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ABSTRACT 

Obtaining knowledge about the distribution of spatial variability of soil properties is 
crucial to the proper site-specific management. One way to improve the quality of soil 
mapping is by using auxiliary information (covariate). The objective of this study was to 
test whether remote and proximal sensing data can assist in soil properties mapping 
through geostatistical prediction. We worked in an experimental area cultivated with 
sugarcane located in Sao Paulo State, Brazil, and selected five soil properties: organic 
matter, CEC, base saturation, K and P availability. Two covariates often used to express 
soil variation were chosen, one obtained by remote sensing (SWIR2 band) and the other 
by proximal sensing (apparent soil electrical conductivity – ECa). These covariates were 
individually and together used in geostatistical interpolation method (kriging with 
external drift). We found that ECa is a more promising covariate than SWIR2 band from 
orbital imaging. Such proximal sensing can identify the soil short-range spatial 
variability. However, when the soil property variability is well explained by the sampling 
procedure, multivariate geostatistical methods may not improve the mapping accuracy. 

 
 
INTRODUCTION 

Precision agriculture (PA) identifies and treats the 
spatial and temporal variability of crops. To satisfactorily 
characterize such spatial variation of the soil, dense 
sampling grids are needed (Nanni et al., 2011). However, 
this type of sampling is costly and time-consuming, which 
often makes economically feasible sampling not 
sufficiently detailed to allow the proper identification of 
spatial variability of soil properties. Thus, the economic 
return of site-specific management is compromised. 

Covariates can be used to assist in spatial 
predictions, without increasing the costs with soil sampling 
and laboratory analysis. Such auxiliary data are usually 
obtained at a greater spatial resolution and is easier and 
cheaper to obtain compared to manual samplings. The sole 
requirement is that the covariates must present empirical 
spatial correlation with the properties of the soil to be 
mapped. Among these possible covariates are the traditional 

remote sensing products, i.e. satellite imagery (Mirzaee et 
al., 2016; Sayão et al., 2018), and the most recent proximal 
sensing products. The first has the advantage of easy 
acquisition of data; the last have been developed for PA 
usage, which are sensors conducted near or in contact with 
the crop or soil (Adamchuk et al., 2004). The proximal 
sensing approach can avoid problems related to cloud cover 
that might appear in remote sensing data. One of the most 
used proximal sensing techniques to quantify the variability 
of agricultural soils is the apparent electrical conductivity 
(ECa), since it presents a direct relation with texture, water 
quantity and organic matter variations within the soil (Kühn 
et al., 2009).  

Although the literature reports the potential of both 
remote and proximal sensing in assisting predictions of 
some soil properties, previous studies usually focus only on 
a single soil property that is highly correlated with the 
specific covariate under study (García-Tomillo et al., 2017; 
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Sanches et al., 2018; Sayão et al., 2018), often conveying 
the idea of a potential that is not always widely applicable 
in other situations. Goovaerts (2000) argued that 
multivariate geostatistical methods (MGM) provide better 
predictions than ordinary kriging (OK) when working with 
correlations above 0.75.  However, such high correlation 
values are difficult to find in PA data, due to randomness on 
soil spatial variability caused by anthropic interference. 
Nevertheless, Goovaerts & Kerry (2010), working with PA 
data and Kriging with External Drift (KED), argued that a 
correlation between 0.25 and 0.5 may be sufficient to 
improve prediction accuracy.  Nevertheless, Sanches et al. 
(2018) improved chemical soil properties mapping through 
KED predictions working with lower relationships between 
soil properties and ECa data, ranging from 0.1 to 0.3.   
However, it remains unclear what is the minimum 
relationship level required between soil properties and 
covariates to significant prediction gains when compared to 
univariate interpolation methods, such as ordinary kriging. 
Thus, more research is needed to clarify how data 
relationship influences the quality of soil predictions 
through MGM. 

Thus, our objective was to investigate whether 
remote sensing and proximal sensing could improve the 
quality of prediction of soil properties. Therefore, we 
selected five soil properties with different relationship 
levels with the covariates to evaluate the performance of 
spatial prediction using KED algorithm. Moreover, we used 
Bivariate Moran’s index (LISA) to express the relationship 
between soil sampling and covariates. 

 
MATERIAL AND METHODS 

Study site and soil data 

This study used a 116 ha field (Figure 1) cultivated 
with sugarcane in the southeast of Brazil (21°30'29” S, 
48°09'04” W), with a predominance of Oxisols. The climate 
of the region is Cwa – humid subtropical with dry winter 
and hot summer. Sugarcane is a semi-perennial crop, which 
means that with only one planting, the same plants (ratoons) 
may be generally harvested for three to seven cropping 
seasons, depending on soil quality, management practices, 
weather, and plant genotype. Generally, fertilizers are 
applied at the beginning of the crop cycle, immediately after 
the previous ratoon harvest. 

 

 

FIGURE 1. Location of the study site and representation of the sampling points, indicating the soil samples. 
 
 

We performed grid soil sampling in November 2011, 
after the final ratoon was harvested (September 2011), but 
before any kind of soil management practice was done for 
field reform. One hundred and sixteen soil samples were 
collected within the area, resulting in a density of 
approximately one sample per hectare. The soil was 
sampled in the 0-0.4 m depth using an auger. Each sample 
consisted of six subsamples collected within a 5 m radius to 
ensure proper representation of the sampling point since soil 
chemical variations may occur at very short distances 
depending on the position of the samples to the crop rows 
(1.5 m spacing between rows).  

The following soil properties were chosen for this 
study: soil organic matter (OM, g kg-¹), cation exchange 
capacity (CEC, mmolc dm-3), base saturation (V, %), 
available potassium (K, mmolc dm-3) and available 

phosphorus (P, mg dm-3). Such choice was due to our 
research group focus on the improvement of variable-rate 
fertilization maps required for precision agriculture 
approach; OM is related to soil texture and can be used in 
some regions of Brazil to guide nitrogen prescription, 
whereas CEC and V may be used in liming prescription, 
while available P and K are generally used in the 
prescription of phosphate- and potassium-based fertilizers. 
Soil analyses were conducted in a commercial laboratory, 
using the standard analytical methods for São Paulo State, 
Brazil (Camargo et al., 2009). The phosphorus (P) 
availability was estimated via the extraction method with 
ion exchange resin, and potassium (K) availability was 
estimated via ammonia acetate 1N pH 7.0 (Camargo et al., 
2009). OM was estimated via extraction (Camargo et al., 
2009), while CEC was obtained through a compulsive 
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exchange in BaCl2 (Camargo et al., 2009). V was estimated 
through the ratio between the sum of bases (K, Ca and Mg) 
and CEC in a 7 pH (Camargo et al., 2009). 

Covariates 

We employed two covariates that may provide 
information about soil variability, one from remote sensing 
and other from proximal sensing.  

Apparent soil electrical conductivity (ECa) was the 
employed proximal sensing technique. This data was 
acquired in January 2012 using the tractor-driven Veris-
3100 Soil Electrical Conductivity Sensor (Veris®, Salina, 
KS, USA). Data were collected before soil preparation for 
sugarcane planting in 30 m passes (Figure 2A). The ratoons 
were mechanically destroyed, and, subsequently, the soil  
was subsoiled and harrowed 15 days before ECa readings 
were collected. Since the objective was to estimate soil 

properties in the shallow soil depth (0-0.4 m), only the most 
superficial measuring depth of the sensor was used (up to 
0.3 m deep). Discrepant data were removed to avoid 
negative interference in interpolations. For such, the 
histogram was created with equal classes and analyzed to 
search for discrepant values; when these were not inserted 
in a region with similar values (extreme values), they were 
removed (~5% of the data were excluded as outliers). 
Further, we did a dataset reduction of ECa. Hence, we 
eliminated two thirds of the entire number of samples to 
improve computation performance for KED predictions. 
We followed the elimination using the direction of the 
sensor pass throughout the field, selecting three samples and 
excluding two of them. The data were interpolated to 10 m 
resolution using ordinary kriging, since KED demands 
covariate values in each node of the intended surface.  

 

 

FIGURE 2. Apparent soil electrical conductivity data (spatial density from ~272 samples ha-1) (a) and bare soil reflectance in 
the SWIR2 band of a composition image of a historical series between 1984 and 2020 years (30 m spatial resolution) (b).  

 
The remote sensing covariate is a shortwave infrared 

band 2 (SWIR2 - Figure 2B). The employed image was 
composed by a time-series image composition to guarantee 
a high-quality bare soil scene. Scenes from 1984 to 2020 (n 
= 432) were accessed from the Landsat Collection 2 – Tier 
1 (Landsat 5, 7, and 8, comprising the respective spectral 
bands of 2.08-2.35, 2.09-2.35, and 2.10-2.30 μm), which are 
atmospherically corrected to surface reflectance by Landsat 
Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) algorithm, and geometrically corrected using 
ground control points and elevation data provided by a 
Digital Elevation Model (DEM). Then, following the 
procedure recommended by Demattê et al. (2020), we 
removed clouds and shadows using the quality assessment 
band (pixel_qa) and masked vegetation and straw pixel 
values to get pure bare soil pixels, resulting on an average 
of 42 reflectance value for each 30m pixel. For spatial 
predictions via KED, the time-series was reduced to a single 
SWIR2 image by applying the median over the entire 
spectral dataset, which was further resampled to 10 m 
resolution using bilinear method. This band was chosen due 

to its known correlation with the content of organic matter, 
clay and iron oxides in the soil (Sayão et al., 2018). Thus, it 
has the potential to indicate soil variation, although there is 
a lack of explored application in precision agriculture.  

Data relationship 

Bivariate Moran index (LISA) (Chen, 2015) was 
applied to evaluate the spatial relationship between soil 
properties and covariates (Figure 3). A Global LISA was 
applied to identify spatial correlation between variables. 
Yet, we also employed a Local LISA (Anselin, 1995) to 
identify the correlations for each observation (sample). 
Local LISA offers a notion of locals that present significant 
correlation in addition to the presence of high values of soil 
properties near to high values of covariates (high-high 
class); high values of soil properties near to low values of 
covariates (high-low class); low values of soil properties 
near to high values of covariates (low-high class); and low 
values of soil properties near to low values of covariates 
(low-low class). 
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FIGURE 3. Local and Global bivariate Moran index between soil properties and covariates. 
OM - organic matter; CEC – cation exchange capacity; V – base saturation; K – potassium; P – phosphorus; ECa – soil apparent electrical 
conductivity; SWIR2 – shortwave infrared band. 
ns – not significant correlation (p> 0.05), *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.  
 
Geostatistical interpolation 

In this study, we used kriging with external drift 
(KED) as the multivariate geostatistical method (MGM), 
and in KED, the trend is estimated with a regression method 
(Hengl, 2009). Moreover, KED and Regression Kriging has 
mathematical similarities, delivering the same results when 
the stochastic component is modeled with a linear function 
(Hengl, 2009). We compared such MGM predictions to a 
univariate geostatistical method (UGM) to evaluate the 
prediction performance improvement when the covariates 
were used. Thus, Ordinary kriging (OK) or Universal 
Kriging (UK) were used as UGM, depending on whether 
the data shows a trend according to the coordinates. 

 Thus, three scenarios were built according to the 
covariates used: 1) “KED (ECa)”, where the drift was 
modeled as a function of ECa data; 2) “KED (SWIR2)”, 
where the drift was modeled as a function of SWIR band; 
and 3) “KED (Eca + SWIR2)”, where the drift was a 
combination of both covariates.  

We employed the Restricted Maximum Likelihood 
(REML) to model the theoretical variogram. For such, two 
covariance models were tested: spherical and exponential. The 
one with the best performance measured by the leave-one-out 
cross-validation was chosen. We used the gstat package 
(Pebesma, 2004) from R for this geostatistical modeling. 

 

Evaluation of prediction performance 

The interpolation performances of the three KED 
scenarios and the reference method (UGM) were evaluated 
through leave-one-out cross-validation (LOOCV). Thus, 
the following prediction quality statistics were computed 
using observed and predicted values: mean error (ME), 
root-mean-squared error (RMSE) and Nash-Sutcliffe 
efficiency (NSE - Krause et al., 2005). 

 
RESULTS AND DISCUSSION 

We found an improvement in KED performance 
for mapping CEC, V, and K when we used ECa as covariate 
(Table 1). The improvement in prediction performance can 
be explained by the fact that ECa helped to explain data 
variance, which is corroborated by the reduction of the sill 
in the semivariograms (sill = c0 + c) mainly for CEC and V 
(Figure 4). The prediction of these two soil properties 
presented the highest improvement in performance 
compared to UGM (Table 1 – NSE). As K presented less 
reduction in the sill value resulted in a lower improvement 
in performance to UGM. On the other hand, KED did not 
bring any additional gain in OM and P prediction compared 
to UGM (Table 1); yet there was almost no reduction in the 
sill of KED (ECa). Thus, we understand that improvement 
of performance occurs when ECa helps to explain data 
variance and to reduce the sill, because it means the 
covariate can capture the deterministic part of soil 
properties spatial variability.
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TABLE 1. Semivariogram parameters (c - partial sill; co - nugget; a – range; and theoretical model) and statistics of the 
prediction performance in the leave-one-out cross validation (LOOCV) of soil properties for the different geostatistical 
methods (UMG and KED scenarios), using ECa and SWIR2 as covariates. 

Soil      
property 

Geostatistical method 
Semivariogram parameters LOOCV 

c co a Model** EM RMSE NSE 

O
M

   
   

   
   

   
   

   
   

  
(g

 k
g-1

 )
 

UGM* 5.60 1.08 469.15 sph 0.00 1.76 0.84 

KED(ECa) 5.28 1.09 467.08 sph 0.00 1.75 0.84 

KED(SWIR2) 6.05 0.97 470.52 sph -0.01 1.77 0.84 

KED(ECa + SWIR2) 5.72 0.99 468.16 sph -0.01 1.77 0.84 

C
E

C
   

   
   

   
   

   
   

   
   

   
(m

m
ol

c d
m

-3
 )

 UGM* 225.15 8.89 931.87 sph 0.09 6.39 0.85 

KED(ECa) 26.95 0.11 137.70 sph -0.01 5.01 0.91 

KED(SWIR2) 107.95 7.77 428.32 sph 0.09 6.44 0.85 

KED(ECa + SWIR2) 27.11 0.18 138.50 sph -0.01 5.03 0.91 

V
   

   
   

   
   

   
   

   
 

(%
) 

UGM 148.53 27.48 899.35 sph 0.07 7.19 0.52 

KED(ECa) 28.05 30.35 456.73 sph 0.00 6.57 0.60 

KED(SWIR2) 142.56 28.49 899.37 sph 0.08 7.21 0.51 

KED(ECa + SWIR2) 24.34 31.32 432.78 sph -0.01 6.64 0.59 

K
   

   
   

   
   

   
   

  
(m

m
ol

c d
m

-3
 )

 UGM* 0.30 0.03 205.10 exp 0.00 0.48 0.62 

KED(ECa) 0.14 0.09 385.44 sph 0.00 0.47 0.64 

KED(SWIR2) 0.21 0.05 319.90 sph 0.00 0.49 0.61 

KED(ECa + SWIR2) 0.15 0.09 385.37 sph 0.00 0.48 0.63 

P
   

   
   

   
   

   
   

   
   

   
  

( 
m

g 
dm

-3
) 

UGM 0.03 0.04 271.56 sph 0.04 5.71 0.02 

KED(ECa) 0.03 0.04 282.31 sph 0.04 5.74 0.01 

KED(SWIR2) 0.03 0.04 277.95 sph 0.04 5.75 0.01 

KED(ECa + SWIR2) 0.04 0.04 290.47 sph 0.04 5.80 -0.01 

OM - organic matter; CEC – cation exchange capacity; V – base saturation, K – available potassium; P – available phosphorus; ECa – soil 
apparent electrical conductivity; SWIR2 – shortwave infrared band. EM – mean error, RMSE – root-mean squared error, NSE – amount of 
variance explained. * when trend was modeled by coordinates, we used universal kriging as UGM method. **Semivariogram model: Sph – 
Spherical; Exp – Exponential. 
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FIGURE 4. Semivariograms for all five soil properties (principal variables) according the geostatistical method: UGM - Ordinary 
Kriging; KED(ECa) – Residual Semivariograms when Kriging with External Drift was used with apparent soil electrical conductivity as 
auxiliary variable; KED(SWIR2) - Residual Semivariograms when Kriging with external Drift was used with the Short Infrared band SWIR2 
as auxiliary variable; KED(ECa+SWIR2) - Residual Semivariograms when Kriging with external Drift was used with both covariates. OM – 
soil organic matter; CEC - cation exchange capacity; V - base saturation; P – available phosphorus, K - available potassium. The “circle” 
symbol is the experimental semivariogram and the solid lines are the theoretical semivariograms adapted by residual maximum likelihood 
(REML). NOTE: KEDECa+swir2 are overlapping the KEDECa.  

 
The use of soil ECa showed a positive and 

complementary effect on the spatial prediction process. 
This happens because the insertion of covariates makes the 
residuals spatially stationary and normally distributed (Wu 
et al., 2019). Thus, ECa as a covariate provided information 
gains, especially when there was a high correlation with the 
soil property (i.g. Global Moran Index of 0.76 to CEC and 
0.57 to V variables – Figure 3). This may be because this 
sensing technique is influenced not only by the most 
superficial soil layer– like SWIR2 –, but its signal 
represents the variation of soil up to 0.3 m deep, closer to 
the soil sampling depth. In addition, ECa measures a greater 
volume of soil which can assist in identifying the short-
range spatial variability of the soil. This result in greater 
spatial correlations with some soil properties when 
compared to SWIR2 (Figure 3), thus leading to better 
prediction performance. Moreover, the use of ECa seems 

more promising given the widespread adoption of the no-
tillage farming system, where the traditional soil 
management processes – i.e., horizontal preparation of the 
soil by plows and harrows – are decreasing. Thus, there will 
be fewer opportunities to obtain orbital imagery in the 
entirely bare soil situation, hindering auxiliary data 
acquisition on periods close to soil sampling. 

Unlike ECa, remote sensing data (SWIR2 band) did 
not show good suitability as covariate in predicting the soil 
properties analyzed in this study (Table 1).  In general, 
predictions using SWIR2 showed equivalent or even 
inferior performance to the control method used (UGM). 
However, Sorenson et al., (2021), report that the SWIR2 
band from bare soil was important for CTC prediction, 
leading to the inference that CTC responds to relative 
changes in clay content. Moreover, KED scenario where we 
used both remote and proximal data did not yield better 
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predictions than where ECa were solely used in KED (Table 
1).  Such an unsatisfactory result of using remote sensing 
data may have occurred due to some reasons: 1) this 
technique only measures the reflectance of the soil surface, 
which can impair the relationships with soil samples 
collected deeper; 2) there may be small scattered portions 
of straw or weeds on the soil surface that were not filtered 
by Demattê et al. (2020) technique employed, which 
influenced the reflectance of the pixels; 3) we used a mosaic 
of images of 36 years, and since it is an agricultural field, 
the combination of images could impair the relationship of 
SWIR2 with soil properties. The main advantage of using 
orbital imagery for this purpose is the lower acquisition 
cost, dispensing additional fieldwork, once there is a 
significate amount of freely-available databases. However, 
imagery acquisition of bare soil has some difficulties 
because of the presence of clouds and the adoption of no-
tillage systems as well as integrated crop-livestock systems, 
which are more soil-use-intensive. This makes it even more 
challenging to access bare soil data through remote sensing.  

In the case of the gathering of soil ECa, there are 
several commercial sensors available since this technology 
has been more incorporated in precision agriculture 
practice. Because this measure gives valuable information 
about soil variability, it has been employed in research for 
soil sampling optimization (Sanches et al., 2020) and 
delimitation of management zones (Betzek et al., 2019). 
Furthermore, the variations of ECa over the area is 
relatively stable over time, once mineralogy and texture do 
not usually change over the crops’ seasons. Thus, we should 
expect better results for usage ECa as a covariate for 
mapping soil properties that are stable over time, like soil 
texture and CEC. On the other hand, variables that are easily 
changed by management, like P and K, tend to have a lower 
gain when using methods combined with ECa data, 
corroborating the results we found. 

The spatial correlation between soil properties and 
covariates is an essential source of information to evaluate 
the possibility of working with multivariate geostatistical 
methods. In previous studies, Sanches et al. (2018) and 
Jurado-Expósito et al. (2019) argued that statistically 
significant relationships between the primary and covariates 
improve the predictions of soil properties. However, in our 
study, we did not observe improvements in OM estimation, 
which despite having presented high and statistically 
significant correlations (Figure 3) with the covariates did 
not provide improvements in prediction accuracy (Table 1-

RMSE). This probably happened because soil OM was 
sufficiently explained by the sample density, corroborated 
by a good variogram fitting (Figure 4).  However, for the K 
and V properties that presented intermediate but statistically 
significant correlations (Figure 3) and a lower spatial 
relationship than OM, the results were divergent. V 
predictions using covariates showed a more significant 
increase in prediction performance than for K (table 1 - 
NSE). These properties (K and V) showed trend behavior in 
the semivariogram, which means that other factors are 
responsible for the variation were found for the analyzed 
property. The modeling with covariates helps in this sense, 
modeling trend and more clearly displaying the effect of 
micro variation that is, variations that occur at distances 
smaller than the sampled. By recognizing this effect of 
trend, we have smaller errors by adding covariates in 
predicting soil attributes. Therefore, when the sample 
density used is sufficient to capture the variability of 
properties, the addition of covariates, although presenting 
high correlations, does not contribute to the modeling of 
variability and, consequently, in improving predictions. 

Although P was not correlated with the auxiliary 
variables used (Figure 3), all analyses were performed to 
compare the results. A global LISA of 0 indicates that the 
relationship of P with the covariate occurs randomly. As 
expected, we did not find gains in the prediction quality 
when modeling the variability of this property with 
covariates. Therefore, the KED scenarios presented results 
similar to UGM, all with low quality in predictions (NSE < 
0.02 - Table 1). Furthermore, as the NSE value was close to 
zero (Table 1) for P, this indicates that the best way to 
manage phosphate fertilizers would be with uniform 
application throughout the area.  

The spatial distribution of CEC and V (maps on 
Figure 5) showed similarities to the ECa distribution. 
However, in the other soil properties, where the KED (ECa) 
did not improve (OM, P) the predictions, the spatial 
distribution of the ECa did not clearly appear in the maps. 
Otherwise, we observed the representation of some high 
ECa value spots in the spatial distribution of K (Figure 2 
compared to Figure 5). Thus, as indicated by local LISA 
(Figure 3), the sites with high K contents coincide with the 
sites with higher ECa. Thus, when we insert covariates that 
even marginally explains the soil variability, we may obtain 
a better spatial distribution characterization, which may 
lead to better fertilizer prescriptions in variable-rates.  
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FIGURE 5. Spatial distribution of soil properties for the different geostatistical methods: UGM - Ordinary Kriging; KED(ECa) 
– Kriging with External Drift using apparent soil electrical conductivity as covariate; KED(SWIR2) - Kriging with external Drift 
with the Short Infrared band (SWIR2) as covariate; KED(ECa+SWIR2) - Kriging with external Drift with both covariates. OM 
- organic matter; CEC- cation exchange capacity; V - base saturation; P – available phosphorus; K – available potassium. 

 
CONCLUSIONS 

Our goal was to investigate whether remote sensing 
and proximal sensing can improve the quality of prediction 
of soil properties through KED. Therefore, we selected five 
soil properties to evaluate the performance of spatial 
prediction when adding different levels of correlation 
between soil property and covariates. Thus, we concluded 
that ECa is a more promising covariate than SWIR2 band 
from orbital imaging. Moreover, ECa data collection is 
more flexible, not depending on bare soil image collection. 
In addition, ECa data is densely collected, which can assist 
in identifying the short-range spatial variability of the soil. 
However, when the soil property variability is well 

explained by the sampling procedure, multivariate 
geostatistical methods (MGM - like KED) may not improve 
the mapping accuracy, even when the spatial relationship 
between the variables is high. 
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