolution of the correlation coefficient is larger, and vice 
versa if the resolution is smaller, generally taking the value 
0.5 (Zhou et al., 2021). Then, the grey correlation coefficient 
between each evaluation index and the reference series can be 
expressed as Equation 10:
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where min min() and max max() are the minimum and maximum 
differences of the whitening function matrix, respectively.

As a result, the grey correlation coefficient matrix Ui for 
batch i wheat index data can be expressed as Equation 11:
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3.4 Determining the evaluation level and ranking degree

The combined clustering coefficients for the quality of each 
batch of wheat were obtained by taking the weights of each grey 

grade and the weights of each physicochemical index for each 
batch of wheat and synthesizing them by means of Equation 12.
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Using the formula 
1

j

i i i
i

y y y
=

= ∑ to normalize each integrated 

clustering coefficient in matrix Yi and determine the grey grade 
attribute to which each batch of wheat belongs according to the 
principle of maximum affiliation, i.e., the quality evaluation 
result for that batch of wheat.

In addition, in order to obtain the ranking of the quality 
of each batch of wheat, from the lowest to the highest rank, 
corresponding to the weights 1, 2, ..., g, the ranking degree 
of each batch of wheat is calculated using Equation 13, thus 
achieving a comprehensive evaluation.

1 21 2j dP y y g y= ⋅ + ⋅ + + ⋅

 (13)

Finally, the quality evaluation results of each batch of wheat 
obtained from the evaluation model constructed in this paper 
are compared with the actual quality classification status and 
other evaluation methods for feasibility and validity analysis. 
The flow of the grey comprehensive evaluation model of wheat 
quality constructed in this paper is shown in Figure 2.

4 Evaluation examples
4.1 Experimental materials and test results

The experimental wheat variety chosen for this paper was 
Zhou Mai 22, cultivated by the Henan Provincial Academy of 
Agricultural Sciences. The cleaned wheat was packed in gauze 
in 500 g packs and placed in an artificial climate incubator for 
simulated storage at a temperature of about 25 °C. Samples were 
taken at several different storage times to test the values of the 
physical and chemical indices of wheat, and each index was 
tested based on the following:

Figure 1. Images of the whitening power function before and after optimization.
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Fatty acid value: GB/T 15684-2015

Landing value: GB/T 10361-2008

Sedimentation value: GB/T 21119-2007

Reducing sugar: GB/T 5009.7-2016

Germination rate: GB/T 5520-2011

Peroxidase: GB/T 32102-2015

Malondialdehyde: GB 5009.181-2016

Electrical conductivity: SL 78-1994 

To avoid possible measurement errors, three parallel 
experiments were carried out on each batch of wheat samples 
for each index and the average value was taken as the test result, 
which resulted in the physical and chemical index data for 
15 batches of wheat, as shown in Table 2.

4.2 Selection of evaluation indices

The amount of information provided by each physical 
and chemical index of wheat for the evaluation of overall 
quality varies greatly and reflects different quality conditions. 
In order to select the best index and at the same time reduce the 

Figure 2. Modeling process for comprehensive wheat quality evaluation.

Table 2. Wheat physical and chemical index test data.

Batch a/(mgKOH/100g) b/s c/mL d/% e/% f/(U/g) g/(μs/cm/g) h/(μmol/g)
1 16 380 57 0.275 89 4000 26 2.95
2 17 330 62 0.275 90 3950 31 2.9
3 22.5 495 50 0.274 93 3000 43 3
4 23 415 55 0.28 92 3600 30 2.99
5 27 510 48 0.29 82 2600 52 3
6 16 345 60 0.27 93 4200 28 2
7 20 385 58 0.273 88 3900 25 2.75
8 24 430 49 0.276 87 3300 32 3.1
9 26 495 51 0.288 85 2750 42 3.4

10 30 495 50 0.288 80 2800 48 3.2
11 15 340 61 0.27 91 4000 25 2.8
12 18 360 59 0.27 93 4100 29 2.8
13 21 405 56 0.286 91 3800 27.5 3
14 25 330 61 0.286 89 3300 45 2.9
15 29 485 52 0.295 78 2940 40 3.3
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computational complexity of the model, analysis and screening 
were carried out by PCA. The data of the physical and chemical 
indices in Table 1 were standardized using Equations 1 to 3 to 
obtain the standardization matrix Z. The KMO and Bartlett’s 
spherical test of the multi-index matrix Z was performed by the 
SPSS data analysis tool and KMO = 0.778, p < 0.05, indicating 
that the data could be used for PCA analysis. The correlation 
between the indices was calculated using Equation 4 and formed 
the correlation matrix H, as shown in Table 3. The correlation 
coefficient takes values between [-1, 1]. The closer the value of 
the correlation coefficient is to 1, the more similar the two indices 
are, while a negative number indicates that the two indices are 
negatively correlated, and when it reaches -1, the two indices 
are inversely correlated.

The correlation coefficients between fatty acid value, landing 
value, sedimentation value, germination rate, peroxidase, electrical 
conductivity and malondialdehyde were all greater than 0.5, 
indicating that these indices had strong similarity in reflecting 
a certain quality aspect of wheat. The correlation coefficients 
between reducing sugar and the indices were negative and the 
absolute values were less than 0.5, indicating that reducing 
sugars were negatively correlated with the other indices and 
that the quality of wheat reflected a greater difference than the 
other indices. Therefore, the physical and chemical index of 
reducing sugar could be removed, and the seven other physical 
and chemical indices with high similarity, which can effectively 
reflect the quality of wheat, could be selected as evaluation 
factors of the model.

Following the above calculation method, the maximum 
combined clustering coefficients and the grey grades to which 
the remaining 14 batches of wheat belong can be obtained, and 
the results of the quality evaluation grades for each batch of 
wheat are shown in Table 4.

This quality grading result is in general agreement with the 
literature (Zhou, 2019) and the evaluation and grading results of 
the relevant in-house experts, and has a high degree of reliability.

4.3 Analysis of evaluation results

To further compare the superiority-inferiority relationships 
of different batches of wheat, and to verify the reasonableness 
and accuracy of the results of wheat quality evaluation by the 
model in this paper, the ranking degree of each batch of wheat 
was measured using Equation 13 to obtain the ranking results 
of each batch of wheat quality by the PCA-EWM-grey system 
(GS) evaluation model constructed in this paper. Meanwhile, 
the PCA-EWM-TOPSIS evaluation model (Liu et al., 2021) and 
PCA-rank sum ratio (RSR) evaluation model (Lu et al., 2022) 
were used as comparative models to calculate and rank the 
superiority and inferiority relationships of each batch of wheat, 
respectively. Among them, the PCA-EWM-TOPSIS evaluation 
model used the similarity proximity C as the scoring basis, and 
the PCA-RSR evaluation model used the RSR value as the scoring 
basis. The results of the comparative analysis of the different 
evaluation models are shown in Table 5.

For the PCA-EWM-GS comprehensive evaluation model 
constructed in this paper, according to the ranking degree 

relationship, it can be seen that Batch 2 wheat obtained a maximum 
value of 2.78438, indicating the best quality of this batch, while 
Batch 9 wheat scored only 2.24116, indicating the poor quality 
of this batch. Comparing the results with the grading results, it 
can be seen that the ranking of the wheat batches corresponds 
to the order of the evaluated grades, except for Batch 3, which 
belongs to Grade III, which has a slightly lower ranking score 
than Batch 15, which belongs to Grade IV. The reason for this is 
that the grey category coefficients for Batch 3, which belonged 
to Grade I, were lower than those for Batch 15, and a higher 
weight was given to the grey category coefficients for Grade I in 
the calculation using Equation 13. Overall, the ranking degree 
results verify that the model has a high degree of confidence.

In order to better analyze the relationship between the results 
of this model and the results of other methods, the Spearman 
rank correlation coefficient method (van der Walt & Fitchett, 
2021) was used to discriminate the correlation between the 
evaluation results of this model and those of other models, 
which was calculated as shown in Equation 14. It is generally 
believed that the greater the sum of the correlation coefficients, 
the higher the consistency of the evaluation results between the 
methods, and the model’s results can be considered to have a 
high degree of confidence.

Table 4. Quality evaluation results of different batches of wheat.

Batch
Grey grade composite clustering 

coefficient Maximum 
value

Evaluation 
level

Grade I Grade II Grade III Grade IV
1 0.30033 0.28549 0.23258 0.18160 0.30033 Grade I
2 0.32023 0.30133 0.22103 0.15741 0.32023 Grade I
3 0.16144 0.24646 0.30513 0.28696 0.30513 Grade III
4 0.24828 0.28293 0.26315 0.20565 0.28293 Grade II
5 0.17302 0.22213 0.28877 0.31608 0.31608 Grade IV
6 0.32180 0.29531 0.21915 0.16374 0.32180 Grade I
7 0.27390 0.27544 0.24955 0.20110 0.27544 Grade II
8 0.20626 0.27353 0.27811 0.24210 0.27811 Grade III
9 0.15998 0.23026 0.30071 0.30904 0.30904 Grade IV

10 0.17577 0.22594 0.28727 0.31102 0.31102 Grade IV
11 0.31792 0.28830 0.22218 0.17160 0.31792 Grade I
12 0.31204 0.29996 0.22632 0.16169 0.31204 Grade I
13 0.27076 0.28111 0.25371 0.19442 0.28111 Grade II
14 0.23367 0.26617 0.26805 0.23210 0.26805 Grade III
15 0.18212 0.23992 0.28591 0.29205 0.29205 Grade IV

Table 3. Correlation matrix of physical and chemical indices for wheat.

Index a b c d e f g h
a 1.000
b 0.782 1.000
c 0.747 0.948 1.000
d -0.409 -0.185 -0.236 1.000
e 0.783 0.645 0.584 -0.052 1.000
f 0.910 0.874 0.831 -0.346 0.723 1.000
g 0.819 0.686 0.625 -0.307 0.614 0.908 1.000
h 0.674 0.639 0.598 -0.429 0.600 0.695 0.471 1.000
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where n is the total batches of wheat and di is the difference in 
ranking of the evaluation results between the models for the iTH 
batch of wheat. The correlation coefficients between the evaluation 
results of different models are shown in Table 6.

Comparing the results of the other two evaluation models, 
we can find that the ranking results of each batch of wheat quality 
are basically consistent, and the ranking results of different 
evaluation models for each batch of wheat have less than 3 digits 
difference. The correlation coefficients between the results of 
the evaluation models were all greater than 0.9, indicating that 
the results of the three evaluation models were significantly 
correlated, which indicates that the evaluation results of the 
models are highly consistent and validates the reasonableness 
and validity of the calculation results of the model constructed 
in this paper. In addition, a closer look at the above table shows 
that the results of the PCA-EWM-TOPSIS evaluation model and 
the PCA-RSR evaluation model are closer, with a correlation 
coefficient of 0.996, while the correlation coefficient between 
PCA-EWM-GS evaluation model and the two comparative 
models is slightly smaller, which is mainly due to the fact that 
the PCA-EWM-TOPSIS evaluation model is used to determine 
the positive and negative ideal values of each index and the 
optimal solution, and ranking the batches of wheat according to 
their proximity to the optimal solution, whereas the PCA-RSR 

method is based on the RSR, a dimensionless statistic, through 
the conversion of rank. Both of these comparison models only 
analyze the intrinsic relationship between the index data and 
make judgments on the results, while ignoring the influence 
of the fuzzy grey grade boundary value of the indices on the 
ranking results, which may have certain limitations in practical 
application. In contrast, the ranking results of the model 
established in this paper are more scientific and effective, and 
better meet the practical needs.

5 Summary
In response to the shortcomings of insufficient information 

and low accuracy in evaluating wheat quality by single indices, this 
paper constructs a multi-index wheat quality grey comprehensive 
evaluation model based on a grey comprehensive evaluation model 
and combining the PCA and entropy weight method. The analysis 
method in this paper further enriches the theoretical knowledge 
of the grey comprehensive evaluation model and provides a new 
way for the comprehensive evaluation of wheat quality.

Acknowledgements
This work is supported by Major Public Welfare Project of 

Henan Province (NO. 201300311200).

References
Abdullah, M., Zulkiffal, M., Din, A., Shamim, S., Javed, A., Shair, H., 

Ahmed, J., Musa, M., Ahsan, A., & Kanwal, A. (2019). Discrepancy 

Table 5. Comparative analysis of different evaluation models.

Batch
PCA-EWM-GS evaluation model PCA-EWM-TOPSIS evaluation model PCA-RSR evaluation model

Evaluation value Sort Evaluation value Sort Evaluation value Sort
1 2.70455 5 0.768 5 0.824 5
2 2.78438 1 0.882 3 0.889 3
3 2.28236 12 0.331 11 0.426 11
4 2.57386 8 0.583 9 0.668 8
5 2.25209 14 0.1 15 0.139 15
6 2.77517 2 0.91 2 0.937 2
7 2.62212 7 0.733 6 0.775 6
8 2.44395 10 0.41 10 0.486 10
9 2.24116 15 0.224 12 0.299 12

10 2.26646 13 0.112 14 0.165 14
11 2.75254 4 0.923 1 0.94 1
12 2.76237 3 0.839 4 0.877 4
13 2.62821 6 0.657 7 0.732 7
14 2.50139 9 0.636 8 0.641 9
15 2.31211 11 0.219 13 0.245 13

Table 6. Correlation coefficients between different models.

Evaluation model PCA-EWM-GS evaluation 
model

PCA-EWM-TOPSIS evaluation 
model PCA-RSR evaluation model

PCA-EWM-GS evaluation model 1 0.939 0.943
PCA-EWM-TOPSIS evaluation model 0.939 1 0.996

PCA-RSR evaluation model 0.943 0.996 1



Food Sci. Technol, Campinas, 43, e98722, 20228

Evaluation model for wheat quality

in red- and white-fleshed loquat (Eriobotrya japonica) fruits 
by electronic nose and headspace solid-phase microextraction 
with gas chromatography-mass spectrometry. Food Science 
and Technology (Campinas), 40(Suppl. 1), 21-32. http://dx.doi.
org/10.1590/fst.27318.

van der Walt, A. J., & Fitchett, J. M. (2021). Exploring extreme warm 
temperature trends in South Africa: 1960-2016. Theoretical and 
Applied Climatology, 143(3), 1341-1360. http://dx.doi.org/10.1007/
s00704-020-03479-8.

Wang, R. L., Zhang, L. L., & Lu, Q. (2018). Exploration of mechanisms 
for internal deterioration of wheat seeds in postharvest storage and 
nitrogen atmosphere control for properties protection. Crop Science, 
58(2), 823-836. http://dx.doi.org/10.2135/cropsci2017.08.0481.

Wang, R., Liu, L., Guo, Y., He, X., & Lu, Q. (2020). Effects of deterioration 
and mildewing on the quality of wheat seeds with different moisture 
contents during storage. RSC Advances, 10(25), 14581-14594. http://
dx.doi.org/10.1039/D0RA00542H. PMid:35497123.

Yousaf, A. A., Abbasi, K. S., Ahmad, A., Hassan, I., Sohail, A., Qayyum, 
A., & Akram, M. A. (2021). Physico-chemical and nutraceutical 
characterization of selected indigenous Guava (Psidium guajava 
L.) cultivars. Food Science and Technology (Campinas), 41(1), 47-58. 
http://dx.doi.org/10.1590/fst.35319.

Zhang, S. B., Lv, Y. Y., Wang, Y. L., Jia, F., Wang, J. S., & Hu, Y. S. (2017a). 
Physiochemical changes in wheat of different hardnesses during 
storage. Journal of Stored Products Research, 72, 161-165. http://
dx.doi.org/10.1016/j.jspr.2017.05.002.

Zhang, T., Wang, J. B., Zhang, T., & Wang, J. M. (2017b). Multi-fault 
fuzzy diagnosis for complicated system based on grey theory. Journal 
of Beijing University of Aeronautics and Astronautics, 43(9), 1832-
1840. http://dx.doi.org/10.13700/j.bh.1001-5965.2016.0703.

Zhao, W. C., Qin, X. D., Cheng, G. P., Zhang, W. G., Sun, Y. Z., Li, W. 
H., Zhao, X. Q., & Zhang, Y. J. (2019). Assessment on water quality 
of pelteobagrus fulvidraco culture ponds with five feeding rates 
based on principal component analysis. Guangdong Agricultural 
Sciences, 46(7), 144-155. http://dx.doi.org/10.16768/j.issn.1004-
874X.2019.07.021.

Zhou, T. X. (2019). Research on the comprehensive analysis of the 
quality of wheat based on the physiological and biochemical indexes 
(Dissertation). Henan University of Technology, Henan.  http://
dx.doi.org/10.27791/d.cnki.ghegy.2019.000126.

Zhou, Z. K., Hu, S. J., Zhang, R. T., Ma, Y. H., Du, K. J., Sun, M. Z., 
Zhang, H., Jiang, X. R., Tu, H. Y., Wang, X. J., & Chen, P. (2021). A 
simple and novel biomarker panel for serofluid dish rapid quality and 
safety assessment based on gray relational analysis. Food Bioscience, 
42(23), 101188. http://dx.doi.org/10.1016/j.fbio.2021.101188.

in germination behavior and physico-chemical quality traits during 
wheat storage. Journal of Food Processing and Preservation, 43(10), 
14109. http://dx.doi.org/10.1111/jfpp.14109.

Dang, L., & Zhang, H. H. (2019). Grey clustering model based on kernel 
and information field. Grey Systems-Theory and Application, 10(1), 
56-67. http://dx.doi.org/10.1108/GS-08-2019-0029.

Dinata, A., Dhiniati, F., & Diansari, L. E. (2021). Delineation of flash 
flood hazard zones based on morphometric parameters using GIS 
technique in upper Lematang sub-watershed. IOP Conference Series. 
Earth and Environmental Science, 708(1), 012051. http://dx.doi.
org/10.1088/1755-1315/708/1/012051.

Fidan, H., & Yuksel, M. E. (2020). A novel short text clustering model based 
on grey system theory. Arabian Journal for Science and Engineering, 
45(4), 2865-2882. http://dx.doi.org/10.1007/s13369-019-04191-0.

Gu, H., Zhu, H. X., & Cui, X. B. (2021). Multivariate state estimation 
technique combined with modified information entropy weight 
method for steam turbine energy efficiency monitoring study. 
Energies, 14(20), 1-18. http://dx.doi.org/10.3390/en14206795.

Li, D. F., Wang, H. Y., Tang, R., Yu, R., & Wang, Y. H. (2017). Evaluating raw 
milk quality by an optimized grey cluster evaluation model in China. 
Journal of Grey System, 29(3), 99-109. Retrieved from https://www.nstl.
gov.cn/paper_detail.html?id=fd238cfa8514245ea470c96b9cea5602

Lima, P. C. C., Santos, M. N. D., Guimaraes, M. E. D., Araujo, N. O., 
Krause, M. R., & Finger, F. L. (2021). Ethylene and its inhibitors affect 
the quality of processed sweet potatoes. Food Science and Technology 
(Campinas), 41(4), 825-832. http://dx.doi.org/10.1590/fst.24720.

Liu, Z. H., Jiang, Z. Z. J., Xu, C., Cai, G. J., & Zhan, J. (2021). Assessment 
of provincial waterlogging risk based on entropy weight TOPSIS–
PCA method. Natural Hazards, 108(2), 1545-1567. http://dx.doi.
org/10.1007/s11069-021-04744-3.

Lu, H. L., Zhu, C. X., Cao, X., & Hsu, Y. (2022). The sustainability 
evaluation of masks based on the integrated rank sum ratio and 
entropy weight method. Sustainability, 14(9), 5706. http://dx.doi.
org/10.3390/su14095706.

Sarkar, B., & Biswas, A. (2021). Pythagorean fuzzy AHP-TOPSIS 
integrated approach for transportation management through a new 
distance measure. Soft Computing, 25(5), 4073-4089. http://dx.doi.
org/10.1007/s00500-020-05433-2.

Scariot, M. A., Radünz, L. L., Dionello, R. G., Müller, I., & Almeida, P. 
M. (2017). Physiological performance of wheat seeds as a function 
of moisture content at harvest and storage system1. Pesquisa 
Agropecuária Tropical, 47(4), 456-464. http://dx.doi.org/10.1590/1983-
40632017v4749550.

Sun, H. Y., Chen, W. W., Jiang, Y., He, Q., Li, X. L., Guo, Q. G., Xiang, 
S. Q., Xi, W. P., & Liang, G. (2020). Characterization of volatiles 

https://doi.org/10.1590/fst.27318
https://doi.org/10.1590/fst.27318
https://doi.org/10.1007/s00704-020-03479-8
https://doi.org/10.1007/s00704-020-03479-8
https://doi.org/10.2135/cropsci2017.08.0481
https://doi.org/10.1039/D0RA00542H
https://doi.org/10.1039/D0RA00542H
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35497123&dopt=Abstract
https://doi.org/10.1590/fst.35319
https://doi.org/10.1016/j.jspr.2017.05.002
https://doi.org/10.1016/j.jspr.2017.05.002
https://doi.org/10.1016/j.fbio.2021.101188
https://doi.org/10.1111/jfpp.14109
https://doi.org/10.1108/GS-08-2019-0029
https://doi.org/10.1088/1755-1315/708/1/012051
https://doi.org/10.1088/1755-1315/708/1/012051
https://doi.org/10.1007/s13369-019-04191-0
https://doi.org/10.3390/en14206795
https://doi.org/10.1590/fst.24720
https://doi.org/10.1007/s11069-021-04744-3
https://doi.org/10.1007/s11069-021-04744-3
https://doi.org/10.3390/su14095706
https://doi.org/10.3390/su14095706
https://doi.org/10.1007/s00500-020-05433-2
https://doi.org/10.1007/s00500-020-05433-2
https://doi.org/10.1590/1983-40632017v4749550
https://doi.org/10.1590/1983-40632017v4749550

