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1 Introduction
Optimal candidates for market probiotics must exhibit the 

ability to undergo affordable fermentation and cost-effective 
separation. Probiotics should also possess characteristics that 
make them suitable for healthcare purposes. Although a large 
number of research papers have claimed various efficacies, a clear 
mechanism underlying the functions of these probiotics has not 
been confirmed. Among the probiotics, Clostridium butyricum 
is a particularly notable probiotic species. C. butyricum is an 
anaerobic bacterium and strengthens the immune system and 
decreases the number of pathogenic bacteria, thus indicating that 
C. butyricum possesses the potential for future use as a probiotic 
(Takahashi et al., 2004; Yasueda et al., 2016; Kong et al., 2011). 
In previous studies, Clostridium spp. (Clostridium botulinum, 
Clostridium diffile, Clostridium tetani, etc.) were demonstrated 
to act as pathogenic bacteria that generate toxic chemicals 
that disturb the nervous system in mammals However, some 
strains of C. butyricum were adequately regarded as possible 
probiotics, as the capability and safety of C. butyricum have 
both been validated. In Asia, promising clinical results indicated 
that C. butyricum (MIYAIRI 588) could be useful for curing 
inflammation or diarrhea caused by antibiotic treatment, and 
this bacterial strain did not cause any significant side-effects 
during treatment (Yasueda et al., 2016). C. butyricum produces 
butyric acid (butyrate), which is a short-chain fatty acid that 
exerts various functions in the body. Butyrate is a major energy 
source for epithelial cells and helps epithelial cells to multiply to 
reduce intestinal damage and permeability and also accelerates 
anti-inflammatory effects (Kong et al., 2011). Additionally, butyrate 

has been reported to alleviate intestinal disease and to prevent 
metabolic syndrome. Patients suffering from intestinal diseases 
are known to generate less butyrate due to a reduction in the 
number of C. butyricum within the intestine (Rivera-Chávez et al., 
2016). It must be noted that the interactions between intestinal 
microorganisms and the brain nervous system are affected by 
several types of interference that originate from the endocrine 
system, nerve system, and cell immune signal system. For example, 
the metabolic chemicals generated from microorganisms can act 
as signal molecules in the brain (Stilling et al. 2016). As a type 
of signal molecule, butyrate has been evaluated as an adjuvant 
therapy to treat vascular dementia (Liu et al., 2015), ischemic 
stroke (Sun  et  al., 2016), and depression (Hsiao  et  al., 2013; 
Tian et al., 2019). In animal tests, C. butyricum in combination 
with Lactobacillus spp. or other probiotics improved some of 
these factors in the animals. When C. butyricum was examined 
in chickens, it aided in the maturation and growth of beneficial 
probiotics when it was fed with Bacillus subtilis and L. acidophilus 
(Phuoc and Jamikorn, 2017).

In this study, we screened potential probiotic lactic acid 
bacteria (LAB) that could enhance the probiotic functions of 
C. butyricum. First, the growth of C. butyricum was evaluated 
in the presence of LAB (249 strains). To confirm the effect of 
co-culture with LAB on butyrate production by C. butyricum, 
we quantified the expression of buk gene. The buk gene is 
known to play an important role in the pathway of butyrate in 
C. butyricum. To evaluate the probiotic characteristics of the 
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selected LAB, we examined bile resistance, auto-aggregation, 
and resistance to the freeze-drying process. The discussion was 
followed in regards to the stimulating growth of C. butyricum 
in the presence of candidate LAB strains.

2 Materials and methods
2.1 Bacterial strains and growth conditions

We obtained collections of LAB isolated from Korean 
women in 2001 (83 strains) and 166 strains isolated from fish 
and shellfish in the West Sea between 2008 and 2019 (Lee et al., 
2010; Kang et al., 2016). The collected LAB were grown in MRS 
broth at 35 °C under non-shaken conditions, and they were 
then maintained in 10% skim milk and stored at -80 °C. C. 
butyricum KCTC1786 was obtained from the Korean Culture 
Center of Microorganisms and incubated on Reinforced 
Clostridium medium (RCM; Merck, Darmstadt, Germany) agar 
and Brain-Heart Infusion (BHI; Bacto, Spark, USA) broth at 35 
°C under anaerobic conditions.

2.2 Stimulation of C. butyricum with supernatants from 
Lactic acid bacteria

Pre-cultured media were further cultured for one day after 
inoculation. Inoculation was controlled to 2% by adjusting the 
value of OD600 = 1 (optical density at 600 nm). Supernatants 
were filtered to remove the cell of LAB using 0.2 μm filter paper. 
C. butyricum was inoculated after mixing a LAB supernatant at 
a ratio of 7:3 and cultured in an anaerobic chamber. The value 
for OD and the number of strains were both determined to 
evaluate the growth rate. For comparison, MRS and BHI broths 
were added separately and compared using the same procedure.

2.3 Stimulation of C. butyricum with cell of Lactic acid 
bacteria

Equally measured numbers (106 CFU/mL) of Lactobacillus and 
C. butyricum were mixed and cultured for 24 h in an anaerobic 
chamber. Dilution of LAB was also used when different ratios 
of these mixtures (1:1 and 1:0.2) were needed. Quantification of 
C. butyricum was performed by analyzing the spo0A gene and 
by qPCR. Absolute quantification was recorded according to 
a standard curve by determining the qPCR Nano drop DS-11 
(Denovix, Wilmington, DE, USA). The plate count method was 
employed to count the number of LAB present in MRS broth.

2.4 Quantification of buk gene expression

Gene expression and real productivity were determined to 
evaluate the number of C. butyricum and the concentration of 
butyrate. Specimens were prepared using the Tissue Total RNA 
Purification Mini Kit (Favogen, Ping-Tung, Taiwan). A DNase 
I solution was used to remove genomic DNA. Extracted RNA 
was assayed using a Nanodrop DS-11. cDNA was synthesized 
using the AMPIGENETM cDNA Synthesis kit (Enzo, NY, USA). 
Relative quantification of qPCR results was performed using 
BioRAD CFX96 (BioRAD, Hercules, CA, USA).

2.5 Acid and bile resistances

Acid resistance was determined in phosphate buffered saline 
(PBS) solutions at different pH values (pH 2.5, 3, and 7) that 
were adjusted using 5 M HCl. LAB were cultured overnight and 
then centrifuged at 4,045 x g for 5 min. This was followed by 
washing and then inoculation using 10% sample after dilution 
to 108 CFU/mL. Bacterial enumeration was performed after 1 h 
of culture at 37 °C. MRS broths containing 0, 0.3, and 1% (w/v) 
of Oxgall (Difco, Sparks, MD, USA) were prepared for the bile 
resistance test. Inoculation was controlled to 2% of the strains 
(OD600 = 1.0). Viable cell count was obtained by plate counting 
after a 24 h culture at 37 °C.

2.6 Auto-aggregation

As previously proposed in the literature (Kos et al., 2003), 
we used a modified auto-aggregation test to evaluate the 
indirect adhesive property between cells. Cultured LAB were 
centrifuged at 4,045 x g (5 min at 4 °C) and then washed before 
being suspended in PBS (pH 7.2, OD600=1). Auto-aggregation 
activity was calculated using Equation 1.

( )
0

 % 1 100tA
Auto aggregation

A
 

− = − ×  
 

 (1)

Here, A0 is the initial value of OD, and At is the determined 
value after 1, 3, and 5 h.

2.7 Freeze-drying stress resistance

Skim milk was used to determine the resistance to freeze-
drying stress. It is established that skim milk can play an important 
role in protecting live cells during freeze-stress testing. Cultured 
strains were washed and suspended completely in PBS, and 
they were then mixed with 20% skim milk at a ratio of 1:1. 
Bacterial enumeration was performed after the drying process 
was complete. The viable cell counts were compared between 
the cases before and after the freeze-drying process.

3 Results
3.1 Stimulation of C. butyricum growth by lactic acid 
bacteria

C. butyricum was cultured in the presence of 249 different 
LAB supernatants, and the results of OD values were presented 
in Table 1. Among 249 LAB supernatants, 24 LAB supernatants 
showed the positive result of C. butyricum growth. In Figure 1, 
the increase of viable cells C. butyricum as well as OD values 
were presented. For contrast, MRS and BHI were included 
instead of LAB supernatant.

qPCR was employed to verify the effectiveness of co-cultures 
of C. butyricum and the LAB strains. Figure 2 presents the growth 
level and indirect results of gene expression when C. butyricum 
were co-cultured with selected 24 LAB. It is known that the 
spo0A gene induces spore formation only in C. butyricum and 
not in LAB. It was speculated that qPCR-based quantification 
could provide clues regarding C. butyricum growth, as the copy 
level of the spo0A gene is proportional to the concentration of 
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Table 1. Optical Density of C. butyricum with supernatant of lactic acid bacteria.

Strain OD Strain OD Strain OD Strain OD Strain OD Strain OD Strain OD Strain OD Strain OD
KLB13 - KLB227 - KLB265 - HL 2 - HL 34 - JL29 - MH71 - QL9 - ML28 -
KLB14 - KLB228 - KLB266 - HL 3 + HL 36 - JL30 + MH74 - QL10 - YJ1 -
KLB30 - KLB229 - KLB267 - HL 4 - JL1 - JL31 - MH92 - QL11 - YJ2 -
KLB58 - KLB230 - KLB268 - HL 7 + JL2 - JL32 - D1 - QL12 - YJ3 -
KLB62 - KLB231 - KLB270 - HL 8 - JL3 - JL33 - D3 - ML1 - YJ4 -
KLB63 - KLB233 - KLB271 - HL 9 - JL4 - JL34 - D4 - ML3 - YJ5 +
KLB68 - KLB234 - KLB272 - HL 10 - JL5 - YG1 + D5 - ML4 - YJ6 -
KLB79 - KLB235 - KLB277 - HL 11 - JL7 - YG2 + D6 - ML5 - YJ7 -

KLB100 - KLB236 - KLB279 - HL 12 - JL8 - YG3 - M1 - ML6 - YJ8 -
KLB101 - KLB237 - KLB281 - HL 13 - JL9 - YG4 - M3 - ML7 - YJ9 -
KLB103 - KLB239 - KLB282 - HL 14 - JL10 - YG5 - M4 - ML8 - YJ10 -
KLB201 + KLB240 + KLB283 - HL 15 - JL11 - YG6 + M5 - ML10 - YJ11 -
eKLB202 - KLB241 - KLB285 + HL 16 + JL12 - MH5 - M6 - ML11 - YJ12 -
KLB203 - KLB242 - KLB286 - HL 17 + JL13 - MH6 - M7 - ML12 - YJ13 -
KLB207 - KLB243 - KLB287 - HL 18 - JL14 - MH8 - O1 - ML13 - YJ14 -
KLB209 - KLB244 - KLB288 - HL 19 - JL15 + MH15 - S6 - ML14 - YJ15 -
KLB210 - KLB245 - KLB289 - HL 20 - JL16 + MH19 - S7 - ML15 - YJ16 -
KLB212 - KLB246 - KLB290 - HL 21 - JL17 - MH21 + T1 - ML16 - YJ17 -
KLB213 - KLB247 + KLB292 - HL 22 - JL18 - MH22 - T2 - ML17 - YJ18 -
KLB214 - KLB248 - KLB293 - HL 23 - JL19 - MH33 + T3 - ML18 - YJ19 -
KLB215 - KLB249 - KLB294 - HL 25 + JL21 - MH44 + T4 - ML19 - YJ20 -
KLB217 - KLB251 - KLB295 - HL 26 - JL22 - MH49 - QL1 - ML20 - YJ21 -
KLB218 - KLB254 - KLB296 - HL 27 - JL23 - MH51 - QL2 - ML21 - JY1 -
KLB219 - KLB258 - KLB298 - HL 28 - JL24 - MH53 - QL3 + ML22 - JY2 -
KLB220 - KLB260 - KLB300 - HL 29 - JL25 - MH55 - QL5 - ML23 - JY3 -
KLB221 - KLB261 - KLB302 - HL 31 - JL26 - MH58 - QL6 + ML25 -
KLB224 - KLB262 - KLB306 - HL 32 - JL27 - MH62 - QL7 + ML26 +
KLB225 - KLB263 - HL 1 + HL 33 - JL28 - MH67 - QL8 - ML27 -

+: higher OD values that determined to the effective growth of C. butyricum; -: Compared to ‘+’, not effective growth of C. butyricum.

Figure 1. Growth of C. butyricum co-cultured with supernatants of lactic acid bacteria.
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C. butyricum. A standard curve for copy level variance was 
attempted to determine the concentration of C. butyricum. In 
Figure 2A, 24 Lactobacillus strains were co-cultured to examine 
their effectiveness in regard to the growth of C. butyricum. A 
growth acceleration of greater than 3-fold was observed in 
co-cultures containing the HL3, JL16, and MH44 strains. The 
growth of 2-fold increase was observed in case of HL16. After 
the culture process, bacterial enumeration of LAB was also 
performed; however, no significant correlations were observed 
(Figure 2B). This suggests that the growth of C. butyricum could 

be affected by complicated factors, including the growth rate 
and the concentration of LAB.

To examine the initial mixing ratio between C. butyricum 
and LAB, the ratio of LAB and C. butyricum was adjusted to 
0.2:1. We observed that the copy level of the spo0A gene was 
reduced when the ratio was 0.2:1 (Figure 2C). MH33 was used 
as a control group. Relative disproportions were observed where 
HL3 (45%, 152.7 ng/μL) > HL16 (72.1%, 36.8 ng/μL) > JL16 
(21.3%, 192.3 ng/μL) > MH44 (40.8%, 191.8 ng/μL). The clear 
effectiveness was observed in co-cultures containing the JL16 

Figure 2. Growth of C. butyricum and lactic acid bacteria after co-culture. Quantification of the spo0A gene copy level in C. butyricum (A), cell 
growth of lactic acid bacteria (B), and quantification of spo0A gene copy level in C. butyricum according to the initial dose ratio of C. butyricum 
to lactic acid bacteria (C).
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and MH44 strains. With the help of 16S sequencing analysis, 
JL16 and MH44 were identified to Lactobacillus brevis and 
Lactobacillus parabuchneri, respectively.

3.2 Expression of the butyric acid production gene of 
C. butyricum in co-culture with Lactobacillus spp.

The primer sequences of buk and recA genes are listed in 
Table 2. It was expected that analyzing the buk gene provides 
the clues regarding butyrate production by C. butyricum, while 
recA gene expresses as a housekeeping gene. Here, two cases of 
MRS culture (without bacteria) and MH33 culture were selected 
and compared to the two other cases of JL16 and MH44 cultures 
(Figure 3). When compared to MRS culture, JL16 and MH44 
exhibited 1.6-fold and 1.2-fold higher concentrations of the 
buk gene, respectively. While, MH33 culture exhibited a 20% 
reduction in the number of buk genes compared to that in the 
MRS culture.

3.3 Characterization of LAB for probiotics

Bacterial enumeration was performed after JL16 and MH44 
were cultured in different acidic conditions (Figure 4A). For 
JL16, a live number of approximately 107 (pH 2) was reduced to 
104 (pH 3) and 102 (pH 2.5) CFU/mL under these experimental 
conditions. When MH44 was cultured in acidic conditions (pH 2), 
the numbers were reduced by approximately 103. However, 
MH44 barely survived at the same level when the pH ranged 
from 2.5 to 3.

The resistance behavior of JL16 and MH44 to the bile salts 
was measured and is presented in Figure 4B. The results are 
presented as the survival rates based on the reference state (0%). 
Both JL16 and MH44 possessed improved rates in response to 
0.3% exposure compared to those in response to 1.0% exposure. 
The survival rates for JL16 and MH44 and were 43% and 85%, 
respectively, when they were evaluated in the presence of 0.3% 
bile salt. For 1.0% bile salt, the survival rates decreased to 36% 
for JL16 and 21% for MH44.

As an in vitro test, auto-aggregation was substantially 
examined to evaluate the capability of biofilm formation. Both 
JL16 and MH44 exhibited rapid aggregation values of 87.8% for 
JL16 and 96.4% for MH44 in 5 hr. A freeze-drying technique is 
commonly used in the process of probiotic production, and this 
technique often harms these probiotics and limits their survival. 
The survival rates may rapidly decrease after the freeze-drying 
process. The survival rates of JL16 and MH44 were determined 
to 46% and 41%, respectively.

Table 2. C. butyricum genes examined by qPCR in this study.

Primer Sequence (5′ to 3′) Reference
RTSpo0A_Fw AGTGCTCCAACAATACAAGA This study
RTSpo0A_Rv AATATGAGCAGGTACACCG

G_buk_F TGCTGTWGTTGGWAGAGGYGGA 
GCAACIGCYTTTTGATTTAATGCATGG

Vital et al. (2013)
G_buk_R
recA-fw GCAGAGCATGCATTAGATCCT This study
recA-rv GAATCTCCCATTTCCCCTTC

Figure 3.  Relative expression of the buk gene in C. butyricum in the 
absence (MRS only) and presence of Lactobacillus strains (MH44, 
JL16 and MH33). Error bars indicate SEM; *P < 0.05 vs. MRS group.

Figure 4. Two resistant behaviors of the MH44 and JL16 strains. Acid 
resistance (A) and bile resistance (B).
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destroy the walls of probiotic bacteria and induce antibiotic 
functions such as oxidation stress following damage to DNA 
(Ruiz et al., 2013; Oleinikova et al., 2020). It was reported that 
the initial concentration of bile salt was 2–1.5% within 1 h and 
then decreased to 0.3% (Noriega et al., 2004). In this study, the 
concentration effect of bile salt was examined in the range of 
0.3-1.0%. It has been reported that the inhibitive concentration 
of bile salt is the most influential factor for the survival of strains, 
despite the knowledge that these concentration ranges vary 
according to strains. As mentioned earlier, the major objective 
of probiotics would be their safe delivery to intestines where 
they can activate their functions. It was speculated that biofilm 
formation of probiotics would provide a favorable strategy 
for them to remain and to activate within intestines (Juárez 
Tomás et al., 2005). In this study, skim milk was used to protect 
and stabilize the cell membranes of both strains, as suggested 
in an earlier research paper (Carvalho et al., 2004). In other 
cases, the survival rates of the six strains were 62%–92% after 
freeze-drying. The addition of sugars to skim milk may enhance 
the survival rates based on previously published results (Juárez 
Tomás et al., 2009). Additionally, sugar may remove activated 
oxygen molecules during the thaw process by inducing the 
protective roles of cell collapse (Leslie et al., 1995).

5 Conclusion
Clostridium butyricum was co-cultured in the presence of 

supernatants of 249 lactic acid bacteria. The gene expression of 
butyrate kinase was evaluated to verify the growth stimulation 
of C. butyricum in the presence of Lactobacillus spp. It was 
determined that Lactobacillus brevis JL16 and Lactobacillus 
parabuchneri MH44 stimulated C. butyricum more effectively 
than did other strains. Meanwhile, the acidic tolerances of 
both JL16 and MH44 were not adequate in a strongly acidic 
environment and needed to be overcome for use as probiotics 
such as capsulation. Probiotics might eventually reach in the 
intestine and interact with the intestinal microbe. This study 
is the basic research about potential probiotics for use with C. 
butyricum and interaction with the intestinal microorganisms.
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