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1 Introduction
In living organisms, reactive oxygen species (ROS) are 

produced during the metabolic processes and caused oxidative 
stress impact (Santos-Sánchez  et  al., 2019). Various chronic 
diseases, such as atherosclerosis, cancer, and aging may be 
due to the oxidative damage of the reactive oxygen species on 
biomolecules (nucleic acids, proteins, and lipids) (Pirian et al., 
2017). Antioxidants may mitigate the negative effects of oxidative 
stress (Larson, 1995; Adwas et al., 2019). Butylated hydroxyl 
anisole (BHA) and Butylated hydroxyl toluene (BHT), which 
are synthetic antioxidants, were showed to be poisonous and 
carcinogenic in animal models, so need to be replaced with natural 
antioxidants (Safer & Al-Nughamish, 1999; J Mbah et al., 2019). 
Furthermore, novel resources of safe and cheap antioxidants of 
the natural source should be identified.

Seaweeds are marine, photosynthetic algae that are abundant in 
every ocean. There are three main phyla of seaweed: Chlorophyta 
(green algae), Rhodophyta (red algae), and Phaeophyta (brown 
algae) (Shannon & Abu-Ghannam, 2019). Strong antioxidant 
properties have shown with seaweed extracts (Ibrahim et al., 
2016; Mohy El-Din & El-Ahwany, 2016; Ismail  et  al., 2019; 
El-Shenody et al., 2019; Al-Araby et al., 2020). Barba (2017) 
and Lopez-Santamarina  et  al. (2020) reported that marine 
macroalgae contain an excellent source of bioactive components 

like dietary fibers, carotenoids, essential fatty acids, protein, 
minerals, and vitamins. In many Asian countries such as China, 
Japan, and Korea, seaweeds have been used as a food resource 
(Wijesekara et al. 2012).

The most remarkable biochemical compounds of algae 
are carbohydrates, proteins, and lipids. Khairy & El-Shafay, 
(2013) mentioned that lipids are commonly found in many 
algal resistance stages. Studies on the fatty acids of seaweeds 
and microalgae were few (Lie Ken Jie, 1989; Khairy & El-Shafay, 
2013). The biomass of seaweeds can store high contents of oil, 
which can be consumed for biodiesel production (John & Anisha, 
2012; Peng et al., 2020). For several coastal areas of the world, 
a few populations of Padina have usually been used as a food 
supply, generally recognized as gelatin-like sweetmeat (Robledo 
& Freile Pelegrín, 1997).

In the present study, T. atomaria is an annual photophilic 
species of the infralittoral zone, found in calm areas, with a greater 
occurrence in the early summer and very few individuals from late 
summer to late winter (Sala & Boudouresque, 1997). Coralline 
algae (Rhodophyta) play a vital role in fostering dominion of 
other benthic organisms, becoming the source of food source 
for herbivores, involving in the stabilization of reef networks, 
and in the production of carbonate. One of the most popular 
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coralline species, Jania rubens, that may survive as epiphytic 
or epilithic tufts in shallow environments (Porzio et al., 2018).

The purpose of this study is to search the biochemical 
content and fatty acid profile of four different seaweeds 
T. atomaria, P. pavonia, J. rubens, and C. elongate, which are 
commonly found in Rocky Bay of Abu Qir in Alexandria, Egypt. 
The pharmaceutical, medicinal, and nutritional applications of the 
studied seaweeds were confirmed by estimating the antioxidant 
activities of these seaweed extracts.

2 Materials and methods
2.1 Seaweeds collection

Jania rubens, Coralina elongate, Padina pavonia, and Toania 
atomaria were collected freshly from Rocky Bay of Abu Qir in 
Alexandria, Egypt (Figure 1). Collected samples were washed 
carefully with marine water then tap water, transferred in an iced 
condition to the Phycology laboratory. The collected samples 
were air-dried in the shade at room temperature then in the 
oven at 38 ± 2 °C; the dried seaweeds were ground to a fine 
powder and stored for further studies in tightly closed containers. 
For taxonomical identification, a portion of the collected samples 
were stored in 3-4% formalin in seawater or distilled water. 
The seaweeds were identified according to (Aleem 1993; Jha et al. 
2009; Kanaan & Belous 2016), then using the Algae Base website 
to confirm their identification and the habitat details (Guiry & 
Guiry, 2019).

2.2 Preparation of the algal extracts (Conventional method)

The extraction was performed with several solvents (methanol, 
ethanol, hexane, diethyl ether, aqueous cold, aqueous hot) by 
steeping the material in the corresponding solvents (1:30 w/v) 
within a conical flask then closed with cotton wool. Next, 
retained on a rotatory shaker at 120 rpm at 20-30 °C for 2 days. 
The extracts were filtered, and the filtrate put in the oven at 45 °C 

to get rid of the solvent. The crude extracts were suspended in 
the corresponding solvents to obtain a final concentration of 
5 mg/mL  then kept at -20 °C in an airtight container to control 
the microbial contamination.

For the hot water extraction, soaking 1 g of seaweed powder 
in 30 mL distilled water for 2 hours at 60 °C then repeated the 
previous steps for extract preparation as mentioned above.

The extraction yield percentage of each extract was calculated 
according to (Maisuthisakul & Pongsawatmanit, 2004): Extraction 
yield%= (W1/W2)*100.

Where W1 is the dried crude extract weight, and W2 is the 
sample weight before extraction (1 gm).

2.3 Antioxidant activities estimation

Total Antioxidant Capacity (TAC) assay

The total antioxidant capacity (TAC) was determined, as reported 
by (Sun et al., 2011). In brief, 0.3 mL of the crude extracts was 
added to 3 mL of reagent solution (4 mM ammonium molybdate, 
28 mM sodium phosphate, and 0.6 M sulfuric acid). Absorbance 
was measured at 695 nm against a blank). Total antioxidant capacity 
was expressed (mg ascorbic acid equivalents/g crude extract).

Ferric- reducing antioxidant power (FRAP) assay:

Ferric- reducing antioxidant power (FRAP) was estimated 
by the method reported by (Zubia et al., 2007). Aliquots (0.5 mL) 
of the extracts were added to 1.25 mL of sodium phosphate 
buffer (0.2 M, pH 6.6), 1.25 mL of (1%) potassium ferricyanide 
(K3Fe (CN) 6). Afterward, the mix was kept at 50 °C for 20 min 
in a water bath. The mixture was cooled and mixed with 
1.25 mL of (10%) trichloroacetic acid, and then 1.25 mL of 
the mixture was added to 1.25 mL distilled water, 0.25 mL of 
(0.1%) ferric chloride solution (FeCl3.6H2O). Absorbance was 

Figure 1. Map of Abu Qir showing collection site (Abu Qir bay located in Abu Qir, Alexandria).
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GC-MS spectrophotometry (Perkin Elmer model: 
Clarus 580/560 S) was used for the analysis of the fatty acid 
methyl esters (FAMEs). Acquisition parameters were oven initial 
temperature 60 °C for 2 min which ramped from 10 °C/min to 280 °C, 
hold 6 min, Injector temperature = 250 °C, Source temp = 200 °C, 
Transfer temp = 250 °C, Column (Rxi-5Sil MS column 30 m, 
0.25 mm ID, 0.25 df), Scan = 50 to 500Da, Split ratio = 20:1, 
Injectionvolume = 1.0 μL of fatty acid methyl esters, Carrier 
gas = Helium, Solvent delay = 5.00 min.

2.5 Statistical analysis

All the assays were performed in triplicate, and the 
means ± standard deviation (SD) were recorded. The seaweed 
extraction yield and antioxidant activities were compared by 
custom tables using the SPSS 23.0 software, significant values 
at p< 0.05. The statistically significant difference between the 
chemical composition of seaweed was identified by the analysis 
of variance (One-way ANOVA) followed by Duncan’s multiple 
range test for data with significant differences, at p< 0.05, using 
the SPSS 23.0 software.

3 Results and discussion
The extraction efficiency is strongly influenced by the 

extraction method, extraction time, the solvent used, temperature, 
and the phytochemicals composition (Turkmen  et  al., 2006; 
van Ngo et al., 2017). According to the findings of this study, the 
solvent is identified as one of the most important parameters 
under the same extraction conditions. The current study used 
distilled water (cold and hot) and organic solvents (methanol, 
ethanol, diethyl ether, and hexane) to extract bioactive compounds 
from collected seaweeds.

3.1 Taxonomic description of collected seaweeds

The collected species were identified as presented in the 
literatures, checked for synonyms and latest accepted names, 
referred to its systematic groups, and described. The collected 
species were Padina pavonica (Linnaeus) Thivy or Padina pavonia 
(Linnaeus) J.V.Lamouroux and Taonia atomaria (Woodward) 
J. Agardh from Phaeophyceae, Jania rubens (Linnaeus) 
J.V.Lamouroux, Corallina elongate Ellis et Solander from 
Rhodophyceae (Figure 2A, B, C and D).

measured against blank. Higher absorbance marked increased 
reducing power. Ferric- reducing antioxidant power (FRAP) 
was reported as mg ascorbic acid equivalents/g crude extract.

2.4 Chemical composition of Seaweeds

Estimation of total soluble carbohydrates and total soluble 
protein

The sample (0.1 g powder) was extracted with NaOH (1 N) 
in a water bath at 100 °C for 2 hours, cooled the extract, and 
centrifugation done as represented by (Payne & Stewart, 1988).

• A- Total content of soluble carbohydrates

Total soluble carbohydrate was quantitatively estimated by 
the method of Phenol-Sulphoric acid described by (Kochert, 
1973). The absorbance was determined at 490 nm against a blank. 
The carbohydrate concentration was stated after the creation of a 
calibration curve using glucose as a standard. Total carbohydrate 
content was given as a percentage of the algal dry weight %DW.

• B-Total content of soluble protein

Total soluble protein was assessed using the method of 
Bradford (1976). The absorbance was measured at 595 nm 
against a blank. Bovine Serum Albumin was used as a standard 
to evaluate the calibration curve. Total protein content was given 
as a percentage of the algal dry weight %DW.

Estimation of lipids

Total lipid content

Lipid was determined as reported by the modified Folch 
method (Folch et al., 1957) with some modifications.

Composition of fatty acids

• A- Preparation of methyl ester of fatty acids

The transmethylation of lipids and extraction of fatty acid 
methyl esters (FAMEs) were prepared from aliquots comprising 
total lipids, as mentioned by (Radwan, 1978), stored at 4 °C in 
the dark before GC–MS analysis.

• B- Gas liquid chromatography of methyl esters of fatty acids.

Figure 2. Photos of the studied seaweeds (A) Padina pavonia (B) Taonia atomaria (C) Jania rubens (D) Corallina elongate.
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diabetes infections, cardiovascular and cancer diseases (Rady et al., 
1994; Al-Dabbas, 2017). Hence, in this study, the evaluation of 
antioxidant activities of the collected seaweeds extracted with 
different solvents carried out by two methods:

1. Total Antioxidant Capacity (TAC) assay.

2. Ferric reducing antioxidant power (FRAP) assay.

Total Antioxidant Capacity (TAC) assay

The attention of researchers was focused on the ability of 
algae to accumulate antioxidant compounds, as the environment 
in which seaweeds grow is harsh and can cause the formation of 
strong oxidizing agents; however, seaweeds rarely know any severe 
photodynamic damage during metabolism. Such a fact means 
that the cells of seaweed have developed a complex protective 
system to bear salinity (Zubia et al., 2007). The quantitative total 
antioxidant capacity (TAC) of the algal extract was assessed 
by a phosphomolybdenum assay. The TAC of the extracts or 
standards was measured depend on the reduction of molybdenum 
(Abifarin et al., 2019). Biologically, antioxidants perform their 
health-useful roles by transferring an electron or hydrogen (H) atom 
to reactive species, so inhibit them (Apak et al., 2016). Thus, 
measurements of the antioxidant potential may generally be 
through hydrogen atom transfer (HAT) and single electron transfer 
dependant assays (SET). SET assays determine the potential of 
an antioxidant to reduce an oxidant, which alters colour when 
reduced. SET assays such as Total Antioxidant Capacity (TAC) 
and Ferric reducing antioxidant power (FRAP) assays were able 
to measure the reduced capacity. Pérez-Jiménez & Saura-Calixto, 
(2006) stated that the type and polarity of solvent might affect 
the hydrogen atom transfer and the single electron transfer, 
which are major aspects in the estimation of antioxidant capacity. 
However, the total antioxidant activity of 245– 376 mg ascorbic 
acid/g crude extract has been detected in extracts of a higher 
plant (Kumaran & Karunakaran, 2007). Published studies on the 
total antioxidant activity of seaweed extracts are not available. 
As well, it has been mentioned that solvents used for extraction 
have a significant effect on the chemical species (Yuan et al., 2005).

The total antioxidant activity of the four seaweeds extracted 
with different solvents was recorded in Table 2. The present results 
showed that methanol, ethanol, diethyl ether, hexane, aqueous 
cold, and hot aqueous extracts of four seaweeds (Rhodophyta 
and Phaeophyta) possessed antioxidant activities. The methanol 

3.2 Extraction yield

Different solvents with various polarities were used for 
extraction. Also, the obtained crude extracts were used to evaluate 
the antioxidant activities using different methods due to the 
presence of different bioactive components with antioxidant 
potential. Moreover, the polarity index of extraction solvents 
was: methanol (5.1), ethanol (5.2), water (9.0), diethyl ether (2.8), 
and hexane (0.1). Table  1 indicates that the extraction yield 
increased with increasing solvent polarity. The trend indicated 
relatively greater yields of polar solvents vis a vis non-polar 
solvents in red and brown algae, while the brown alga remains 
the highest yielding. This result is consistent with (Truong et al., 
2019), who observed that the extraction efficiency favors the 
highly polar solvents in Severinia buxifolia. This may be due to 
the plant material has great levels of polar compounds which 
are soluble in solvents with a high polarity such as water, 
methanol, and ethanol. In order to better understand the solvents 
effect on extraction yield, further analysis was performed to 
measure the antioxidant potential of bioactive compounds in 
the extract. These large variations in extraction yield detected 
among different seaweed species may be due to the fact that the 
polarities of different components present in the seaweeds and 
also species–species differences (Agregán et al., 2017, 2018).

Extraction yield of four seaweeds collected extracted with 
different solvents (aqueous cold, aqueous hot, methanol, ethanol, 
diethyl ether, and hexane) are recorded in (Table 1). With regard to 
the effect of different extraction solvents on the yield of the studied 
seaweeds, T.atomaria (16.5% ± 0.2) recorded the highest yield 
value with methanol extract; however, J. rubens (0.2% ±0.0) showed 
the lowest yield value in hexane extract. The yield of methanolic 
extract in the current study was larger as compared to the earlier 
study by (Chakraborty et al., 2015), who recorded a 5.32 g/100 g dry 
sample of total methanol extract in J. rubens (red seaweed). 
In the present study, the methanol extract yield was higher than 
the values previously reported, including Padina pavonica (6.5%), 
Colpomenia sinuosa (4.7%), Cystoseira myrica (4.3%) and 
Ulva lactuca (3.3%) (Kokabi et al., 2013). Furthermore, the yield 
of the extracts varies, ranging from 1.5 to 4.1% in other types of 
seaweeds, such as red seaweeds (Ganesan et al., 2008).

3.3 Evaluation of antioxidant activities

Antioxidants turn reactive oxygen species to non-toxic 
compounds, inhibit the adverse effects of reactive oxygen species 
and reduce some disorders, such as infections and ischemia, 

Table 1. Yield value of four seaweeds collected from Rocky Bay of Abu Qir in Alexandria, Egypt extracted with different solvents (as % w/w of seaweed 
on dry weight basis).

Seaweeds
Solvents

Methanol Ethanol Aqueous hot Aqueous cold Diethylether Hexane
Yield (%)

P. pavonia 7.9 ± 0.8Aa 15.6 ± 0.2Ba 5.5 ± 0.3Ca 6.9 ± 0.7Aa 1.1 ± 0.0Da 0.3 ± 0.0Da

J. rubens 2.7 ± 0.0Ab 2.0 ± 0.1Bb 1.4 ± 0.1Cb 5.0 ± 0.2Db 0.5 ± 0.0Eb 0.2 ± 0.0Fa

T.atomaria 16.5 ± 0.2Ac 10.5 ± 0.1Bc 12.3 ± 0.2Cc 13.5 ± 0.1Dc 4.8 ± 0.1Ec 4.3 ± 0.0Fb

C.elongate 2.1 ± 0.2Ab 1.8 ± 0.2Ab 4.6 ± 0.1Bd 4.4 ± 0.2Bb 0.8 ± 0.2Cb 1.6 ± 0.2Ac

Values are the mean of three replicates  ± SD; Values with the same capital letter in the same row showed insignificant differences (at P< 0.05); Values with the small letter in the same 
column showed insignificant differences (at P< 0.05).
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& El-Ahwany, 2016) and chloroform extract of Jania rubens 
(Saeed  et  al., 2020) had a significant antioxidant activity in 
Total Antioxidant Capacity assay. It is still unobvious what 
type of solvent is the most efficient and favorable for seaweeds 
extraction. Although different solvents have been used in 
screening algae for antioxidants (Yi et al., 2001; Manch et al., 
2014). The antioxidant activity might be attributable to the 
presence of PUFAs and lipophilic antioxidants such as phenolic 
and terpenoid compounds, total carotenoids, and α-tocopherol 
(El Baz et al., 2014).

Ferric reducing antioxidant power (FRAP) assay

Ferric reducing antioxidant power (FRAP) in the crude 
extracts of the four collected algae were recorded in Table 3. 
In FRAP, The ability of the antioxidant compounds in the extract 
to reduce ferric (III) to ferrous (II) in a redox-linked colorimetric 
reaction that includes single electron transfer determined the 
antioxidant activity (Li et al., 2006; Sumayya & Murugan, 2019). 
With regard to different solvents, ethanol extract of T. atomaria 
recorded the highest ferric reducing antioxidant power (FRAP) 
(32.3 ± 0.0 mg ascorbic acid equivalents/g crude extract), and 
these values were the highest between solvents and seaweeds. 
Hexane and diethyl ether extracts showed the lowest ferric, 
reducing antioxidant power (FRAP) for all tested seaweeds. 
Duh (1998) stated that reducing properties are generally related 
to the presence of reductions. Reductions also prevent peroxide 
formation as they react with certain precursors of peroxide. 
The results indicate that the remarkable antioxidant activity of 
the tested seaweeds extracts was due to their reducing power. 
The components from these seaweeds may work as reductions 
by donating electrons and reacting with free-radicals to convert 
them to more stable products and ending the free-radical 
chain reaction.

extract showed the highest antioxidant activities for all tested 
seaweeds except T. atomaria. T. atomaria observed the highest 
antioxidant activity in ethanol extract (44.6 ± 1.6 mg ascorbic 
acid equivalents/g crude extract), and it recorded the highest 
value between different solvents and seaweeds this action 
may be due to Lipids (soluble Lipids, PUFAs, and steroids) 
(El Baz  et  al., 2014), sterol fraction (Ibrahim  et  al., 2016), 
taondiol and epitaondiol metabolites (Nahas et al., 2007) which 
had high antioxidant activity. Hexane extract showed the lowest 
antioxidant activities for all tested seaweeds except P. pavonia, 
which had the lowest antioxidant activity with diethyl ether extract 
(0.5 ± 0.1 mg ascorbic acid equivalents/g crude extract). J. rubens 
showed the lowest antioxidant activity in hexane extract with 
0.14 ± 0.0 mg ascorbic acid equivalents/g crude extract. Data 
presented in Table 2 indicated variations in TAC, which may 
be attributed to species differences. Accordingly, all the studied 
species are considered a rich source of antioxidants. Indu & 
Seenivasan (2013) reported that brown seaweeds possessed 
good antioxidant activity when compared to red and green 
seaweeds, and this explains that brown algae T. atomaria and 
P. pavonia exhibited the highest TAC. In J. rubens, methanol 
and ethanol extract give nearly equal results in TAC. In general, 
methanol was the most effective solvent for the extraction of 
antioxidant compounds from seaweeds, which may be because 
methanol having a larger dielectric constant than ethanol. 
We found that methanol extracts of J. rubens, P. pavonia, and 
C. elongate more reactive than the other extracts. Similar results 
were previously obtained by (Mohy El-Din & El-Ahwany, 2016), 
who stated that methanol extract of Corallina mediterranea 
was found to have the highest total antioxidant capacity. Other 
reports informed that methanol, etahanol, acetone and water 
extract of Padina pavonica (Ismail et al., 2019), sterol fraction 
of Toania atomaria (Ibrahim et al., 2016), methanol, ethanol, 
acetone and chloroform extract of Jania rubens (Mohy El-Din 

Table 2. Total antioxidant activity (mg ascorbic acid equivalents/g crude extract) of four seaweeds extracted with different solvents (concentration 
of extracts used = 5 mg/mL).

Seaweeds
Solvents

Methanol Ethanol Aqueous hot Aqueous cold Diethyl ether Hexane
TAC (mg ascorbic acid equivalents/g crude extract)

P. pavonia 30.8 ± 2.1Aa 19.8 ± 0.4Ba 15.3 ± 0.4Ca 5.1 ± 0.1Da 0.5 ± 0.1Ea 2.6 ± 0.2Ea

J. rubens 31.2 ± 1.1Aa 30.4 ± 1.2Ab 13.7 ± 0.3Bb 16.5 ± 0.1Cb 7.6 ± 0.1Db 0.14 ± 0.0Eb

T. atomaria 37.6 ± 2.0Ab 44.6 ± 1.6Bc 14.6 ± 0.2Ca 19.9 ± 0.2.7Db 7.6 ± 0.0Eb 5.7 ± 0.2Ec

C. elongate 25.1 ± 0.3Ac 17.3 ± 1.0Ba 17.3 ± 0.1Bc 4.0 ± 0.1Ca 2.6 ± 0.0Dc 0.38 ± 0.1Eb

Values are the mean of three replicates ±SD; Values with the same capital letter in the same row showed insignificant differences (at P< 0.05); Values with the small letter in the same 
column showed insignificant differences (at P< 0.05). TAC= total antioxidant capacity.

Table 3. Ferric reducing antioxidant power (FRAP) assay (mg ascorbic acid equivalents/g crude extract) of four seaweeds extracted with different 
solvents (concentration of extracts used = 5 mg/mL).

Seaweeds
Methanol Ethanol Aqueous hot Aqueous cold Diethylether Hexane

FRAP(mg ascorbic acid equivalents/g extract)
P. pavonia 13.6 ± 0.2Aa 11.2 ± 0.3Ba 6.7 ± 0.2Ca 4.3 ± 0.1Da 0.4 ± 0.1Ea 0.8 ± 0.2Ea

J. rubens 22.7 ± 1.0Ab 22.4 ± 1.7Ab 15.4 ± 0.4Bb 18.5 ± 1.4Cb 0.7 ± 0.0Db 0.35 ± 0.0Db

T. atomaria 22.6 ± 0.8Ab 32.3 ± 0.0Bc 21.7 ± 0.0Ac 21.8 ± 0.1Ac 2.5 ± 0.2Cc 4.1 ± 0.2Dc

C. elongate 4.1 ± 0.1Ac 3.3 ± 0.2Bd 3.5 ± 0.0Bd 0.1 ± 0.0Cd 0.1 ± 0.0Cd 0.25 ± 0.0Cb

Values are the mean of three replicates ±SD; Values with the same capital letter in the same row showed insignificant differences (at P< 0.05); Values with the small letter in the same 
column showed insignificant differences (at P< 0.05).
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anticancer properties, the use as drug coatings in drug delivery 
systems and antioxidant activities were showed by polysaccharides. 
The fermentation of macroalgal carbohydrates can be consumed 
for the production of bioethanol (John & Anisha, 2012; 
Sudhakar et al., 2018; Offei et al., 2019).

Similar to the results obtained in the present study (Table 4). 
Fleurence et al. (2012) showed that the seaweeds protein content 
is comparatively low, among 3% to 15% on the dry weight basis. 
The results explained here recorded the highest content of protein 
in the brown seaweeds (P. pavonia and T. atomaria), and the lowest 
amount in the red seaweeds (C. elongate and J. rubens). Similar 
protein contents for these macroalgae classes were reported in 
other studies (Polat & Ozogul, 2013; El-Shenody et al. 2019). 
Stirk et al. (2007) and Gressler et al. (2010) reported that the cause 
of these variations could be that the seaweeds protein content 
changes between species and within the same species because 
of levels of maturity, time of the year and different habitats.

Lipids supply much more power in oxidation processes than 
other biological components as they have abundant -C=O- bonds. 
For living organisms, they comprise a suitable storage material, 
mainly due to their large reduction levels. The differences in lipid 
contents were assigned to either environmental parameters or 
species types, or both of them (Chandini et al. 2008). Brown 
seaweeds usually had the highest total lipid content and then 
red seaweeds (Table 4) and this evaluation is in accordance with 
the findings of Gosch et al. (2012) and El-Shenody et al. (2019).

Total lipids were showed to be in general low. On the dry 
weight basis (%), the lipid contents of the four species were 
between 0.33% and 5.92%, depending on the algal species (Table 4). 
The highest lipid content was recorded in T. atomaria (5.92% ± 0.09), 
and the lowest in C. elongate 0.33% ± 0.06). Herbreteau et al. 
(1997) stated that total lipid contents were always below 4% in 
most species. This generalized evaluation is in agreement with 
the results of, Gosch et al. (2012). The relatively high total lipid 
content (5.92% ± 0.09) observed in T. atomaria are explained by 
Gosch et al. (2012) and El-Shenody et al. (2019) who found that some 
species are distinct, as the species of the order Dictyotales, which 
can record total lipid contents more than 20% of the dry weight. 
While the result showed for the red algae J. rubens (1.42% ±0.0) 
was higher than the result reported by Polat & Ozogul (2013), 
who mentioned the total lipid content (%DW) for J. rubens 
in different seasons, which varied between 0.19% and 0.85%.
The result obtained for P. pavonia (1.42% ± 0.0) was consistent 
with the total lipid content detected in the P. pavonia earlier 
investigated, which ranged from 2.87% to 3.87% of the dry 
weight in different seasons (Polat & Ozogul, 2013).

3.5 Fatty acids profile of collected seaweeds

Variations in fatty acid contents are due to both environmental 
and genetic diversity (Nelson et al., 2002). This diversity may 
be owing to their having been collected at different sites and/or 
to the drying effects (Chan et al., 1997). Considering the fatty 
acids composition, 25 components were showed with varying 
amounts between the four collected species (Table  5 and 
Figure 3). The percentage of saturated fatty acids (SAFA) of the 
collected seaweeds could be arranged in the following sequence 

The present data are in accordance with (Kelman et al., 2012; 
Ismail et al., 2017), who reported that the antioxidant activity 
of brown algae was higher than red groups. Ismail et al. (2017) 
found that FRAP values of 31.098 and 25.858 mg ascorbic acid 
equivalents/g extract for Sargassum wightii and Jania rubens, 
respectively showed the greatest reducing power activity and 
this findings appeared in line with our results, showed that 
methanol extract of J. rubens recorded higher reducing power 
than P. pavonia.

3.4 Estimation of primary metabolites (Carbohydrate, 
protein, and lipid)

Algae have been one of the most versatile sources of bioactive 
compounds, and investigation on their chemical composition has 
significantly extended in the past three decades (Cardozo et al., 
2006; O’Sullivan et al., 2010). In general, the nutritional values of 
seaweeds are defined according to biochemical composition like 
carbohydrates, proteins, lipids, and ash content (McDermid & 
Stuercke, 2003). Carbohydrates, protein, and lipids are the most 
important biochemical components in algal biomass. Significant 
differences (p≤ 0.05) were recorded in carbohydrate, protein, 
and lipid contents (Table 4). Yoshii et al. (2004) stated that the 
ratios of each constituent change between the species based on 
the taxon. The results showed that the carbohydrate contents 
were more numerous than the protein and lipid contents.

The total soluble carbohydrate contents of the studied 
seaweeds ranged from 6.4% to 20.4%. P. pavonia (20.4% ± 0.4) 
and T. atomaria (19.5% ± 0.7) was recorded the highest value 
in carbohydrate contents, while the lowest value showed with 
C. elongate (6.7% ± 0.5) and J. rubens (6.4% ± 0.4). Similar values 
were found in the brown alga Sargassum horneri (19.93% DW) 
(Hossain et al., 2003). These variations may be due to the species 
difference, growth stage of each species, habitat, metabolic 
preferences, and photosynthetic activity (Pádua et al., 2004). 
The brown algae were rich in carbohydrate content than red 
algae, and these findings are in agreement with (El-Shenody et al., 
2019). Carbohydrate usually contains excellent amounts of 
polysaccharides, for example, carrageenan in the red seaweeds, 
alginate, and fucoidan in the brown seaweeds, so this high 
content of carbohydrate is essential for the metabolism of the 
organism. Venkatesan et al. (2017) and Barbosa et al., (2019) 
demonstrated that promising biomedical applications, including 
antibacterial, antiviral, anticoagulant, anti-inflammatory, and 

Table 4. Total soluble carbohydrate, total soluble protein, and lipid 
content in the four studied seaweeds.

Primary metabolites (%DW)
Seaweeds Carbohydrate Protein Lipid
P. pavonia 20.4 ± 0.4a 10.5 ± 0.6a 1.28 ± 0.01c

J. rubens 6.4 ± 0.4c 5.1 ± 0.3d 1.42 ± 0.0b

T. atomaria 19.5 ± 0.7b 8.8 ± 0.3b 5.92 ± 0.09a

C. elongate 6.7 ± 0.5c 8.0 ± 0.0c 0.33 ± 0.06d

F-value 851.54 119.08 6699.82
p-value 0.0001 0.0001 0.0001

Data are expressed as the mean  ±  standard deviation (SD) of three replicates. Different 
letters represent the statistical comparisons between groups by using one-way ANOVA 
and post hoc Duncan’s test (p<0.05). DW = Dry Weight.
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2016; El-Shenody et al., 2019). Oleic acid, an ω9 fatty acid, showed 
the largest percentage between the MUSFA in T. atomaria and 
P. pavonia, in accordance with the findings of El Baz et al. (2014) 
and Fatma et al. (2015) observed that oleic acid presented the 
greatest fraction of the MUSFA in T. atomaria and P. pavonia. 
It is important to the point that the fatty acid contents of the four 
seaweeds may showed their suitability for production of biofuel, 
since the four studied seaweeds record very large percentages of 
SAFAs when compared to the MUSFA and PUSFA (Gosch et al., 
2012; Piligaev  et  al., 2019), with a relatively high content of 
MUSFA which would improve the biofuel quality (Knothe, 
2008; Zhang et al., 2020).

Seven Polyunsaturated essential fatty acids (PUSFA) 
were appeared in (Table  5 and Figure  3), Eicosapentaenoic 
acid (EPA) acid (omega-3), which is the major dietary base 
for aquaculture, comprised the main sources of omega-3 and 
omega-6 long-chain PUFAs in seaweeds. The omega (ω3) fatty 
acids are stated as α-Linolenic acid (ALA) methyl ester (C19:3), 
Stearidonic acid methyl ester (C19:4) and Eicosapentaenoic 

J. rubens>P. pavonia >C. elongate>T. atomaria. Red algae showed 
high percentages of SAFA than the brown algae, and these results 
agree with previous studies (Khairy & El-Shafay, 2013; Polat 
& Ozogul, 2013; Ismail, 2017; El-Shenody et al., 2019). Nine 
saturated fatty acids (SAFA) were detected in the tested seaweeds. 
Palmitic acid methyl ester (C17:0) was the major saturated fatty 
acids (SAFA) found in all species with different percentages, 
and the highest percentages were showed in J. rubens (68.3%). 
Palmitic acid methyl ester (C17:0) was the largest constituent 
between the SAFAs in the present study, and this in agreement 
with most studies (Gressler et al., 2010; Fatma et al., 2015).

Eight monounsaturated fatty acids (MUSFA) were investigated 
in the four studied species; the highest percentage of MUSFA 
was (50.09%) in C. elongate. The percentages of MUFA in red 
algae C. elongate were greater than P. pavonia and T. atomaria 
and this in agreement with those of (Khairy & El-Shafay, 2013). 
Palmitoleic acid methyl ester (ω7) (C17:1) and Oleic acid methyl 
ester (ω9) (C19:1) were the most dominant monounsaturated 
fatty acids (MUSFA) and this in agreement with (Ismail et al., 

Table 5. Fatty acids composition of the four studied seaweeds (% of the total of fatty acid).

IUPAC name Common name
Number 
of carbon 

atoms

P. pavonia J. rubens T. atomaria C. elongate

Area%

Tridecanoic acid, methyl ester Methyl tridecanoate C14:0 ND ND 0.68 ND
Methyl tetradecanoate Myristic acid ME C15:0 5.47 6.6 6.3 12.09
pentadecanoic acid ME - C16:0 0.56 1.92 ND ND

4,7,10,13-Hexadecatetraenoic acid methyl ester - C17:4 ND ND ND ND
9-Hexadecenoic acid, methyl ester, (Z)- Palmitoleic acid ME C17:1(ω7) 8.07 8.12 4.25 ND
7-Hexadecenoic acid, methyl ester, (Z)- - C17:1 0.28 ND 0.27 ND

Hexadecanoic acid, methyl ester Palmitic acid ME C17:0 43.9 68.3 36.12 37.8
Cyclopropaneoctanoic acid, 2-hexyl-, methyl ester - C18:0 0.27 ND ND ND

cis-10-Heptadecenoic acid, methyl ester - C18:1 ND ND ND 50.09
Heptadecanoic acid, methyl ester Margaric acid ME C18:0 0.26 ND ND ND

all-cis-9,12,15-octadecatrienoic acid (α-Linolenic acid) (ALA) ME C19:3 (ω3) 0.44 ND 2.34 ND
Methyl stearidonate Stearidonic acid ME C19:4 (ω3) 6.87 ND 9.42 ND

9,12-Octadecadienoic acid (Z,Z)-, methyl ester Linoleic acid ME C19:2(ω6) 4.29 ND 4.57 ND
9-Octadecenoic acid (Z)-, methyl ester Oleic acid ME C19:1 (ω9) 18.7 6.59 22.71 ND

15-Octadecenoic acid, methyl ester - C19:1 1.39 ND ND ND
trans-13-Octadecenoic acid, methyl ester - C19:1 ND ND ND ND

14-Octadecenoic acid, methyl ester - C19:1 0.25 ND ND ND
Methyl stearate Stearic acid ME C19:0 2.08 2.13 0.81 ND

5,8,11,14-Eicosatetraenoic acid, methyl ester, (all-Z) Arachidonic acid ME C21:4 (ῳ6) 3.79 6.28 6.8 ND
5,8,11,14,17-Eicosapentaenoic acid, methyl ester, (all-Z) Eicosapentaenoic acid (EPA) ME C21:5 (ω3) 0.99 ND 5.72 ND

8,11,14-Eicosatrienoic acid, methyl ester Dihomo- gamma- linolenic acid 
ME C21:3 0.71 ND ND ND

8,11,14,17-Eicosatetraenoic acid, methyl ester,(all-Z)- - C21:4 0.53 ND ND ND
cis-11-Eicosenoic acid, methyl ester gondoic acid ME C21:1 0.58 ND ND ND

Eicosanoic acid ME Arachidic acid ME C21:0 0.48 ND ND ND
Tetracosanoic acid, methyl ester Lignoceric acid ME C25:0 0.32 ND ND ND

Saturated fatty acids (SAFA) 53.35 79 43.92 49.9
Monounsaturated fatty acids (MUFA) 29.27 14.7 27.23 50.09
Polyunsaturated fatty acids PUFA (ω6) 8.09 6.28 11.37 ND
Polyunsaturated fatty acids PUFA (ω3) 8.3 ND 17.48 ND

Ratio ω6/ω3 0.97 - 0.65 -
ND not detected, ME= methyl ester, IUPAC=International Union of Pure and Applied Chemistry.
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these fatty acids are present in this study with T. atomaria and 
P. pavonia and this in agreement with (Fatma et al., 2015). In the 
body, both can be changed into other PUFAs as eicosapentaenoic 
acid (EPA, C20:5, ω3), docosahexaenoic acid (DHA, C22:6, ω3) 
and arachidonic acid (C20:4, ω6) (Van Ginneken et al., 2011). 
Depend on fatty acid compositions, seaweeds have a shortage of 
DHA, but they can produce arachidonic acid and eicosapentaenoic 
acid at very large levels (Sánchez-Machado et al., 2004). In the 
literature, DHA was not noticed in seaweeds or presents in very 
small amounts in various phaeophytes (Li et al., 2002).

Differential use of the studied seaweeds to decrease the risk 
of multiple sclerosis, inflammation, diabetes mellitus, cancer, 
and coronary heart disease may be based on the variations in 
the contents of ω3 fatty acids. Simopoulos (2002) mentioned 
that the ω3 fatty acids have beneficial health effects, which 
included benefits concerning inflammatory bowel disease, cancer, 
psoriasis, and rheumatoid arthritis. In scientific reports, the 

acid methyl ester (EPA) (C21:5) in T. atomaria and P. pavonia 
only, while T. atomaria was recorded the highest percentages 
in the ω3 fatty acids (2.34%, 9.42%, and 5.72% respectively). 
Moreover, Linoleic acid methyl ester (ω6) (C19:2) was 
detected in T. atomaria and P. pavonia only with percentages 
(4.57% and 4.29%), respectively. These data are in agreement 
with those of Fatma et al. (2015), who reported that important 
long-chain polyunsaturated fatty acids (PUFAs) were found at 
the highest level in T. atomaria and P. pavonia.

The ω6 and ω3 are the two groups of essential fatty acids. 
EFAs can’t be synthesized within the body, so they must be 
supplied in the food. Furthermore, ω6 fatty acids also play an 
important role in normal growth and development, in addition 
to brain function. P. pavonia and T. atomaria included ω6 and ω3 
fatty acids, which is one of the essential fatty acids. Linoleic acid 
(ω6, C18:2) and α-linolenic acid (ω3, C18:3) are PUFA, which 
cannot be synthesized by vertebrates, including humans and 

Figure 3. A chromatogram of the fatty acid methyl esters (FAMEs) of a dried seaweed sample. (A) P. pavonia, (B) J. rubens, (C) T. atomaria and 
(D) C. elongate.
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significance of the ω6/ω3 ratio has been widely argued recently. 
The equilibrium of assimilation of both PUSFA ω6 and ω3 fatty 
acids achieved when the ω6/ω3 ratio was equal to 1 (Francavilla et al., 
2013).The total percentage of fatty acids of ω6 and ω3 of the 
collected seaweeds could be arranged in the following sequence 
P. pavonia >T. atomaria (Table 5 and Figure 3). However, the 
ratio of ω6/ω3 of T. atomaria (0.65%) and P. pavonia (0.97%) 
is the lowest among the studied seaweeds. This demonstrates 
that T. atomaria and P. pavonia are more desirable in decreasing 
the risk of many chronic diseases. The ω6 and ω3 fatty acids 
of P. pavonia in the current study were higher than the values 
previously reported, including for Padina tetrastromatica 
(2.2% and1.02%, respectively) (Ismail et al., 2016). In addition, 
the ratio of ω6/ω3 was 0.65 and 0.97 for the T. atomaria and 
P. pavonia, respectively. According to WHO this ratio should 
not be greater than 10 in diets (Sánchez-Machado et al. 2004), 
which recommend the studied seaweeds for nutritive purposes 
after further investigations.

4 Conclusion
The seaweeds T. atomaria, P. pavonia, J. rubens, and 

C. elongate collected from Rocky Bay of Abu Qir in Alexandria, 
Egypt, are rich with high levels of proteins, carbohydrates, 
lipids, and fatty acids; therefore they consider as foods with 
low calories. Furthermore, they may have a promising role in 
industrial applications, feed, and food. These seaweeds extracted 
using the traditional extraction methods and exhibited high 
antioxidant activities with massive biomedical, pharmaceutical, 
and nutraceutical applications. The in vitro antioxidant activities 
of different solvents of these seaweeds showed dose dependency. 
In general, methanol and ethanol extracts of the seaweeds were 
more efficient than diethyl ether, hexane, aqueous cold, and 
hot aqueous extracts. T. atomaria was the most nutritionally 
promising species, with intermediate carbohydrate content, 
suitable protein contents, and high lipid content with a great 
amount of polyunsaturated fatty acids (especially omega-3and 
omega-6), with a suitable ω6/ω3 ratio and high antioxidant 
activity. T. atomaria is a good candidate for oil-based products 
due to their total lipid content > 5% DW. These natural economic 
resources should be utilized and improved; therefore, many 
future studies must be carried out.
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