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Cognition and chronic hypoxia  
in pulmonary diseases

Renata Areza-Fegyveres¹, Ronaldo A. Kairalla2, Carlos R.R. Carvalho3, Ricardo Nitrini4

Abstract  –  Lung disease with chronic hypoxia has been associated with cognitive impairment of the subcortical 

type. Objectives: To review the cognitive effects of chronic hypoxia in patients with lung disease and its 

pathophysiology in brain metabolism. Methods: A literature search of Pubmed data was performed. The words 

and expressions from the text subitems including “pathophysiology of brain hypoxia”, “neuropsychology and 

hypoxia”, “white matter injury and chronic hypoxia”, for instance, were key words in a search of reports spanning 

from 1957 to 2009. Original articles were included. Results: According to national and international literature, 

patients with chronic obstructive pulmonary disease and sleep obstructive apnea syndrome perform worse on 

tests of attention, executive functions and mental speed. The severity of pulmonary disease correlates with degree 

of cognitive impairment. These findings support the diagnosis of subcortical type encephalopathy. Conclusion: 

Cognitive effects of clinical diseases are given limited importance in congresses and symposia about cognitive 

impairment and its etiology. Professionals that deal with patients presenting cognitive loss should be aware of 

the etiologies outlined above as a major cause or potential contributory factors, and of their implications for 

treatment adherence and quality of life. 
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subcortical type

Cognição e hipóxia crônica em doenças pulmonares

Resumo  –  As doenças pulmonares que cursam com hipóxia crônica tem sido associadas à alteração cognitiva do 

tipo subcortical. Objetivo: Revisar os efeitos cognitivos da hipóxia crônica em pacientes com doenças pulmonar e 

sua fisiopatologia. Métodos: Foi utilizado o banco de dados do Pubmed. As palavras e expressões foram os temas 

dos subitens da revisão como, por exemplo, “fisiopatologia e hipóxia cerebral”, “neuropsicologia e hipoxia”, “lesões 

de substância branca e hipóxia crônica”, variando de 1957 to 2009. Artigos originais foram incluídos. Resultados: 

De acordo com a literatura nacional e internacional, pacientes com doença pulmonar obstrutiva crônica e 

síndrome da apnéia obstrutiva do sono apresentam desempenho pior em testes neuropsicológicos que avaliam 

atenção, funções executivas e velocidade de processamento mental. Esses achados configuram uma encefalopatia 

do tipo subcortical. Conclusion: É dada importância limitada às conseqüências cognitivas das doenças clínicas em 

congressos e simpósios sobre cognição e suas etiologias. Profissionais que lidam com pacientes que apresentam 

perda cognitiva devem suspeitar das etiologias mencionadas acima com causa principal ou como co-fatores, 

assim com suas implicações na aderência ao tratamento e qualidade de vida. 

Palavras-chave: hipóxia crônica, cérebro, alteração cognitiva, testes neuropsicológicos, encefalopatia do tipo 

subcortical
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There is a delicate balance between functioning of the cen-
tral nervous system (CNS) and the ventilatory system.1 Slight 
changes can have a significant impact.1,2 Acute or chronic 

respiratory insufficiency can result in a myriad of neuro-
logical and neuropsychological signs and symptoms which 
are ultimately consequences of hypoxia and hypercapnia.
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Cardiac, pulmonary and hematological diseases can 
cause hypoxia. Hypoxia can also manifest in specific situ-
ations such as in aircraft travel and high altitude climbing. 
Hypoxia brain effects depend on the severity, duration, 
speed of onset and progression of the condition. Thus, pa-
tients with chronic hypoxia will present different findings 
from those with acute respiratory distress.1,2 In addition, 
patients with compromised respiratory control or neuro-
muscular disease can hypoventilate, thereby enhancing the 
carbon dioxide partial pressure (PaCO2).

Initially, descriptions of neurological and behavioral 
findings concerning respiratory disease were available for 
end-stage disease. These included papilloedema and loss of 
visual acuity,3 intracranial hypertension,4 headache, som-
nolence, tremor and asterix.5 Irritability, anxiety, mental 
confusion and psychotic symptoms were also reported6,7 

at more advances stages.
Original articles published up to 2009 were searched 

on the Pubmed database. The following words and ex-
pressions were used as key search terms, alone or together: 
“chronic hypoxia”, “pathophysiology”, “neuropsychological 
tests”, “brain”, “white matter lesions”, “pulmonary disease”, 
“lung disease”, “cognition”, “dementia”, “cognitive impair-
ment”. More than 300 articles were found. Search results 
were screened for content and historical relevance of each 
subitem. 

Pathophysiology of chronic hypoxia effects  
in central nervous system metabolism

Hypoxia is a widely used term but ideally, it should be 
previously defined. In most studies the term means oxygen 
levels which are below oxygen atmospheric concentration. 
This can occur when the inspired oxygen concentration 
is low, thus resulting in “hypoxaemic hypoxia” or when 
the general barometric pressure is low, called “hypobaric 
hypoxia” a situation naturally produced when climbing at 
high altitudes. There is no evidence of significant differ-
ence in adaptative response mechanisms between the two 
previously mentioned settings or methods of producing 
continuous exposition to chronic hypoxia. 

Severity of hypoxia is often ill-defined. The majority 
of investigators refer to three severity levels: mild, moder-
ate and severe, but no consensus exists on the boundaries 
between levels. Most consider mild stage as when oxygen 
partial pressure (PaO2) is above 50 mmHg, assuming nor-
mal red blood cell volume. At this level, there is complete 
compensation and general function is barely altered. The 
equivalent of ten percent of normobaric oxygen concen-
tration, or 5000 meters of altitude, is the upper limit of 
mild hypoxia. Oxygen partial pressure between 35 and 50 
mmHg is generally considered moderate hypoxia, a state 

which leads to variable findings in cognition. When Pa O2 
is below 35 mmHg, there is loss of conscience. Moderate 
and severe hypoxia can result in variable neuronal loss ac-
cording to severity and length of exposition.5

In the majority of studies, the expression “chronic 
hypoxia” was vague and usually corresponded to the 
interval of time necessary to trigger a physiologic re-
sponse, which can vary from weeks to months.8 Thus, 
the definition of chronic hypoxia to describe constantly 
low oxygen (O2) saturation levels warrants comment. 
Some studies describing chronic hypoxia involved pa-
tients that were not hypoxaemic based on pulse oxym-
etry. In fact, these patients frequently presented periods 
of hypoxia, especially when exercising,9,10 during activi-
ties of daily living11 and sleep.12,13 Although the use of 
the expression “chronic hypoxia” is accepted in chronic 
obstructive pulmonary disease (COPD) for instance, its 
timely measurement during evaluation can yield results 
which fall between normal limits. The expression will 
be used in a consistent way throughout this manuscript.

The majority of encephalic neurons are “sensitive” to 
plasmatic oxygen concentration levels. They modify their 
activity in response to hypoxia lowering their metabolic 
rate and thus, reduce the production of adenosine triphos-
phate through oxidative phosphorylation. The major meta-
bolic cost is to maintain the ionic gradient, which is directly 
associated with neuronal activity levels. However, not all 
neurons diminish their activities during hypoxia. There are 
special populations of neurons that act similarly to oxygen 
chemoreceptors. These oxygen “sensors” in the CNS moni-
tor brain oxygen levels and when “active”, trigger critical 
processes necessary for the functioning of the organism. 
These chemoreceptors play a critical role in both short and 
long-term hypoxia adaptation mechanisms.

Survival after exposition to hypoxia is essentially associ-
ated to changes related to cardiovascular and respiratory 
systems in order to maintain oxygen delivery to tissues. In 
the CNS, the sites responsible for controlling sympathetic 
and respiratory activities are the thalamus, hypothalamus, 
pons and medulla.14-17 The “activation” of neurons in these 
areas produces enhancement of respiratory and sympa-
thetic activities.17

The mechanism for detecting hypoxia and generating 
an adaptive response is governed by length of exposition: 
acute (for instance, hypoxic-ischaemic encephalopathy and 
acute respiratory insufficiency), subacute or chronic (for 
instance, high altitudes and COPD) and intermittent (ob-
structive sleep apnea syndrome - OSAS). The physiologic 
responses to hypoxia probably reflect changes in ionic chan-
nels, oxygen “sensors” (for example, heme proteins), signal-
ing pathways, neuromodulators and genomic processes:18-20
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Ion channels
Hypoxia triggers depolarization of potassium, calcium 

and sodium channels leading to higher cell excitability. Hy-
poxia also reduces potassium ions in carotid glomus cells 
resulting in depolarization and opening of voltage-depen-
dent calcium ion channels. This is followed by enhance-
ment of intracellular calcium and activation of sensitive 
afferent nerves.

However, the effects of chronic hypoxia on ion chan-
nels activity are variable. The presence or absence of neu-
rotrophic factors might be important in explaining the 
different effects of chronic hypoxia as the upregulation of 
sodium ion channels can depend on these factors, all of 
which could worsen hypoxia.21,22

Oxygen sensitivity adaptation
Peripheral and CNS sensors adapt to sustained or 

chronic hypoxia. The respiratory and sympathetic re-
sponses to chronic or intermittent hypoxia are the final 
result of a cascade of adaptation events. The short-term 
response to sustained hypoxia is reduced respiration, fol-
lowed by enhancement of sympathetic and respiratory ac-
tivities which can be sustained for days or years. If hypoxia 
is intermittent, variable degrees of adaptative response oc-
curs depending on the frequency and/or degree of hypoxia. 
Apparently, oxygen-sensitive neurons adapt to chronic or 
sustained hypoxia because their sensitivity rises after four 
or five days under these conditions.23 The nature of these 
changes involves modification in signaling pathways, in 
neuromodulators and their receptors (opioids, nitric ox-
ide, P substance, catecholamines, glutamate and gama-
aminobutyric acid) and in the genomic effects. This latter 
effect is followed by up and downregulation of the product 
generated by hypoxia-sensitive genes.

Vascular mechanisms
The relationship between brain function and blood 

flow has been studied since the publication of Roy and 
Sherrington (1890 apud 24) in the late 19th century. The 
first quantitative study25 showed a rise and then fall in ce-
rebral blood flow (CBF) in healthy volunteers that initially 
breathed atmospheric air at sea level. Subsequently, they 
were transferred to a 3810m altitude laboratory in Cali-
fornia, returning afterwards to sea level. However, many 
aspects of CBF control remain unknown.

Vascular adaptations to chronic hypoxia
Reduced oxygen delivery is considered the environmen-

tal trigger to activate adaptative responses. Nevertheless, 
the contribution of each variable to the control mechanism 
has yet to be determined. Regarding systemic circulation, 

the primary variable is PaO2. The second is hemoglobin 
concentration level (oxygen carrier) in red blood cells, 
measured in milligrams per deciliter or by the hematocrit. 
The third factor is the hemoglobin saturation curve that 
is altered by temperature, pH, PaCO2 and 2,3 diphospho-
glicerate. In the CNS, both CBF and capillary density (in-
tercapilar distance) play critical roles.

Cerebral blood flow (CBF): Mild hypoxia augments 
CBF almost two-fold and lowers PaCO2 (26-29). The ex-
act mechanism is unknown, but there is a main neurogenic 
component originating from the brain stem (30). Local 
signaling substances also influence CBF, for instance, va-
sodilator nitric oxide up or downregulates according to 
oxi-hemoglobin fall. Local tissue factors are more associ-
ated to intracerebral circulation distribution than to blood 
flow of the whole organism. Potassium ions, adenosine, 
nitric oxide and other substances play a secondary role 
and become more important as the hypoxia becomes more 
severe (31). The main mechanism responsible for at least 
half of the CBF rise in response to mild hypoxia is medi-
ated through neuronal pathways that cross or originate in 
the brain stem32-34 and are closely linked to blood oxygen 
concentration levels.35-36

When hypoxia exposition is prolonged for more than 
one day, CBF is attenuated.37.38 After three weeks of sus-
tained hypoxia CBF returns to previous levels.

Hematocrit: One of the main reasons for the return of 
CBF to previous levels is the rise in red cell volume.39 The 
oxygen content is compensated by the enhancement of its 
carrier, leading to pre-hypoxia status of oxygen delivery.

Angiogenesis and brain blood volume: Although oxy-
gen delivery to the CNS is relatively compensated after ex-
position to chronic hypoxia, the same does not occur in the 
mitochondria. There is a reduction in oxygen delivery to 
the tissues because the stream that guides oxygen diffusion 
from the capillaries to the tissues is the difference between 
PaO2 of both of these. Consequently, there is a progressive 
rise in capillary density throughout angiogenesis that is 
complete after three weeks of hypoxia exposition.37,40-42

Angiogenesis occurs through hypoxia-inducible fac-
tor-1 which also leads to the enhancement of erythropoi-
etin and hematocrit. Hypoxia-inducible Factor 1 upregu-
lates the production of endothelial vascular growth factor. 
Angiopoietin-2-cicloxygenase-2 also contributes to brain 
angiogenesis.43 

Tissue oxygen tension: The oxygen tissue tension is 
low and its distribution is heterogeneous even in nor-
moxia conditions.44,45 The response time is variable: the 
CBF rises promptly and falls on the fourth or fifth day.38 
The hematocrit begins to rise on the third day and reaches 
80% within seven days. Angiopoetin-2 rises in the second 
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week and subsequently falls to previous levels within three 
weeks.42 The hypoxia-inducible factor-1 which indicates 
tissue hypoxia is elevated initially and followed by a drop 
to previous levels within three weeks.46 These data show 
that the restoration of brain tissue oxygen tension does not 
occur until two or three weeks after hypoxia exposition.

Average transit time: The return of CBF to previous 
levels does not mean that cerebral circulation has not gone 
through significant changes. Brain blood flow and volume 
are directly related. If cerebral blood volume duplicates 
after hypoxia adaptation, the average transit time enhanc-
es considerably. This means that glucose delivery time is 
also elevated. The effect of improved glucose delivery is 
evidenced by better glucose influx through the hematoen-
cephalic barrier after chronic hypoxia adaptation.47 There 
is an enhancement in the number of glucose transporter 
molecules per microvase besides a rise in capillary density. 
Findings of studies in humans are generally similar to those 
involving other mammals.48

Cognitive impairment in pulmonary  
diseases with chronic hypoxia

In recent decades, several studies have demonstrated 
the presence of cognitive impairment caused by mild to 
moderate hypoxia and/or hypercarbia in patients with 
COPD,49-75 OSAS,76-84 subjects exposed to artificially in-
duced hypoxia85,86 and high altitude climbers.87-89 Signifi-
cant slowing in mental processing speed on the Trail Mak-
ing Test90 and specific Time Reaction Tests85 alterations 
have been demonstrated in comparisons of individuals 
submitted to various levels of hypoxia.

Moderate to severe cognitive decline has been found 
in 42% of patients (n=203) with COPD and in 14% of 
controls. Abstract thinking and complex perceptual-motor 
integration were the more affected domains. Fifty percent 
of patients presented slowing of motor speed and altered 
hand coordination.50

Some authors consider COPD a model of study for 
cognitive impairments secondary to chronic hypoxia due 
to lung disease.53 Memory impairment,49,53,56 verbal lan-
guage loss,53 attention disturbance,53,59,62,63,65,66 dysexecutive 
syndrome65,66,69,75 and difficulties in abstract thinking53 were 
found, while visual attention can be relatively preserved. 
Other authors argue that there is also visual attention im-
pairment.54 A pattern of neuropsychological impairment 
characterized by verbal tasks and verbal memory deficit 
was found in 48.5% (n=36) of COPD patients compared 
to controls with probable Alzheimer’s disease.53 In another 
study, verbal memory profile was assessed in 38.1% (n=42) 
of patients with COPD. Patients failed memory access and 
recall tasks.56 Low forced expiratory volume of first second 

(FEV1s) and forced vital capacity (FVC) are predictive pa-
rameters of cognitive impairment in COPD.57

Recently, cognitive impairment in non hypoxaemic 
patients has been described. These patients performed 
significantly worse on the Trail Making Test,90 Digit-Span 
Test (Wechsler Adult Intelligence Scale-III)90 and other 
specific subtests which showed mainly mental processing 
speed reduction. Memory and cognitive flexibility were 
relatively preserved. No correlation was found between 
cognition and worsening in life quality (63). The benefit 
of prolonged oxygen supplementation therapy has previ-
ously been demonstrated.60

Comparing studies becomes difficult because of design 
study variability, sereneness of disease, selection of patients 
and control groups, and respective study inclusion and ex-
clusion criteria. Other variables such as the use of continu-
ous oxygen therapy, the neuropsychological battery chosen, 
and treatment prescribed are also confounding factors.

In summary, the majority of both national and inter-
national literature on hypoxia cognitive effects in patients 
with chronic lung disease points to subcortical type mild 
cognitive impairment with decline in attention, slower 
mental speed and compromised executive functions.

The expression “subcortical dementia” is attributed to 
a group of signs and symptoms associated to diseases that 
involve subcortical structures.91-92 Subcortical dementia 
is characterized by: 1) cognitive slowing (bradyphrenia) 
with impairment in attention, concentration and executive 
abilities, including planning and strategy use difficulties, 
visual-spatial and memory deficit, with the latter affecting 
data retrieval rather than learning; 2) absence of aphasia, 
apraxia and agnosia, which constitute classic cortical symp-
toms and 3) emotional and psychiatric features such as 
apathy, depression or personality changes.91 

This syndrome is also called frontal-subcortical de-
mentia, because it can involve lesions in frontal-subcortical 
pathways or in subcortical structures closely linked to the 
frontal lobes.93,94 Attention and executive circuits involve 
pre-frontal cortex, thalamus, nucleus accumbens and het-
eromodal cortices (frontal, parietal and occipital) as well 
as para-limbic associated areas. The main neurotransmit-
ter is acetylcholine, but there are also serotoninergic and 
dopaminergic pathways. The association between hypoxia 
and acetylcholine pathways has been the subject of study 
for two decades, especially in animal models. There is evi-
dence of low acetylcholine concentration in the neocortex, 
hippocampus, striate nucleus and septal area, as well as do-
pamine in neocortex and hippocampus, of mice submitted 
to the same conditions.95 This finding could be explained 
by the proportional reduction in acetylcholine synthesis 
and other aminoacids due to lower carbohydrate oxidation 
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in mild chronic hypoxia.95-97 In addition, the decrease in so-
dium and potassium ion gradients which occur in chronic 
hypoxia conditions, jeopardizes acetylcholine transport to 
neurons, lowering its uptake by the post-synaptic neuron.98

In everyday clinical practice, there is an overlapping of 
cortical and subcortical profiles of deficits and the same 
can occur for psychiatric symptoms. However, this didac-
tic categorization helps clinicians to distinguish the pre-
dominant cognitive-behavioral pattern and thus to reach 
differential diagnosis. According to previously cited data, 
COPD49-75 and OSAS76-84 as well as other systemic diseases, 
such as cardiac failure99 and hepatic insufficiency100, can 
affect cognition. The cognitive syndrome presented varies 
from predominant subcortical type impairment to overt 
dementia. Before presenting full dementia, these patients 
go throughout a transition phase characterized by mild 
cognitive impairment, in which a decrease in mental speed 
(bradyphrenia) is frequently the first symptom.101-103

The formal current recommendations of the Brazilian 
Heath Secretariat (104) and Brazilian Society of Tisiology 
and Pulmonology105 for use of prolonged home oxygen 
supplementation are: a) PaO2=55 mmHg or SaO2 less 
than or equal to 88%; or b) PaCO2=56 to 59 mmHg, or 
SaO2 less than or equal to 89%, associated to heart failure 
edema, evidence of cor pulmonale or hematocrit level above 
56%. These data must be obtained through arterial blood 
gas analysis in a rest state while breathing ambient air in 
a clinically stable patient with the best possible adequate 
therapy. Formal indication for using these therapies should 
be questioned and reevaluated in view of study results of 
cognitive performance enhancement after using continu-
ous oxygen supplementation or continuous positive air-
way pressure (CPAP) in patients with COPD and OSAS, 
respectively.

Another relevant issue is the impact of cognitive impair-
ment on adherence to inhaled drugs in patients with COPD. 
Allen and coworkers had demonstrated that low perfor-
mance on the MMSE and its intersected pentagon com-
ponent are significantly associated to worse performance 
in the ability to learn and retain inhaler techniques.106-108 

Other executive function and praxis tests were also associ-
ated to low adherence in using inhaled medications.107,109

Prognostic implications of cognitive impairment in 
COPD have previously been studied. Worse performance 
on neuropsychological tests is associated with higher COPD 
patient mortality.64,110 This finding may be explained by two 
main hypotheses: firstly, COPD patients with worse cogni-
tive performance might be at a more advanced stage of the 
disease, presenting severe hypoxia which are associated to 
lower survival rates; secondly these patients may have poor 
adherence not only to inhaler medication techniques, as 

stated above, but also to oral and other co-morbidity drugs 
such as insulin pens.

Neuroimaging and chronic hypoxia
White matter periventricular and/or subcortical lesions 

have long been linked to cognitive deficits.111-114 These white 
matter lesions are mainly caused by small artery cerebro-
vascular disease. The vast majority of these lesions result 
from cholesterol deposition at the endovascular lining and 
from its local complications.115-118 The cognitive impair-
ment found secondary to small artery cerebrovascular dis-
ease can range from mild cognitive impairment to vascular 
dementia.118,119 Nevertheless, two preliminary studies (120, 
121) question whether white matter lesions are associated 
to hypoxic ischemia secondary to pulmonary disease per 
se. Van Dijk and coworkers (2004) evaluated 1077 non-
demented healthy subjects with ages ranging from 60 to 
90 years, measured their pulse oxymetry and performed 
magnetic resonance imaging. These authors concluded 
that low oxygen saturation and COPD are associated to 
more severe white matter periventricular lesions. One of 
the main difficulties found in this kind of research is how 
to deal with vascular risk factors. More studies are neces-
sary to elucidate this issue.

Conclusion
Cognitive effects of clinical diseases are given limited 

importance in congresses and symposia on cognitive im-
pairment and its etiology. Professionals that deal with 
patients presenting cognitive loss may have a tendency to 
more frequently suspect degenerative disorders and ne-
glect possible contributions of clinical diseases. Scientists 
have long restricted their interest in cognitive complica-
tions of ischaemic hypoxia to cerebrovascular disease and 
hypoxic-ischaemic encephalopathy studies both in clinical 
and basic science research. Experimental models have been 
based on neonatal hypoxia, post cardiac arrest brain dam-
age and ischemic cerebrovascular disease which are suited 
to studying brain effects of acute hypoxia. More recently, 
as mentioned previously, COPD models and possibly idio-
pathic pulmonary fibrosis models, may help us to broaden 
our knowledge on cognitive changes secondary to chronic 
hypoxia and perhaps lead to new insights into diagnosis 
and treatment.
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