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1 Introduction
Icariin is one of the main active components of Herba Epimedii, 

which has immunomodulatory, anti-inflammatory, anti-aging, anti-
tumor activities and can improve the symptoms of osteoporosis, 
Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, 
atherosclerosis, rheumatism and other diseases (Luo et al., 2022; 
Zeng et al., 2022). Kim et al. (2018) reported that icariin could 
inhibit the formation and function of osteoclasts and alleviate 
osteoporosis (Kim et al., 2018). Zeng et al. (2010) found that 
icariin could hinder the production of β-amyloid protein, 
hyperphosphorylation of tau protein and decrease dopamine 
content to protect nervous system (Zeng et al., 2010). Icariin also 
can protect cardiovascular system by protecting cardiomyocytes, 
increasing the number of cardiomyocytes and improving 
endothelial dysfunction (Qian et al., 2017). Its pharmacological 
functions of promoting reproductive organs and regulating 
the immune system are also reported (Amanat  et  al., 2022). 
However, the low bioavailability and stability of icariin restrict 
its wide application.

Whey protein is a kind of protein extracted from milk, 
which contains β-lactoglobulin and lactalbumin (Graf  et  al., 
2020; Melnikova  et  al., 2022; Jabeen  et  al., 2021). It has the 
characteristics of high nutritional value, easy digestion and 
absorption, and contains a variety of active components (Barajas-
Ramírez et al., 2022; Bolognesi et al., 2022). It is recognized as a 
high quality protein. Whey proteins are easy to form complexes 
with polyphenols, so they are widely used in the delivery of 
polyphenols and the improvement of their bioavailability 
(Tamargo et al., 2022). However, there is no systematic report 
on the interaction between icariin and whey protein. In this 
study, the interaction mechanism of icariin and whey protein was 

clarified based on spectrofluorimetry and molecular docking, in 
order to promote the wide application of icariin in food.

2 Materials and methods
2.1 Materials and chemicals

Whey protein (purity, 93.77%) was from Mullins Whey 
Inc (Mosinee, WI, USA). Icariin was the product of Aladdin 
(Shanghai, China). All other chemicals are of analytical grade.

2.2 Preparation of sample solution

Whey protein solution (0.5 mg/mL) was prepared by 50 mM 
phosphate buffer (pH, 6.8), and stored at 4 °C. Icariin was 
dissolved in 85% ethanol and diluted to 100 mL with ultrapure 
water to obtain the stock solution of 500 µmol/L.

2.3 Measurement of binding constant

The binding constant of icariin and whey protein at 
303 K was measured using an Agilent Cary Eclipse fluorescence 
spectrophotometer (Santa Clara, CA, USA) based on the previous 
report (Yue et al., 2019). 1 mL of icariin solution at different 
concentrations (0-140 µmol/L) and 4 mL of whey protein solution 
were mixed and kept for 30 min at 303 K until the reaction 
reached equilibrium. Then, the mixed solution was transferred 
to the quartz glass test tube to measure its fluorescence spectrum 
with the excitation wavelength of 280 nm and the scanning range 
of 300-450 nm. The scanning voltage was set at 650 kV, and the 
slit width was fixed at 5 nm. The obtained data were corrected 
by the following Equation 1:
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Where F and FInit are the corrected and measured fluorescence 
intensity values, respectively. Aex and Aem are the absorption values 
of the mixture at the excitation wavelength and the emission 
wavelength, respectively.

Then, the quenching constant (Kq) could be calculated to 
judge the fluorescence quenching type by the Stern-Volmer 
equation (Equation 2):
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Where F0 and F are the fluorescence intensity values of the 
mixture without icariin and with icariin, respectively; Kq is the 
quenching constant; τ0 is the lifetime of proteins (10-8s); [Q] is 
the concentration of icariin.

For static quenching, the binding constant (Ka) and binding-
site number (n) of between icariin and whey protein could be 
calculated based on the double logarithm equation (Equation 3)
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Where [Q] is the icariin concentration.

2.4 Measurement of thermodynamic parameters

In order to understand the binding behavior between 
icariin and whey protein, the Ka values at 303 K and 310 K were 
measured according to 2.2, and the thermodynamic constants 
for their interaction were calculated by using Van’tHoff equation 
(Equation 4) and Gibbs free energy equation (Equation 5).
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2.5 Measurement of synchronous fluorescence spectrum

The synchronous fluorescence spectra can provide changes in 
the microenvironment of tyrosine and tryptophan residues during 
the interaction between icariin and whey protein. According to 
a published method (Geng et al., 2020), the fluorescence spectra 
with excitation wavelength 265-360nm (Δ λ = 15 nm) and 
220-360 nm (Δ λ = 60 nm) were recorded respectively.

2.6 Molecular docking method

Molecular docking between whey protein and icariin 
was carried out by using the Autodock 4.2 software (He et al., 

2019). The crystal structure of bovine β-lactoglobulin (PDB ID: 
5io6), the main protein in whey protein, was downloaded from 
the RCSB Protein Data Bank (https://www.rcsb.org). The 3D 
structure of icariin was constructed and optimized through the 
PM3 method of MOPAC 2016 software. For molecular docking, 
the grid size was fixed at 50×50×50 points, and the grid space 
was set at 0.375 Å. The Lamarckian GA method (LGA) was used 
to found the possible docking mode.

3 Results and discussion
3.1 Binding constant

The intrinsic fluorescence of proteins mainly comes from 
tyrosine, tryptophan and phenylalanine residues (Li  et  al., 
2022). This quenching of intrinsic fluorescence can reflect 
the interaction between proteins and ligands. Therefore, the 
interaction between icariin and whey protein was investigated 
by fluorescence spectroscopy. The fluorescence quenching result 
is shown in Figure 1. When the excitation wavelength was set at 
280 nm, whey protein had the maximum emission peak at 333 nm. 
There was no fluorescence emission peak of icariin in the range 
of 300-450 nm, but when whey protein and icariin were mixed 
together, the fluorescence quenching of whey protein could be 
observed obviously. With the increase of icariin concentration, 
the fluorescence intensity of whey protein decreased gradually, 
and the position of the maximum emission peak was basically 
unchanged in this process.

In order to determine the type of fluorescence quenching, 
the fluorescence quenching of whey protein by icariin at 303 and 
310 K was studied, and the quenching process was analyzed by 
fitting Stern-Volmer equation. It could be seen from Figure 2 and 
Table 1 that there was a good linear relationship between the 
icariin concentration (C) and F0/F at different temperatures, 
and the Kq value was much higher than the maximum diffusion 

Table 1. The quenching constants (Kq), binding constants (Ka), binding-site number (n) and thermodynamic parameters for the interaction of 
icariin with whey protein.

T (K) Kq (1012 L·mol-1s-1) n pKa ΔG (kJ·mol-1) ΔH (kJ·mol-1) ΔS (J·mol-1·K-1)

303 2.55 ± 0.05 0.96 ± 0.04 4.20 ± 0.16 -24.3657
281.8612 1010.65

310 3.26 ± 0.16 1.18 ± 0.05 5.30 ± 0.28 -31.4402

Figure 1. The fluorescence spectra of icariin and whey protein.
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constant of dynamic quenching, 2 × 1010 L/(mol·s). Therefore, it 
could be concluded that the quenching type was static quenching 
(Liu et al., 2022), and the quenching was caused by the formation 
of icariin/whey protein complex.

For static quenching, the binding constant (Ka) and binding 
site (n) between icariin and whey protein could be calculated 
by double logarithm equation as shown in Table  1, and the 
corresponding double logarithm diagram is exhibited in Figure 3. 
The pKa value increased with the increase of temperature, 
indicating that the increase of temperature was beneficial to the 
binding of icariin and whey protein. In addition, the binding 
site number calculated at different temperatures was close to 
1, which meant that there was only one binding site between 
icariin and whey protein.

3.2 Binding behavior analysis

The non-covalent interactions between proteins and ligands 
mainly involve electrostatic force, van der Waals force, hydrogen 
bonding and hydrophobic interaction (Sanver et al., 2016). When 
ΔH > 0 and ΔS > 0, hydrophobic interaction is dominant; when 
ΔH < 0 and ΔS < 0, van der Waals force and hydrogen bond are 
the main driving force; when ΔH < 0 and ΔS > 0, electrostatic 
force is the main driving force; when ΔH > 0 and ΔS < 0, 
electrostatic and hydrophobic interaction play an important role 
(Li et al., 2015). Combined with the results in Table 1, ΔG was 
negative, indicating that the binding of icariin to whey protein 
was spontaneous. ΔH and ΔS were greater than zero, suggesting 
that the hydrophobic force was the main driving force in the 
binding process of icariin and whey protein.

3.3 Synchronous fluorescence analysis

The synchronous fluorescence spectra at Δλ = 15 nm and 
Δλ = 60 nm can reflect the microenvironmental changes of tyrosine 
residues and tryptophan residues, respectively (Takahama & 
Hirota, 2018). The effect of icariin on the synchronous fluorescence 
spectrum of whey protein is exhibited in Figure 4. With the 
increase of icariin concentration, the intensity of synchronous 
fluorescence decreased gradually. In this process, the maximum 
peak of fluorescence spectrum changed slightly, indicating that 
the microenvironment around tyrosine residue and tryptophan 
residue changed. Similar results had previously been reported 
that whey protein changed its molecular conformation through 
interaction with puerarin, rutin and phloridin (Li et al., 2021).

Figure 2. The plot of F0/F versus C at different temperatures.

Figure 3. The plots of log [(F0-F)/F] versus log C at different temperatures.

Figure 4. The synchronous fluorescence spectra of icariin and whey protein (A: Δλ = 15 nm; B: Δλ = 60 nm).
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3.4 Molecular docking analysis

Molecular docking is a method of drug design based on 
the characteristics of the receptor and the interaction between 
the receptor and drug molecules, which can investigate the 
interaction between proteins and drug molecules (such as ligands 
and receptors) and to predict their binding mode and affinity 
(Śledź & Caflisch, 2018). In recent years, molecular docking has 
become an important technology in the field of computer-aided 
drug research (Liu et al., 2017; Li et al., 2019). In this study, the 
semi-flexible docking method was adopted, which allowed the 
conformation of icariin to change to a certain extent, but the 
conformation of β-lactoglobulin was fixed, and the conformation 
adjustment of icariin was limited to a certain extent, such as 
fixing the bond length and bond angle of some non-critical 
parts, which could take into account the amount of calculation 
and the prediction ability of the model. The molecular docking 
of icariin with β-lactoglobulin was shown in Figure 5. During 
the molecular interaction, residues Asn88, Leu87, Asp85 and 
Lys70 of β-lactoglobulin participated in forming hydrogen 
bonding. Ile84, Ala86, Ile71, Ile72, Asn88, Leu87, Asp85 and 
Lys70 were involved in hydrophobic interaction, which well 
confirmed fluorescence results.

4 Conclusion
Icariin and whey protein could form a non-covalent 

complex driven by hydrophobic force, causing the fluorescence 
quenching of whey protein. The interaction led to the changes 
of the microenvironment around the tyrosine residue and 
tryptophan residue of whey protein. The molecular docking 
analysis confirmed the existence of hydrophobic interaction 
and hydrogen bonding in the complex, which coincided with 
the fluorescence results. Our results can provide a theoretical 
basis for the application of icariin in medicines and foods, and 
promote the wide application of whey protein in functional foods.
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