Acessibilidade / Reportar erro

Kinetics of the thermal degradation of phenolic compounds from achiote leaves (Bixa orellana L.) and its effect on the antioxidant activity

Abstract

This work evaluates the effect of temperature and soluble solids on the degradation rate of phenolic compounds, and antioxidant activity of extracts from Bixa orellana L. leaves. The temperatures were studied in the range of typical food processes (70-90 °C) and food storage (−20-37 °C). The results showed that the thermal degradation of the phenolic compounds follows first-order kinetics, in which the degradation rate depends on the temperature, the amount of soluble solids, and the pH. The loss of antioxidant activity also follows first-order kinetics. Under different storage conditions, the half-life times of the total phenols were in the range 40.72-202.47 days, while for the antioxidant activity, the half-times were from 55.87-68.83 days for the ABTS and from 57.85-107.03 days for the FRAP method. The antioxidant activity of the extracts follows the same pattern of thermal degradation as the phenolic compounds. Therefore, we conclude that antioxidant activity is due to its phenolic compounds.

Keywords:
radical scavenging capacity; thermal degradation; biological activity; iron reducing capacity; storage stability

1 Introduction

Achiote (Bixa orellana L.) is a shrub from the intertropical regions of America, belonging to the Bixaceae family (Lourido Pérez & Martínez Sánchez, 2010Lourido Pérez, H. C., & Martínez Sánchez, G. (2010). La Bixa orellana L. en el tratamiento de afecciones estomatológicas, un tema aún por estudiar. Revista Cubana de Farmacia, 44(2), 231-244.; Viuda-Martos et al., 2012Viuda-Martos, M., Ciro-Gómez, G. L., Ruiz-Navajas, Y., Zapata-Montoya, J. E., Sendra, E., Pérez-Álvarez, J. A., & Fernández-López, J. (2012). In vitro antioxidant and antibacterial activities of extracts from annatto (Bixa orellana L.) leaves and seeds. Journal of Food Safety, 32(4), 399-406. http://dx.doi.org/10.1111/j.1745-4565.2012.00393.x.
http://dx.doi.org/10.1111/j.1745-4565.20...
). Its fruits are an ovoid capsule with seeds, which are of great interest as a natural dye in food and cosmetics due to its bixin and norbixin content (Rodrigues et al., 2007Rodrigues, S. M., Soares, V. L. F., Oliveira, T. M., Gesteira, A. S., Otoni, W. C., & Costa, M. G. C. (2007). Isolation and purification of RNA from tissues rich in polyphenols, polysaccharides, and pigments of annatto (Bixa orellana L.). Molecular Biotechnology, 37(3), 220-224. http://dx.doi.org/10.1007/s12033-007-0070-9. PMid:17952668.
http://dx.doi.org/10.1007/s12033-007-007...
; Verbeyst et al., 2010Verbeyst, L., Oey, I., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269-274. http://dx.doi.org/10.1016/j.foodchem.2010.04.027.
http://dx.doi.org/10.1016/j.foodchem.201...
). It has been used in traditional medicine (Bachir Bey et al., 2014Bachir Bey, M., Meziant, L., Benchikh, Y., & Louaileche, H. (2014). Deployment of response surface methodology to optimize recovery of dark fresh fig (Ficus carica L., var. Azenjar) total phenolic compounds and antioxidant activity. Food Chemistry, 162, 277-282. http://dx.doi.org/10.1016/j.foodchem.2014.04.054. PMid:24874388.
http://dx.doi.org/10.1016/j.foodchem.201...
) associated with the presence of phenolic compounds (Radhika et al., 2010Radhika, B., Begum, N., & Srisailam, K. (2010). Pharmacognostic and preliminary phytochemical evaluation of the leaves of Bixa orellana. Pharmacognosy Journal, 2(7), 132-136. http://dx.doi.org/10.1016/S0975-3575(10)80079-3.
http://dx.doi.org/10.1016/S0975-3575(10)...
; Shilpi et al., 2006Shilpi, J. A., Taufiq-Ur-Rahman, M., Uddin, S. J., Alam, M. S., Sadhu, S. K., & Seidel, V. (2006). Preliminary pharmacological screening of Bixa orellana L. leaves. Journal of Ethnopharmacology, 108(2), 264-271. http://dx.doi.org/10.1016/j.jep.2006.05.008. PMid:16963211.
http://dx.doi.org/10.1016/j.jep.2006.05....
), which constitutes one of the most important secondary metabolites (Moo-Huchin et al., 2015Moo-Huchin, V. M., Moo-Huchin, M. I., Estrada-León, R. J., Cuevas-Glory, L., Estrada-Mota, I. A., Ortiz-Vázquez, E., Betancur-Ancona, D., & Sauri-Duch, E. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166, 17-22. http://dx.doi.org/10.1016/j.foodchem.2014.05.127. PMid:25053022.
http://dx.doi.org/10.1016/j.foodchem.201...
). Its leaves contain compounds with microbiological (Gómez et al., 2012Gómez, G. C., Quintana Castillo, J. C., Alarcón Pérez, J. C., & Zapata Montoya, J. E. (2012). Ethanolic extract from leaves of Bixa orellana L.: a potential natural food preservative. Interciencia, 37(7), 547-551.; Viuda-Martos et al., 2012Viuda-Martos, M., Ciro-Gómez, G. L., Ruiz-Navajas, Y., Zapata-Montoya, J. E., Sendra, E., Pérez-Álvarez, J. A., & Fernández-López, J. (2012). In vitro antioxidant and antibacterial activities of extracts from annatto (Bixa orellana L.) leaves and seeds. Journal of Food Safety, 32(4), 399-406. http://dx.doi.org/10.1111/j.1745-4565.2012.00393.x.
http://dx.doi.org/10.1111/j.1745-4565.20...
) and antioxidant activity (Sepúlveda et al., 2016Sepúlveda, C. T., Ciro, G. L., & Zapata, Z. M. (2016). Extracción de compuestos fenólicos y actividad antioxidante de hojas de Bixa orellana L. (achiote). Revista Cubana de Plantas Medicinales, 2(2), 133-144.; Viuda-Martos et al., 2012Viuda-Martos, M., Ciro-Gómez, G. L., Ruiz-Navajas, Y., Zapata-Montoya, J. E., Sendra, E., Pérez-Álvarez, J. A., & Fernández-López, J. (2012). In vitro antioxidant and antibacterial activities of extracts from annatto (Bixa orellana L.) leaves and seeds. Journal of Food Safety, 32(4), 399-406. http://dx.doi.org/10.1111/j.1745-4565.2012.00393.x.
http://dx.doi.org/10.1111/j.1745-4565.20...
) attributed mainly to its phenolic compounds content (Gómez et al., 2012Gómez, G. C., Quintana Castillo, J. C., Alarcón Pérez, J. C., & Zapata Montoya, J. E. (2012). Ethanolic extract from leaves of Bixa orellana L.: a potential natural food preservative. Interciencia, 37(7), 547-551.).

In general, the phenolic compounds have a broad range of biological properties such as antimicrobial properties (Prado et al., 2014Prado, A. C. P., Silva, H. S., Silveira, S. M., Barreto, P. L. M., Vieira, C. R. W., Maraschin, M., Ferreira, S. R. S., & Block, J. M. (2014). Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Industrial Crops and Products, 52, 552-561. http://dx.doi.org/10.1016/j.indcrop.2013.11.031.
http://dx.doi.org/10.1016/j.indcrop.2013...
; Fleischer et al., 2003Fleischer, T. C., Ameade, E. P. K., Mensah, M. L. K., & Sawer, I. K. (2003). Antimicrobial activity of the leaves and seeds of Bixa orellana. Fitoterapia, 74(1-2), 136-138. http://dx.doi.org/10.1016/S0367-326X(02)00289-7. PMid:12628409.
http://dx.doi.org/10.1016/S0367-326X(02)...
; Gutiérrez-Larraínzar et al., 2012Gutiérrez-Larraínzar, M., Rúa, J., Caro, I., de Castro, C., de Arriaga, D., García-Armesto, M. R., & del Valle, P. (2012). Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control, 26(2), 555-563. http://dx.doi.org/10.1016/j.foodcont.2012.02.025.
http://dx.doi.org/10.1016/j.foodcont.201...
; Koolen et al., 2013Koolen, H. H. F., Silva, F. M. A., Gozzo, F. C., Souza, A. Q. L., & Souza, A. D. L. (2013). Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC-ESI-MS/MS. Food Research International, 51(2), 467-473. http://dx.doi.org/10.1016/j.foodres.2013.01.039.
http://dx.doi.org/10.1016/j.foodres.2013...
; Xia et al., 2011Xia, D., Wu, X., Shi, J., Yang, Q., & Zhang, Y. (2011). Phenolic compounds from the edible seeds extract of Chinese Mei (Prunus mume Sieb. et Zucc) and their antimicrobial activity. Lebensmittel-Wissenschaft + Technologie, 44(1), 347-349. http://dx.doi.org/10.1016/j.lwt.2010.05.017.
http://dx.doi.org/10.1016/j.lwt.2010.05....
), anti-inflammatory (Derringer & Suich, 1980Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. http://dx.doi.org/10.1080/00224065.1980.11980968.
http://dx.doi.org/10.1080/00224065.1980....
; Rocha Garcia et al., 2012Rocha Garcia, C. E., Bolognesi, V. J., & Gaspari Dias, J. (2012). Carotenoides bixina e norbixina extraídos do urucum (Bixa orellana L.) como antioxidantes em produtos cárneos. Ciência Rural, 42(8), 1510-1517. http://dx.doi.org/10.1590/S0103-84782012000800029.
http://dx.doi.org/10.1590/S0103-84782012...
; Tao et al., 2014Tao, Y., Zhang, Z., & Sun, D. W. (2014). Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrasonics Sonochemistry, 21(4), 1461-1469. http://dx.doi.org/10.1016/j.ultsonch.2014.01.029. PMid:24613646.
http://dx.doi.org/10.1016/j.ultsonch.201...
), anti-allergic (Agati et al., 2012Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67-76. http://dx.doi.org/10.1016/j.plantsci.2012.07.014.
http://dx.doi.org/10.1016/j.plantsci.201...
; Medeiros et al., 2008Medeiros, K. C. P., Figueiredo, C. A. V., Figueredo, T. B., Freire, K. R. L., Santos, F. A. R., Alcantara-Neves, N. M., Silva, T. M. S., & Piuvezam, M. R. (2008). Anti-allergic effect of bee pollen phenolic extract and myricetin in ovalbumin-sensitized mice. Journal of Ethnopharmacology, 119(1), 41-46. http://dx.doi.org/10.1016/j.jep.2008.05.036. PMid:18588965.
http://dx.doi.org/10.1016/j.jep.2008.05....
), anti-viral (Sant’Anna et al., 2012Sant’Anna, V., Brandelli, A., Marczak, L. D. F., & Tessaro, I. C. (2012). Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Separation and Purification Technology, 100, 82-87. http://dx.doi.org/10.1016/j.seppur.2012.09.004.
http://dx.doi.org/10.1016/j.seppur.2012....
; Zhang et al., 2014Zhang, X. L., Guo, Y. S., Wang, C. H., Li, G. Q., Xu, J. J., Chung, H. Y., Ye, W. C., Li, Y. L., & Wang, G. C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306. http://dx.doi.org/10.1016/j.foodchem.2013.11.153. PMid:24444941.
http://dx.doi.org/10.1016/j.foodchem.201...
), anti-cancer (Agcam et al., 2014Agcam, E., Akyildiz, A., & Evrendilek, G. A. (2014). Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry, 143, 354-361. http://dx.doi.org/10.1016/j.foodchem.2013.07.115. PMid:24054251.
http://dx.doi.org/10.1016/j.foodchem.201...
; Henríquez et al., 2014Henríquez, C., Córdova, A., Almonacid, S., & Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 143, 146-153. http://dx.doi.org/10.1016/j.jfoodeng.2014.06.037.
http://dx.doi.org/10.1016/j.jfoodeng.201...
), antioxidant (Balasundram et al., 2006Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. http://dx.doi.org/10.1016/j.foodchem.2005.07.042.
http://dx.doi.org/10.1016/j.foodchem.200...
; Baydar & Baydar, 2013Baydar, N. G., & Baydar, H. (2013). Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products, 41(1), 375-380. http://dx.doi.org/10.1016/j.indcrop.2012.04.045.
http://dx.doi.org/10.1016/j.indcrop.2012...
; Bendary et al., 2013Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Science, 58(2), 173-181. http://dx.doi.org/10.1016/j.aoas.2013.07.002.
http://dx.doi.org/10.1016/j.aoas.2013.07...
; Bonilla et al., 1999Bonilla, F., Mayen, M., Merida, J., & Medina, M. (1999). Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chemistry, 66(2), 209-215. http://dx.doi.org/10.1016/S0308-8146(99)00046-1.
http://dx.doi.org/10.1016/S0308-8146(99)...
; Gutiérrez-Larraínzar et al., 2012Gutiérrez-Larraínzar, M., Rúa, J., Caro, I., de Castro, C., de Arriaga, D., García-Armesto, M. R., & del Valle, P. (2012). Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control, 26(2), 555-563. http://dx.doi.org/10.1016/j.foodcont.2012.02.025.
http://dx.doi.org/10.1016/j.foodcont.201...
; Liu et al., 2012Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., Qu, M., & Yang, Q. (2012). Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chemistry, 134(4), 1885-1891. http://dx.doi.org/10.1016/j.foodchem.2012.03.091. PMid:23442634.
http://dx.doi.org/10.1016/j.foodchem.201...
; Zhang et al., 2014Zhang, X. L., Guo, Y. S., Wang, C. H., Li, G. Q., Xu, J. J., Chung, H. Y., Ye, W. C., Li, Y. L., & Wang, G. C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306. http://dx.doi.org/10.1016/j.foodchem.2013.11.153. PMid:24444941.
http://dx.doi.org/10.1016/j.foodchem.201...
), among others (Schulte, 2011Schulte, P. M. (2011). Temperature: effects of temperature: an introduction. In A. P. Farrell (Ed.), Encyclopedia of fish physiology: from genome to environment (Vol. 3, pp. 1688-1694). London: Academic Press. http://dx.doi.org/10.1016/B978-0-12-374553-8.00159-3.
http://dx.doi.org/10.1016/B978-0-12-3745...
; Soobrattee et al., 2005Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis, 579(1-2), 200-213. http://dx.doi.org/10.1016/j.mrfmmm.2005.03.023. PMid:16126236.
http://dx.doi.org/10.1016/j.mrfmmm.2005....
; Williams et al., 2004Williams, R. J., Spencer, J. P. E., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free Radical Biology & Medicine, 36(7), 838-849. http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001.
http://dx.doi.org/10.1016/j.freeradbiome...
). However, such compounds can be vulnerable to the light (Arabshahi-D et al., 2007Arabshahi-D, S., Vishalakshi Devi, D., & Urooj, A. (2007). Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability. Food Chemistry, 100(3), 1100-1105. http://dx.doi.org/10.1016/j.foodchem.2005.11.014.
http://dx.doi.org/10.1016/j.foodchem.200...
), temperature (Albarici & Pessoa, 2012Albarici, T. R., & Pessoa, J. D. C. (2012). Effects of heat treatment and storage temperature on the use of açaí drink by nutraceutical and beverage industries. Food Science and Technology, 32(1), 9-14. http://dx.doi.org/10.1590/S0101-20612012005000026.
http://dx.doi.org/10.1590/S0101-20612012...
; Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
; Kirca & Cemeroǧlu, 2003Kirca, A., & Cemeroǧlu, B. (2003). Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chemistry, 81(4), 583-587. http://dx.doi.org/10.1016/S0308-8146(02)00500-9.
http://dx.doi.org/10.1016/S0308-8146(02)...
), solids content (Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
; Williams et al., 2004Williams, R. J., Spencer, J. P. E., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free Radical Biology & Medicine, 36(7), 838-849. http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001.
http://dx.doi.org/10.1016/j.freeradbiome...
), pH (Cevallos-Casals & Cisneros-Zevallos, 2004Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chemistry, 86(1), 69-77. http://dx.doi.org/10.1016/j.foodchem.2003.08.011.
http://dx.doi.org/10.1016/j.foodchem.200...
; Fan et al., 2008Fan, G., Han, Y., Gu, Z., & Gu, F. (2008). Composition and colour stability of anthocyanins extracted from fermented purple sweet potato culture. Lebensmittel-Wissenschaft + Technologie, 41(8), 1412-1416. http://dx.doi.org/10.1016/j.lwt.2007.09.003.
http://dx.doi.org/10.1016/j.lwt.2007.09....
; He et al., 2015He, X., Li, X., Lv, Y., He, Q., He, X., Li, X., Lv, Y., & He, Q. (2015). Composition and color stability of anthocyanin-based extract from purple sweet potato. Food Science and Technology, 35(3), 468-473. http://dx.doi.org/10.1590/1678-457X.6687.
http://dx.doi.org/10.1590/1678-457X.6687...
; Reyes & Cisneros-Zevallos, 2007Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894. http://dx.doi.org/10.1016/j.foodchem.2005.11.002.
http://dx.doi.org/10.1016/j.foodchem.200...
), oxygen (Garzón, 2008Garzón, G. A. (2008). Las antocianinas como colorantes naturales y compuestos bioactivos: revisión. Acta Biologica Colombiana, 13(3), 27-36.; Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
), and hydrogen peroxide (Ozkan et al., 2002Ozkan, M., Yemenicioglu, A., Asefi, N., & Cemeroglu, B. (2002). Degradation kinetics of anthocyanins from sour cherry, pomegranate, and strawberry juices by hydrogen peroxide. Journal of Food Science, 67(2), 525-529. http://dx.doi.org/10.1111/j.1365-2621.2002.tb10631.x.
http://dx.doi.org/10.1111/j.1365-2621.20...
). Also, they can be vulnerable to the kind of solvent in which the extracts are (Padmashree et al., 2012Padmashree, A., Sharma, G. K., Semwal, A. D., & Bawa, A. S. (2012). In vitro antioxygenic activity of ridge gourd (Luffa acutangula) pulp, peel and their extracts on peroxidation models. American Journal of Plant Sciences, 03(10), 1413-1421. http://dx.doi.org/10.4236/ajps.2012.310171.
http://dx.doi.org/10.4236/ajps.2012.3101...
, 2014Padmashree, A., Sharma, G. K., Semwal, A. D., & Mahesh, C. (2014). Antioxygenic activity of Solanum nigrum L. leaves in sunflower oil model system and its thermal stability. Food and Nutrition Sciences, 05(11), 1022-1029. http://dx.doi.org/10.4236/fns.2014.511113.
http://dx.doi.org/10.4236/fns.2014.51111...
) being water one of the solvents with lowest thermal stability reported (Padmashree et al., 2014Padmashree, A., Sharma, G. K., Semwal, A. D., & Mahesh, C. (2014). Antioxygenic activity of Solanum nigrum L. leaves in sunflower oil model system and its thermal stability. Food and Nutrition Sciences, 05(11), 1022-1029. http://dx.doi.org/10.4236/fns.2014.511113.
http://dx.doi.org/10.4236/fns.2014.51111...
).

The stability of the phenolic compounds depends on the source from which they have been extracted (Apak et al., 2013Apak, R., Gorinstein, S., Böhm, V., Schaich, K. M., Özyürek, M., & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure and Applied Chemistry, 85(5), 957-998. http://dx.doi.org/10.1351/PAC-REP-12-07-15.
http://dx.doi.org/10.1351/PAC-REP-12-07-...
; Padmashree et al., 2014Padmashree, A., Sharma, G. K., Semwal, A. D., & Mahesh, C. (2014). Antioxygenic activity of Solanum nigrum L. leaves in sunflower oil model system and its thermal stability. Food and Nutrition Sciences, 05(11), 1022-1029. http://dx.doi.org/10.4236/fns.2014.511113.
http://dx.doi.org/10.4236/fns.2014.51111...
). For that reason, some studies have been carried out to establish the thermal stability of anthocyanins in black carrots (Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
), Solanum nigrum L. leaves (Apak et al., 2013Apak, R., Gorinstein, S., Böhm, V., Schaich, K. M., Özyürek, M., & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure and Applied Chemistry, 85(5), 957-998. http://dx.doi.org/10.1351/PAC-REP-12-07-15.
http://dx.doi.org/10.1351/PAC-REP-12-07-...
; Padmashree et al., 2014Padmashree, A., Sharma, G. K., Semwal, A. D., & Mahesh, C. (2014). Antioxygenic activity of Solanum nigrum L. leaves in sunflower oil model system and its thermal stability. Food and Nutrition Sciences, 05(11), 1022-1029. http://dx.doi.org/10.4236/fns.2014.511113.
http://dx.doi.org/10.4236/fns.2014.51111...
), corn (Cevallos-Casals & Cisneros-Zevallos, 2004Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chemistry, 86(1), 69-77. http://dx.doi.org/10.1016/j.foodchem.2003.08.011.
http://dx.doi.org/10.1016/j.foodchem.200...
), potatoes, carrots, and grapes (Fan et al., 2008Fan, G., Han, Y., Gu, Z., & Gu, F. (2008). Composition and colour stability of anthocyanins extracted from fermented purple sweet potato culture. Lebensmittel-Wissenschaft + Technologie, 41(8), 1412-1416. http://dx.doi.org/10.1016/j.lwt.2007.09.003.
http://dx.doi.org/10.1016/j.lwt.2007.09....
; He et al., 2015He, X., Li, X., Lv, Y., He, Q., He, X., Li, X., Lv, Y., & He, Q. (2015). Composition and color stability of anthocyanin-based extract from purple sweet potato. Food Science and Technology, 35(3), 468-473. http://dx.doi.org/10.1590/1678-457X.6687.
http://dx.doi.org/10.1590/1678-457X.6687...
; Reyes & Cisneros-Zevallos, 2007Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894. http://dx.doi.org/10.1016/j.foodchem.2005.11.002.
http://dx.doi.org/10.1016/j.foodchem.200...
).

This work aimed to evaluate the effect of temperature (T), soluble solids (SS), and pH on the degradation rate of the phenolic compounds and on the loss of antioxidant activity in Bixa orellana L. leaves.

2 Materials and methods

2.1 Plant material

Bixa orellana L. leaves were collected from a private farm in the municipality of San Luis, Antioquia, Colombia, located 150 m above sea level. The leaves were identified as Bixa orellana L. red variety, from which a specimen is found in the herbarium of the Universidad de Antioquia identified with the number HUA 108450.

2.2 Extraction

The leaves were dried in a conventional oven (Thermo ScientificTM, USA) at a temperature of 37 ± 0.2 °C for 48 h. Then, they were submitted to an extraction process with 95% ethanol at 4 ± 0.2 °C for 60 h.

2.3 Total Phenolic Content (TPC)

The total phenolic content was determined using the Folin-Ciocalteu method. Briefly, 500 µL of extract reacts with 250 µL of Folin-Ciocalteu reagent, and 125 µL of 20% Na2CO3 were added to the mixture and left at room temperature in the dark for 2 h. Then, the absorbance at 725 nm was measured, and the concentration was calculated from a tannic acid standard curve, expressed as tannic acid equivalents per gram of extract (mgTA∙g-1) (Singleton & Rossi, 1965Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.).

2.4 Reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS)

ABTS antioxidant activity was determined by the methodology described by Re et al. (1999)Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231-1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3. PMid:10381194.
http://dx.doi.org/10.1016/S0891-5849(98)...
with slight modifications. A solution of 7 mM ABTS and 2.45 mM potassium persulfate was prepared and incubated at room temperature in the dark for 16 h to form the radical ABTS•+. A 100 µL of the extract was added to 1 mL of the radical solution and incubated at 30 °C in the dark for 30 min. Finally, the absorbance was measured at a wavelength of 730 nm and the results were expressed as equivalent micromoles of Trolox per gram of extract (µmolTE∙g-1).

2.5 Reduction capacity on Fe3+ (FRAP)

FRAP was carried out using the methodology proposed by Pulido et al. (2000)Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8), 3396-3402. http://dx.doi.org/10.1021/jf9913458. PMid:10956123.
http://dx.doi.org/10.1021/jf9913458...
, in which the FRAP reagent (tripyridyltriazine, iron chloride, and sodium acetate buffer) freshly prepared was heated at 37 °C, mixed with distilled water, and with the extract or with Trolox standard. It was then incubated at 37 °C for 30 min. The absorbance was measured at 595 nm and the results were expressed as equivalent micromoles of Trolox per gram of extract (mgTE∙g-1).

2.6 Effect of the factors on the degradation rate constant of TPC

We used a factorial design of experiments (33) to evaluate the effect of the temperature (70, 80, and 90 °C), the pH (3, 5.5, and 8), and the soluble solids (SS) content (8, 14, and 20 °Brix) on the reaction rate constant (Equation 1) and on the degradation of phenolic compounds (k). For that, in each run, the total phenolic content was determined each 9 h. Additionally, other kinetic parameters such as activation energy (EaEquation 2), temperature coefficient (Q10Equation 3), and half-life time (t1/2Equation 4) were calculated.

ln c = ln c 0 k 1 t (1)
ln k = ln k 0 E a R T (2)
Q 10 = k 2 k 1 10 T 2 T 1 (3)
ln 0.5 1 = k 1 t 1 / 2 (4)

2.7 Kinetics of the TPC degradation and loss of antioxidant activity at storage conditions

The degradation of TPC and the loss of antioxidant activity of the ethanolic extract of the Bixa orellana L. leaves were studied at a pH of 8 and 11.4 °Brix stored at −20, 8, 23, and 37 °C for 3 months. The kinetic parameters k, Ea, Q10, and t1/2 were calculated by Equations 1-4.

2.8 Statistical analysis

The design of experiments was analyzed using Design-Expert 7.1.6 (StatEase® USA). Before performing the analysis of variance (ANOVA) (Montgomery, 2005Montgomery, D. C. (2005). Diseño y análisis de experimentos (2nd ed.). Mexico City: Limusa-Wiley.), it was confirmed a normal distribution and homogeneity of the variances with a 95% confidence interval. It includes the statistical significance of all the values of the adjusted model (p value), the coefficients estimated in each term (βi), and the coefficient of determination of the model (R2).

3 Results and discussion

3.1 Effect of temperature, pH, and soluble solids on the degradation rate of total phenolic content

The thermal degradation of the TPC followed a first-order reaction model, which agree with the results found in the degradation of TPC of apple peel (Henríquez et al., 2014Henríquez, C., Córdova, A., Almonacid, S., & Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 143, 146-153. http://dx.doi.org/10.1016/j.jfoodeng.2014.06.037.
http://dx.doi.org/10.1016/j.jfoodeng.201...
), apple juice (De Paepe et al., 2014De Paepe, D., Valkenborg, D., Coudijzer, K., Noten, B., Servaes, K., De Loose, M., Voorspoels, S., Diels, L., & Van Droogenbroeck, B. (2014). Thermal degradation of cloudy apple juice phenolic constituents. Food Chemistry, 162, 176-185. http://dx.doi.org/10.1016/j.foodchem.2014.04.005. PMid:24874374.
http://dx.doi.org/10.1016/j.foodchem.201...
), orange (Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
), and pomegranate (Fischer et al., 2013Fischer, U. A., Carle, R., & Kammerer, D. R. (2013). Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions. Food Chemistry, 138(2-3), 1800-1809. http://dx.doi.org/10.1016/j.foodchem.2012.10.072. PMid:23411312.
http://dx.doi.org/10.1016/j.foodchem.201...
).

Table 1 shows the experimental runs of the factorial design of 33 (DOE) in random order. The factors are T, SS, and pH; and the response variable is k calculated with Equation 1. The k values show that the TPC of the Bixa orellana L. leaves are more stable to thermal degradation than the TPC of red-, purple-flesh potatoes, carrots, and grapes (Reyes & Cisneros-Zevallos, 2007Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894. http://dx.doi.org/10.1016/j.foodchem.2005.11.002.
http://dx.doi.org/10.1016/j.foodchem.200...
); and black carrot (Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
). It could be explained because the k values were one order of magnitude smaller than those reported.

Table 1
Factorial design and kinetic parameters in the degradation of TPC of the extract of Bixa orellana L.

The kinetic parameters (Q10, t1/2, and Ea) (Table 1) describe the thermal degradation of the TPC at several conditions of T, pH, and SS. The greatest Ea were obtained at pH of 3 and SS of 20 °Brix, while the greatest Q10 and t1/2 were obtained at pH of 3 and SS of 8 °Brix, which defined the conditions of highest stability of those compounds. On the other hand, the worst conditions (lowest Ea and t1/2) were obtained at a pH of 8 and 14, respectively. Those results agree with the reported by Reyes & Cisneros-Zevallos (2007)Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894. http://dx.doi.org/10.1016/j.foodchem.2005.11.002.
http://dx.doi.org/10.1016/j.foodchem.200...
. They found that the lowest degradation rates of anthocyanin from purple- and red-flesh potatoes, carrots, and grapes were at a pH from 1-3. However, they obtained t1/2 values lower than those obtained in this work.

The decrease of t1/2 as the temperature increased was notable for all the evaluated conditions (Table 1). This result can be attributed to the effect of the temperature on the degradation rate of phenolic compounds (Albarici & Pessoa, 2012Albarici, T. R., & Pessoa, J. D. C. (2012). Effects of heat treatment and storage temperature on the use of açaí drink by nutraceutical and beverage industries. Food Science and Technology, 32(1), 9-14. http://dx.doi.org/10.1590/S0101-20612012005000026.
http://dx.doi.org/10.1590/S0101-20612012...
; Figueirêdo et al., 2014Figueirêdo, B. C., Trad, I. J., Mariutti, L. R. B., & Bragagnolo, N. (2014). Effect of annatto powder and sodium erythorbate on lipid oxidation in pork loin during frozen storage. Food Research International, 65, 137-143. http://dx.doi.org/10.1016/j.foodres.2014.07.016.
http://dx.doi.org/10.1016/j.foodres.2014...
; Timberlake, 1980Timberlake, C. F. (1980). Anthocyanins: occurrence, extraction and chemistry. Food Chemistry, 5(1), 69-80. http://dx.doi.org/10.1016/0308-8146(80)90065-5.
http://dx.doi.org/10.1016/0308-8146(80)9...
; Zhang et al., 2014Zhang, X. L., Guo, Y. S., Wang, C. H., Li, G. Q., Xu, J. J., Chung, H. Y., Ye, W. C., Li, Y. L., & Wang, G. C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306. http://dx.doi.org/10.1016/j.foodchem.2013.11.153. PMid:24444941.
http://dx.doi.org/10.1016/j.foodchem.201...
).

In most of the evaluated conditions, the Ea values are in the same order of magnitude than the reported for açaí drink (49.42 kJ∙mol-1 at a pH of 5.2) (Albarici & Pessoa, 2012Albarici, T. R., & Pessoa, J. D. C. (2012). Effects of heat treatment and storage temperature on the use of açaí drink by nutraceutical and beverage industries. Food Science and Technology, 32(1), 9-14. http://dx.doi.org/10.1590/S0101-20612012005000026.
http://dx.doi.org/10.1590/S0101-20612012...
), blackberry juice (75.50 kJ∙mol-1), and concentrate (65.06 kJ∙mol-1) (Wang & Xu, 2007Wang, W. D., & Xu, S. Y. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3), 271-275. http://dx.doi.org/10.1016/j.jfoodeng.2007.01.018.
http://dx.doi.org/10.1016/j.jfoodeng.200...
); and black carrot concentrate (Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
), the last four at pH of 4.3.

3.2 Analysis of variance

Table 2 shows the results of the analysis of variance (ANOVA) for the DOE. It shows that both T and pH have a statistically significant effect (p < 0.05) on the linear term of degradation of TPC. However, SS is only statistically significant in its quadratic term. Equation 5 represents the mathematical model that expresses the relationship between k and the factors T, pH, and SS obtained in Table 2.

Table 2
ANOVA to evaluate the effect of the factors on the kinetics of the thermal degradation of TPC of the extract from Bixa orellana L. leaves.
k m i n 1 = 2.06 10 3 + 9.26 10 6 * T + 4.72 * p H + 2.20 10 4 * S S 7.77 10 6 * S S 2 (5)

The plus sign of the factor T in Equation 5 shows a direct relationship between this variable and the degradation rate of TPC. That means, the higher the temperature, the faster the degradation of TPC. This behavior is typical of anthocyanins, which present slow hydrolysis of the glycosidic bond in position 3 and opening of the ring to produce colorless chalcones (Timberlake, 1980Timberlake, C. F. (1980). Anthocyanins: occurrence, extraction and chemistry. Food Chemistry, 5(1), 69-80. http://dx.doi.org/10.1016/0308-8146(80)90065-5.
http://dx.doi.org/10.1016/0308-8146(80)9...
). These results agree with the found by Henríquez et al. (2014)Henríquez, C., Córdova, A., Almonacid, S., & Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 143, 146-153. http://dx.doi.org/10.1016/j.jfoodeng.2014.06.037.
http://dx.doi.org/10.1016/j.jfoodeng.201...
and Kirca et al. (2007)Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
, who worked with apple peel and black carrot, respectively.

Regarding the difference in signs between the linear and quadratic terms of the SS in Equation 5, they indicate that an extreme point in the response as a function of the factor SS exists. That means that there is a point in which k reaches maximum values that correspond to the highest degradation rate of TPC.

Meanwhile, the plus sign in the coefficient corresponding to the pH in Equation 5 indicates that the higher the pH, the greater the degradation rate of total phenolic, so a pH around 3 affects less this reaction. These results agree with the found by Kirca et al. (2007)Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
and Verbeyst et al. (2010)Verbeyst, L., Oey, I., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269-274. http://dx.doi.org/10.1016/j.foodchem.2010.04.027.
http://dx.doi.org/10.1016/j.foodchem.201...
, who reported that increasing the pH, increased the degradation rate of anthocyanins.

Figure 1 shows the response surface graphs in which the effect of the factors T, SS, and pH on k are represented. The plots involving SS show a concave downward shape due to the influence of the quadratic term of the SS factor. In Figure 1, the dome represents the highest values of k, which implies less favorable conditions, which means faster degradation of TPC. In the region that k increases with SS, the results agree with Kirca et al. (2007)Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
, who found that the values of k increased with SS in the degradation of black carrot anthocyanins. On the other hand, the region in which the values of k decreased with SS, agree with those reported by Garzón (2008)Garzón, G. A. (2008). Las antocianinas como colorantes naturales y compuestos bioactivos: revisión. Acta Biologica Colombiana, 13(3), 27-36., who found that increases in the medium water activity cause anthocyanin degradation probably due to higher interaction between the water and the flavylium cation to form the pseudo base unstable (Olaya et al., 2009Olaya, C., Castaño, M. P., & Garzón, G. A. (2009). Stability of anthocyanins from rubus glaucus and solanum betaceum cav.dark-red strain as affected by temperature, storage and water activity. Acta Biologica Colombiana, 14(3), 143-158.). This result is relevant taking into account that decreases in the SS cause increments in the water activity (Zapata & Montoya, 2012Zapata, J. E., & Montoya, A. (2012). Deshidratación osmótica de láminas de mango cv. tommy atkins aplicando metodología de superficies de respuesta. Revista Facultad Nacional de Agronomía, 65(1), 6507-6518.).

Figure 1
Response surface plots of k as a function of SS, T, and pH in the thermal degradation of TPC from the ethanolic extract of Bixa orellana L. leaves.

The plot that represents the factors of pH and T presents a planar shape due to the absence of quadratic terms of both factors. It shows that the lower levels of the factors are those with the lowest k.

Figure 2 depicts the decrease in total phenolic concentration in extracts of Bixa orellana L. leaves as a function of time at the temperatures −20, 8, 23, and 37 °C. The thermal degradation of TPC was adjusted to a first-order reaction model; as found in anthocyanins of black carrot (Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
), potatoes (Reyes & Cisneros-Zevallos, 2007Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894. http://dx.doi.org/10.1016/j.foodchem.2005.11.002.
http://dx.doi.org/10.1016/j.foodchem.200...
), açaí concentrate (Albarici & Pessoa, 2012Albarici, T. R., & Pessoa, J. D. C. (2012). Effects of heat treatment and storage temperature on the use of açaí drink by nutraceutical and beverage industries. Food Science and Technology, 32(1), 9-14. http://dx.doi.org/10.1590/S0101-20612012005000026.
http://dx.doi.org/10.1590/S0101-20612012...
), and Bixa orellana L. seeds (Sepúlveda & Zapata, 2019Sepúlveda, C. T., & Zapata, J. E. (2019). Efecto de la temperatura, el pH y el contenido en sólidos sobre los compuestos fenólicos y la actividad antioxidante del extracto de Bixa orellana L. Información Tecnológica, 30(5), 57-66. http://dx.doi.org/10.4067/S0718-07642019000500057.
http://dx.doi.org/10.4067/S0718-07642019...
). The degradation rate of total phenolic increased as the storage temperature increased, while the t1/2 decreased. The same occurs at processing conditions (70-90 °C). The temperature factor (Q10) showed that the changes in degradation rates also increased with increases in temperature, presenting a smaller increment in the degradation rate in temperatures in the from −20-8 °C. The positives effects of T on the degradation rate of the TPC have been reported in olive oil (Owen et al., 2000Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Spiegelhalder, B., & Bartsch, H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer, 36(10), 1235-1247. http://dx.doi.org/10.1016/S0959-8049(00)00103-9. PMid:10882862.
http://dx.doi.org/10.1016/S0959-8049(00)...
), carrots (Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
), red-, purple-flesh potatoes, carrots, and grapes (Reyes & Cisneros-Zevallos, 2007Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894. http://dx.doi.org/10.1016/j.foodchem.2005.11.002.
http://dx.doi.org/10.1016/j.foodchem.200...
), Bixa orellana L. seeds (Figueirêdo et al., 2014Figueirêdo, B. C., Trad, I. J., Mariutti, L. R. B., & Bragagnolo, N. (2014). Effect of annatto powder and sodium erythorbate on lipid oxidation in pork loin during frozen storage. Food Research International, 65, 137-143. http://dx.doi.org/10.1016/j.foodres.2014.07.016.
http://dx.doi.org/10.1016/j.foodres.2014...
; Sepúlveda & Zapata, 2019Sepúlveda, C. T., & Zapata, J. E. (2019). Efecto de la temperatura, el pH y el contenido en sólidos sobre los compuestos fenólicos y la actividad antioxidante del extracto de Bixa orellana L. Información Tecnológica, 30(5), 57-66. http://dx.doi.org/10.4067/S0718-07642019000500057.
http://dx.doi.org/10.4067/S0718-07642019...
), açaí concentrate (Albarici & Pessoa, 2012Albarici, T. R., & Pessoa, J. D. C. (2012). Effects of heat treatment and storage temperature on the use of açaí drink by nutraceutical and beverage industries. Food Science and Technology, 32(1), 9-14. http://dx.doi.org/10.1590/S0101-20612012005000026.
http://dx.doi.org/10.1590/S0101-20612012...
), and Origanum vulgare (Zhang et al., 2014Zhang, X. L., Guo, Y. S., Wang, C. H., Li, G. Q., Xu, J. J., Chung, H. Y., Ye, W. C., Li, Y. L., & Wang, G. C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306. http://dx.doi.org/10.1016/j.foodchem.2013.11.153. PMid:24444941.
http://dx.doi.org/10.1016/j.foodchem.201...
).

Figure 2
Stability of the leaves extract as a function of time: (A) total phenolic compounds; (B) antioxidant activity (ABTS); and (C) antioxidant activity (FRAP).

It is essential to highlight the difference between the parameters of the thermal degradation that Table 1 and Table 3 show. Because the processing temperatures (70, 90 °C) are higher than the storage temperatures (−20, 37 °C), it indicates the high temperatures deteriorates the structure of the phenolic compounds (Timberlake, 1980Timberlake, C. F. (1980). Anthocyanins: occurrence, extraction and chemistry. Food Chemistry, 5(1), 69-80. http://dx.doi.org/10.1016/0308-8146(80)90065-5.
http://dx.doi.org/10.1016/0308-8146(80)9...
).

Table 3
Kinetic parameters of the degradation of TPC and antioxidant activity during storage of the extracts of Bixa orellana L. leaves.

Figure 2 also shows the behavior of the antioxidant activity measured with two methods (ABTS, and FRAP) as a function of time for the extract during 91 days of storage at four temperatures (−20, 8, 23, and 37 °C). It shows that the antioxidant activity is inversely proportional to the temperature on both ABTS and FRAP methods. In both cases, the loss of activity follows first-order kinetics like in the degradation of phenolic compounds from other reports (De Paepe et al., 2014De Paepe, D., Valkenborg, D., Coudijzer, K., Noten, B., Servaes, K., De Loose, M., Voorspoels, S., Diels, L., & Van Droogenbroeck, B. (2014). Thermal degradation of cloudy apple juice phenolic constituents. Food Chemistry, 162, 176-185. http://dx.doi.org/10.1016/j.foodchem.2014.04.005. PMid:24874374.
http://dx.doi.org/10.1016/j.foodchem.201...
; Fischer et al., 2013Fischer, U. A., Carle, R., & Kammerer, D. R. (2013). Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions. Food Chemistry, 138(2-3), 1800-1809. http://dx.doi.org/10.1016/j.foodchem.2012.10.072. PMid:23411312.
http://dx.doi.org/10.1016/j.foodchem.201...
; Henríquez et al., 2014Henríquez, C., Córdova, A., Almonacid, S., & Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 143, 146-153. http://dx.doi.org/10.1016/j.jfoodeng.2014.06.037.
http://dx.doi.org/10.1016/j.jfoodeng.201...
; Kirca et al., 2007Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019.
http://dx.doi.org/10.1016/j.foodchem.200...
).

Table 3 also shows the thermal parameters of the loss of antioxidant activity of extracts of Bixa orellana L. leaves. It shows that k increase and the t1/2 decrease as the temperature increase in the same way and with similar values than the degradation of TPC. This result confirms than the antioxidant properties of the extracts of Bixa orellana L. leaves are due to the phenolic compounds (Makwana et al., 2015Makwana, S., Choudhary, R., Haddock, J., & Kohli, P. (2015). In-vitro antibacterial activity of plant based phenolic compounds for food safety and preservation. Lebensmittel-Wissenschaft + Technologie, 62(2), 935-939. http://dx.doi.org/10.1016/j.lwt.2015.02.013.
http://dx.doi.org/10.1016/j.lwt.2015.02....
). It also has been reported in rudge gourd (Padmashree et al., 2012Padmashree, A., Sharma, G. K., Semwal, A. D., & Bawa, A. S. (2012). In vitro antioxygenic activity of ridge gourd (Luffa acutangula) pulp, peel and their extracts on peroxidation models. American Journal of Plant Sciences, 03(10), 1413-1421. http://dx.doi.org/10.4236/ajps.2012.310171.
http://dx.doi.org/10.4236/ajps.2012.3101...
) Solanum nigrum L. (Padmashree et al., 2014Padmashree, A., Sharma, G. K., Semwal, A. D., & Mahesh, C. (2014). Antioxygenic activity of Solanum nigrum L. leaves in sunflower oil model system and its thermal stability. Food and Nutrition Sciences, 05(11), 1022-1029. http://dx.doi.org/10.4236/fns.2014.511113.
http://dx.doi.org/10.4236/fns.2014.51111...
) and Bixa orellana L. seeds (Sepúlveda & Zapata, 2019Sepúlveda, C. T., & Zapata, J. E. (2019). Efecto de la temperatura, el pH y el contenido en sólidos sobre los compuestos fenólicos y la actividad antioxidante del extracto de Bixa orellana L. Información Tecnológica, 30(5), 57-66. http://dx.doi.org/10.4067/S0718-07642019000500057.
http://dx.doi.org/10.4067/S0718-07642019...
).

The antioxidant activity determined by the ABTS method presented higher k and lower Ea and t1/2 values than those obtained from the FRAP method. It suggests that the antioxidant activity measured by the ABTS method degrades more quickly than the one measured by the FRAP method since the activity decreases more rapidly (higher k and lower t1/2) and requires less energy (lower Ea) to start the degradation reaction. On the other hand, the temperature factor (Q10) shows that the activity degradation rates measured with both methods increase with temperature.

Evaluating the stability of antioxidant activity as a function of time is important because the antioxidant activity is one of the most vital activities of phenolic compounds (Balasundram et al., 2006Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. http://dx.doi.org/10.1016/j.foodchem.2005.07.042.
http://dx.doi.org/10.1016/j.foodchem.200...
; Baydar & Baydar, 2013Baydar, N. G., & Baydar, H. (2013). Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products, 41(1), 375-380. http://dx.doi.org/10.1016/j.indcrop.2012.04.045.
http://dx.doi.org/10.1016/j.indcrop.2012...
; Bendary et al., 2013Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Science, 58(2), 173-181. http://dx.doi.org/10.1016/j.aoas.2013.07.002.
http://dx.doi.org/10.1016/j.aoas.2013.07...
; Bonilla et al., 1999Bonilla, F., Mayen, M., Merida, J., & Medina, M. (1999). Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chemistry, 66(2), 209-215. http://dx.doi.org/10.1016/S0308-8146(99)00046-1.
http://dx.doi.org/10.1016/S0308-8146(99)...
; Gutiérrez-Larraínzar et al., 2012Gutiérrez-Larraínzar, M., Rúa, J., Caro, I., de Castro, C., de Arriaga, D., García-Armesto, M. R., & del Valle, P. (2012). Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control, 26(2), 555-563. http://dx.doi.org/10.1016/j.foodcont.2012.02.025.
http://dx.doi.org/10.1016/j.foodcont.201...
; Liu et al., 2012Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., Qu, M., & Yang, Q. (2012). Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chemistry, 134(4), 1885-1891. http://dx.doi.org/10.1016/j.foodchem.2012.03.091. PMid:23442634.
http://dx.doi.org/10.1016/j.foodchem.201...
; Zhang et al., 2014Zhang, X. L., Guo, Y. S., Wang, C. H., Li, G. Q., Xu, J. J., Chung, H. Y., Ye, W. C., Li, Y. L., & Wang, G. C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306. http://dx.doi.org/10.1016/j.foodchem.2013.11.153. PMid:24444941.
http://dx.doi.org/10.1016/j.foodchem.201...
).

4 Conclusions

The results from this study show that the thermal degradation of phenolic compounds present in extracts of Bixa orellana L. leaves depends on the T, pH, and SS. The thermal degradation of the phenolic compounds and the antioxidant capacity of the extracts of Bixa orellana L leaves follows first-order kinetics. On the other hand, the antioxidant activity of these extracts decreased as a function of time and temperature with the same pattern as those of the phenolic compounds, so the antioxidant activity of these extracts can be mainly attributed to the phenolic compounds.

Acknowledgements

The authors are grateful for the financial support provided by Comité para el Desarrollo de la Investigación en la Universidad de Antioquia (CODI) through sustainability program and COLCIENCIAS.

  • Practical Application: The results from this work deliver useful information for those who are interested in using achiote as an antioxidant ingredient in the food that will be submitted to thermal processes or long periods of storage. This information lets calculate the needed amount of extracts that should be used depending on the process or storage temperature to keep the antioxidant activity to the required levels for a given period.

References

  • Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67-76. http://dx.doi.org/10.1016/j.plantsci.2012.07.014
    » http://dx.doi.org/10.1016/j.plantsci.2012.07.014
  • Agcam, E., Akyildiz, A., & Evrendilek, G. A. (2014). Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chemistry, 143, 354-361. http://dx.doi.org/10.1016/j.foodchem.2013.07.115 PMid:24054251.
    » http://dx.doi.org/10.1016/j.foodchem.2013.07.115
  • Albarici, T. R., & Pessoa, J. D. C. (2012). Effects of heat treatment and storage temperature on the use of açaí drink by nutraceutical and beverage industries. Food Science and Technology, 32(1), 9-14. http://dx.doi.org/10.1590/S0101-20612012005000026
    » http://dx.doi.org/10.1590/S0101-20612012005000026
  • Apak, R., Gorinstein, S., Böhm, V., Schaich, K. M., Özyürek, M., & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure and Applied Chemistry, 85(5), 957-998. http://dx.doi.org/10.1351/PAC-REP-12-07-15
    » http://dx.doi.org/10.1351/PAC-REP-12-07-15
  • Arabshahi-D, S., Vishalakshi Devi, D., & Urooj, A. (2007). Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability. Food Chemistry, 100(3), 1100-1105. http://dx.doi.org/10.1016/j.foodchem.2005.11.014
    » http://dx.doi.org/10.1016/j.foodchem.2005.11.014
  • Bachir Bey, M., Meziant, L., Benchikh, Y., & Louaileche, H. (2014). Deployment of response surface methodology to optimize recovery of dark fresh fig (Ficus carica L., var. Azenjar) total phenolic compounds and antioxidant activity. Food Chemistry, 162, 277-282. http://dx.doi.org/10.1016/j.foodchem.2014.04.054 PMid:24874388.
    » http://dx.doi.org/10.1016/j.foodchem.2014.04.054
  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. http://dx.doi.org/10.1016/j.foodchem.2005.07.042
    » http://dx.doi.org/10.1016/j.foodchem.2005.07.042
  • Baydar, N. G., & Baydar, H. (2013). Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products, 41(1), 375-380. http://dx.doi.org/10.1016/j.indcrop.2012.04.045
    » http://dx.doi.org/10.1016/j.indcrop.2012.04.045
  • Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Science, 58(2), 173-181. http://dx.doi.org/10.1016/j.aoas.2013.07.002
    » http://dx.doi.org/10.1016/j.aoas.2013.07.002
  • Bonilla, F., Mayen, M., Merida, J., & Medina, M. (1999). Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chemistry, 66(2), 209-215. http://dx.doi.org/10.1016/S0308-8146(99)00046-1
    » http://dx.doi.org/10.1016/S0308-8146(99)00046-1
  • Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chemistry, 86(1), 69-77. http://dx.doi.org/10.1016/j.foodchem.2003.08.011
    » http://dx.doi.org/10.1016/j.foodchem.2003.08.011
  • De Paepe, D., Valkenborg, D., Coudijzer, K., Noten, B., Servaes, K., De Loose, M., Voorspoels, S., Diels, L., & Van Droogenbroeck, B. (2014). Thermal degradation of cloudy apple juice phenolic constituents. Food Chemistry, 162, 176-185. http://dx.doi.org/10.1016/j.foodchem.2014.04.005 PMid:24874374.
    » http://dx.doi.org/10.1016/j.foodchem.2014.04.005
  • Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. http://dx.doi.org/10.1080/00224065.1980.11980968
    » http://dx.doi.org/10.1080/00224065.1980.11980968
  • Fan, G., Han, Y., Gu, Z., & Gu, F. (2008). Composition and colour stability of anthocyanins extracted from fermented purple sweet potato culture. Lebensmittel-Wissenschaft + Technologie, 41(8), 1412-1416. http://dx.doi.org/10.1016/j.lwt.2007.09.003
    » http://dx.doi.org/10.1016/j.lwt.2007.09.003
  • Figueirêdo, B. C., Trad, I. J., Mariutti, L. R. B., & Bragagnolo, N. (2014). Effect of annatto powder and sodium erythorbate on lipid oxidation in pork loin during frozen storage. Food Research International, 65, 137-143. http://dx.doi.org/10.1016/j.foodres.2014.07.016
    » http://dx.doi.org/10.1016/j.foodres.2014.07.016
  • Fischer, U. A., Carle, R., & Kammerer, D. R. (2013). Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions. Food Chemistry, 138(2-3), 1800-1809. http://dx.doi.org/10.1016/j.foodchem.2012.10.072 PMid:23411312.
    » http://dx.doi.org/10.1016/j.foodchem.2012.10.072
  • Fleischer, T. C., Ameade, E. P. K., Mensah, M. L. K., & Sawer, I. K. (2003). Antimicrobial activity of the leaves and seeds of Bixa orellana. Fitoterapia, 74(1-2), 136-138. http://dx.doi.org/10.1016/S0367-326X(02)00289-7 PMid:12628409.
    » http://dx.doi.org/10.1016/S0367-326X(02)00289-7
  • Garzón, G. A. (2008). Las antocianinas como colorantes naturales y compuestos bioactivos: revisión. Acta Biologica Colombiana, 13(3), 27-36.
  • Gómez, G. C., Quintana Castillo, J. C., Alarcón Pérez, J. C., & Zapata Montoya, J. E. (2012). Ethanolic extract from leaves of Bixa orellana L.: a potential natural food preservative. Interciencia, 37(7), 547-551.
  • Gutiérrez-Larraínzar, M., Rúa, J., Caro, I., de Castro, C., de Arriaga, D., García-Armesto, M. R., & del Valle, P. (2012). Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control, 26(2), 555-563. http://dx.doi.org/10.1016/j.foodcont.2012.02.025
    » http://dx.doi.org/10.1016/j.foodcont.2012.02.025
  • He, X., Li, X., Lv, Y., He, Q., He, X., Li, X., Lv, Y., & He, Q. (2015). Composition and color stability of anthocyanin-based extract from purple sweet potato. Food Science and Technology, 35(3), 468-473. http://dx.doi.org/10.1590/1678-457X.6687
    » http://dx.doi.org/10.1590/1678-457X.6687
  • Henríquez, C., Córdova, A., Almonacid, S., & Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 143, 146-153. http://dx.doi.org/10.1016/j.jfoodeng.2014.06.037
    » http://dx.doi.org/10.1016/j.jfoodeng.2014.06.037
  • Kirca, A., & Cemeroǧlu, B. (2003). Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chemistry, 81(4), 583-587. http://dx.doi.org/10.1016/S0308-8146(02)00500-9
    » http://dx.doi.org/10.1016/S0308-8146(02)00500-9
  • Kirca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218. http://dx.doi.org/10.1016/j.foodchem.2006.01.019
    » http://dx.doi.org/10.1016/j.foodchem.2006.01.019
  • Koolen, H. H. F., Silva, F. M. A., Gozzo, F. C., Souza, A. Q. L., & Souza, A. D. L. (2013). Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC-ESI-MS/MS. Food Research International, 51(2), 467-473. http://dx.doi.org/10.1016/j.foodres.2013.01.039
    » http://dx.doi.org/10.1016/j.foodres.2013.01.039
  • Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., Qu, M., & Yang, Q. (2012). Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chemistry, 134(4), 1885-1891. http://dx.doi.org/10.1016/j.foodchem.2012.03.091 PMid:23442634.
    » http://dx.doi.org/10.1016/j.foodchem.2012.03.091
  • Lourido Pérez, H. C., & Martínez Sánchez, G. (2010). La Bixa orellana L. en el tratamiento de afecciones estomatológicas, un tema aún por estudiar. Revista Cubana de Farmacia, 44(2), 231-244.
  • Makwana, S., Choudhary, R., Haddock, J., & Kohli, P. (2015). In-vitro antibacterial activity of plant based phenolic compounds for food safety and preservation. Lebensmittel-Wissenschaft + Technologie, 62(2), 935-939. http://dx.doi.org/10.1016/j.lwt.2015.02.013
    » http://dx.doi.org/10.1016/j.lwt.2015.02.013
  • Medeiros, K. C. P., Figueiredo, C. A. V., Figueredo, T. B., Freire, K. R. L., Santos, F. A. R., Alcantara-Neves, N. M., Silva, T. M. S., & Piuvezam, M. R. (2008). Anti-allergic effect of bee pollen phenolic extract and myricetin in ovalbumin-sensitized mice. Journal of Ethnopharmacology, 119(1), 41-46. http://dx.doi.org/10.1016/j.jep.2008.05.036 PMid:18588965.
    » http://dx.doi.org/10.1016/j.jep.2008.05.036
  • Montgomery, D. C. (2005). Diseño y análisis de experimentos (2nd ed.). Mexico City: Limusa-Wiley.
  • Moo-Huchin, V. M., Moo-Huchin, M. I., Estrada-León, R. J., Cuevas-Glory, L., Estrada-Mota, I. A., Ortiz-Vázquez, E., Betancur-Ancona, D., & Sauri-Duch, E. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166, 17-22. http://dx.doi.org/10.1016/j.foodchem.2014.05.127 PMid:25053022.
    » http://dx.doi.org/10.1016/j.foodchem.2014.05.127
  • Olaya, C., Castaño, M. P., & Garzón, G. A. (2009). Stability of anthocyanins from rubus glaucus and solanum betaceum cav.dark-red strain as affected by temperature, storage and water activity. Acta Biologica Colombiana, 14(3), 143-158.
  • Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Spiegelhalder, B., & Bartsch, H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer, 36(10), 1235-1247. http://dx.doi.org/10.1016/S0959-8049(00)00103-9 PMid:10882862.
    » http://dx.doi.org/10.1016/S0959-8049(00)00103-9
  • Ozkan, M., Yemenicioglu, A., Asefi, N., & Cemeroglu, B. (2002). Degradation kinetics of anthocyanins from sour cherry, pomegranate, and strawberry juices by hydrogen peroxide. Journal of Food Science, 67(2), 525-529. http://dx.doi.org/10.1111/j.1365-2621.2002.tb10631.x
    » http://dx.doi.org/10.1111/j.1365-2621.2002.tb10631.x
  • Padmashree, A., Sharma, G. K., Semwal, A. D., & Bawa, A. S. (2012). In vitro antioxygenic activity of ridge gourd (Luffa acutangula) pulp, peel and their extracts on peroxidation models. American Journal of Plant Sciences, 03(10), 1413-1421. http://dx.doi.org/10.4236/ajps.2012.310171
    » http://dx.doi.org/10.4236/ajps.2012.310171
  • Padmashree, A., Sharma, G. K., Semwal, A. D., & Mahesh, C. (2014). Antioxygenic activity of Solanum nigrum L. leaves in sunflower oil model system and its thermal stability. Food and Nutrition Sciences, 05(11), 1022-1029. http://dx.doi.org/10.4236/fns.2014.511113
    » http://dx.doi.org/10.4236/fns.2014.511113
  • Prado, A. C. P., Silva, H. S., Silveira, S. M., Barreto, P. L. M., Vieira, C. R. W., Maraschin, M., Ferreira, S. R. S., & Block, J. M. (2014). Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Industrial Crops and Products, 52, 552-561. http://dx.doi.org/10.1016/j.indcrop.2013.11.031
    » http://dx.doi.org/10.1016/j.indcrop.2013.11.031
  • Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8), 3396-3402. http://dx.doi.org/10.1021/jf9913458 PMid:10956123.
    » http://dx.doi.org/10.1021/jf9913458
  • Radhika, B., Begum, N., & Srisailam, K. (2010). Pharmacognostic and preliminary phytochemical evaluation of the leaves of Bixa orellana. Pharmacognosy Journal, 2(7), 132-136. http://dx.doi.org/10.1016/S0975-3575(10)80079-3
    » http://dx.doi.org/10.1016/S0975-3575(10)80079-3
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231-1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3 PMid:10381194.
    » http://dx.doi.org/10.1016/S0891-5849(98)00315-3
  • Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894. http://dx.doi.org/10.1016/j.foodchem.2005.11.002
    » http://dx.doi.org/10.1016/j.foodchem.2005.11.002
  • Rocha Garcia, C. E., Bolognesi, V. J., & Gaspari Dias, J. (2012). Carotenoides bixina e norbixina extraídos do urucum (Bixa orellana L.) como antioxidantes em produtos cárneos. Ciência Rural, 42(8), 1510-1517. http://dx.doi.org/10.1590/S0103-84782012000800029
    » http://dx.doi.org/10.1590/S0103-84782012000800029
  • Rodrigues, S. M., Soares, V. L. F., Oliveira, T. M., Gesteira, A. S., Otoni, W. C., & Costa, M. G. C. (2007). Isolation and purification of RNA from tissues rich in polyphenols, polysaccharides, and pigments of annatto (Bixa orellana L.). Molecular Biotechnology, 37(3), 220-224. http://dx.doi.org/10.1007/s12033-007-0070-9 PMid:17952668.
    » http://dx.doi.org/10.1007/s12033-007-0070-9
  • Sant’Anna, V., Brandelli, A., Marczak, L. D. F., & Tessaro, I. C. (2012). Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Separation and Purification Technology, 100, 82-87. http://dx.doi.org/10.1016/j.seppur.2012.09.004
    » http://dx.doi.org/10.1016/j.seppur.2012.09.004
  • Schulte, P. M. (2011). Temperature: effects of temperature: an introduction. In A. P. Farrell (Ed.), Encyclopedia of fish physiology: from genome to environment (Vol. 3, pp. 1688-1694). London: Academic Press. http://dx.doi.org/10.1016/B978-0-12-374553-8.00159-3
    » http://dx.doi.org/10.1016/B978-0-12-374553-8.00159-3
  • Sepúlveda, C. T., & Zapata, J. E. (2019). Efecto de la temperatura, el pH y el contenido en sólidos sobre los compuestos fenólicos y la actividad antioxidante del extracto de Bixa orellana L. Información Tecnológica, 30(5), 57-66. http://dx.doi.org/10.4067/S0718-07642019000500057
    » http://dx.doi.org/10.4067/S0718-07642019000500057
  • Sepúlveda, C. T., Ciro, G. L., & Zapata, Z. M. (2016). Extracción de compuestos fenólicos y actividad antioxidante de hojas de Bixa orellana L. (achiote). Revista Cubana de Plantas Medicinales, 2(2), 133-144.
  • Shilpi, J. A., Taufiq-Ur-Rahman, M., Uddin, S. J., Alam, M. S., Sadhu, S. K., & Seidel, V. (2006). Preliminary pharmacological screening of Bixa orellana L. leaves. Journal of Ethnopharmacology, 108(2), 264-271. http://dx.doi.org/10.1016/j.jep.2006.05.008 PMid:16963211.
    » http://dx.doi.org/10.1016/j.jep.2006.05.008
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis, 579(1-2), 200-213. http://dx.doi.org/10.1016/j.mrfmmm.2005.03.023 PMid:16126236.
    » http://dx.doi.org/10.1016/j.mrfmmm.2005.03.023
  • Tao, Y., Zhang, Z., & Sun, D. W. (2014). Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrasonics Sonochemistry, 21(4), 1461-1469. http://dx.doi.org/10.1016/j.ultsonch.2014.01.029 PMid:24613646.
    » http://dx.doi.org/10.1016/j.ultsonch.2014.01.029
  • Timberlake, C. F. (1980). Anthocyanins: occurrence, extraction and chemistry. Food Chemistry, 5(1), 69-80. http://dx.doi.org/10.1016/0308-8146(80)90065-5
    » http://dx.doi.org/10.1016/0308-8146(80)90065-5
  • Verbeyst, L., Oey, I., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269-274. http://dx.doi.org/10.1016/j.foodchem.2010.04.027
    » http://dx.doi.org/10.1016/j.foodchem.2010.04.027
  • Viuda-Martos, M., Ciro-Gómez, G. L., Ruiz-Navajas, Y., Zapata-Montoya, J. E., Sendra, E., Pérez-Álvarez, J. A., & Fernández-López, J. (2012). In vitro antioxidant and antibacterial activities of extracts from annatto (Bixa orellana L.) leaves and seeds. Journal of Food Safety, 32(4), 399-406. http://dx.doi.org/10.1111/j.1745-4565.2012.00393.x
    » http://dx.doi.org/10.1111/j.1745-4565.2012.00393.x
  • Wang, W. D., & Xu, S. Y. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3), 271-275. http://dx.doi.org/10.1016/j.jfoodeng.2007.01.018
    » http://dx.doi.org/10.1016/j.jfoodeng.2007.01.018
  • Williams, R. J., Spencer, J. P. E., & Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free Radical Biology & Medicine, 36(7), 838-849. http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001
    » http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001
  • Xia, D., Wu, X., Shi, J., Yang, Q., & Zhang, Y. (2011). Phenolic compounds from the edible seeds extract of Chinese Mei (Prunus mume Sieb. et Zucc) and their antimicrobial activity. Lebensmittel-Wissenschaft + Technologie, 44(1), 347-349. http://dx.doi.org/10.1016/j.lwt.2010.05.017
    » http://dx.doi.org/10.1016/j.lwt.2010.05.017
  • Zapata, J. E., & Montoya, A. (2012). Deshidratación osmótica de láminas de mango cv. tommy atkins aplicando metodología de superficies de respuesta. Revista Facultad Nacional de Agronomía, 65(1), 6507-6518.
  • Zhang, X. L., Guo, Y. S., Wang, C. H., Li, G. Q., Xu, J. J., Chung, H. Y., Ye, W. C., Li, Y. L., & Wang, G. C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300-306. http://dx.doi.org/10.1016/j.foodchem.2013.11.153 PMid:24444941.
    » http://dx.doi.org/10.1016/j.foodchem.2013.11.153

Publication Dates

  • Publication in this collection
    29 Jan 2021
  • Date of issue
    2022

History

  • Received
    26 Sept 2020
  • Accepted
    01 Nov 2020
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br