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ABSTRACT 

Digital aerial images obtained by cameras embedded in remotely piloted aircraft (RPA) 
have been used to detect and monitor abiotic stresses in soybeans, such as water and 
nutritional deficiencies. This study aimed to evaluate the ability of vegetation indexes 
(VIs) from RPA images to remotely detect water and nutritional status in two soybean 
cultivars for nitrogen. The soybean cultivars BONUS and BRS-8980 were evaluated at 
the phenological stages R5 and R3 (beginning of seed enlargement), respectively. To do 
so, plants were subjected to two water regimes (100% ETc and 50% ETc) and two 
nitrogen (N) supplementation levels (with and without). Thirty-five VIs from 
multispectral aerial images were evaluated and correlated with stomatal conductance (gs) 
and leaf N content (NF) measurements. Near-infrared (NIR) spectral band, enhanced 
vegetation index (EVI), soil-adjusted vegetation index (SAVI), and renormalized 
difference vegetation index (RDVI) showed linear correlation (p<0.001) with gs, standing 
out as promising indexes for detection of soybean water status. In turn, simplified canopy 
chlorophyll content index (SCCCI), red-edge chlorophyll index (RECI), green ratio 
vegetation index (GRVI), and chlorophyll vegetation index (CVI) were correlated with NF 
(p<0.001), thus being considered promising for the detection of leaf N content in soybeans. 

 
 
INTRODUCTION 

According to precision agriculture principles, high-
precision and low-cost estimates of plant biophysical and 
biochemical parameters are important to improve 
management practices and productive potential in farming 
systems (Vibhute & Bodhe, 2012). High throughput and 
spatial accuracy of these estimates using aerial images from 
remotely piloted aircraft (RPA) can assist in evaluating 
genotype behavior, management practices, and impacts of 
biotic and abiotic stresses, thus contributing to decision-
making by farmers (Franchini et al., 2018). 

Digital aerial images from RPAs have been used to 
detect and monitor spatial and temporal variability in 
croplands (Barbedo, 2019). Studies have demonstrated the 
viability of aerial images at some crop development stages 
to spatialize information about vegetative vigor, nutritional 

status, the incidence of pests and diseases, weed infestation, 
and productive potential (Tetila et al., 2017; Franchini et al., 
2018; Barbedo, 2019). 

Drought stress has reduced global soybean yields by 
more than 50% annually (Wang et al., 2003). The effect of 
droughts on soybean yields depends on the severity, 
duration, and timing of stress regarding the crop growth 
stage (Brar et al., 1990). Soybean is most susceptible to 
drought stress during its reproductive stage (Wijewardana 
et al., 2018, 2019b); however, when under long-term severe 
water stress during vegetative growth, substantial yield 
losses can be caused (Machado et al., 2020). 

Drought effects on soybean physiological and 
biochemical changes are not clearly understood yet 
(Manalavan et al., 2009). Soil moisture stress may induce 
several morpho-physiological and biochemical responses 
that subsequently inhibit growth, lower photosynthesis, 
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reduce stomatal conductance and transpiration, decrease 
chlorophyll contents, and cause changes in proteomics 
(Reddy et al., 2004; Wijewardana et al., 2019a). 

Leaf nitrogen (N) contents are directly correlated 
with chlorophyll production, thus affecting crop growth and 
yield. Farmers have used soil plant analysis development 
(SPAD) devices to estimate chlorophyll contents in plants. 
However, large-scale crop monitoring through SPAD is 
time-consuming and demanding; therefore, unmanned 
aerial vehicles (UAV) are recommended for estimating leaf 
N contents in crops using multispectral imagery (Colorado 
et al., 2020).  

Some studies have been conducted on the use of 
aerial images to detect and monitor abiotic stresses, 
especially water and nutritional stresses in soybeans 
(Hoyos-Villegas & Fritschi, 2013; Yu et al., 2016; 
Maimaitijiang et al., 2017; Franchini et al., 2018; 
Wijewardana et al., 2019b). Regarding nutritional status, 
Franchini et al. (2018) studied soybean spectral responses 
to potassium (K) application and observed a correlation 
between K levels in the soil and modified photochemical 
reflectance index (mPRI). 

Remote detection of water deficit in crops can be 
performed by the joint use of vegetation indexes, such as 
NDVI, and leaf canopy temperature measurements from 
thermal cameras embedded in RPAs (Carvalho et al., 2015; 
Hoffmann et al., 2016; Crusiol et al., 2017; Sagan et al., 
2019; Crusiol et al., 2020). Crusiol et al. (2020) evaluated 
the use of remote (hyperspectral) and airborne (RGB/NIR 
and thermal cameras embedded in drones) sensors to detect 
water deficit in soybeans. They concluded that remote 
sensors could differentiate water conditions in soybean 
cultivars, improving management and decision-making in 
terms of crop practices. 

Some vegetation indexes (VIs) from multispectral 
images are related to crop water status (Gago et al., 2015). 
Baluja et al. (2012) found a significant correlation between 
VIs from multispectral imagery (e.g., NDVI and OSAVI) 
and vine water stress indexes (e.g., stomatal conductance). 
Likewise, Wijewardana et al. (2019b) evaluated the use of 
vegetation indexes to detect water status in soybeans and 
concluded that NDVI has a high positive linear correlation 
with leaf water potential and stomatal conductance. 
However, the use of multispectral indexes with 
physiological and thermal indicators of plant water status 
still needs validation to replace aerial thermography, which 
is more expensive (Bian et al., 2019).  

Given the above, we hypothesize that soybean water 
and nutritional status can be detected using vegetation 
indexes from aerial images derived from multispectral 
cameras embedded in RPAs. Thus, this study aimed to 
evaluate the ability of vegetation indexes from aerial images 
of a multispectral camera embedded in a remotely piloted 
aircraft (RPA) to remotely detect the water and nutritional 
status of two soybean cultivars regarding N contents. 
 
MATERIAL AND METHODS 

 The experiment was conducted in the experimental 
area of Embrapa Meio-Norte in Teresina, PI, Brazil (05°05' 
S, 42°49' W, and 74.4-m altitude), from July to November 
2019 (Figure 1). The historical annual averages of 
temperature and cumulative rainfall are 27.4 °C and 1,325 
mm, respectively, with rains concentrated between January 
and May (INMET, 2019). During the experiment, mean 
maximum and minimum temperatures and cumulative 
rainfall were 29.44 °C, 27.6 °C, and 0.11 mm, respectively 
(INMET, 2019). The local climate is defined as Aw 
according to the Köppen classification, with a rainy season 
in the summer and a dry season in the winter (Medeiros et 
al., 2020). The soil in the experimental area is classified as 
eutrophic Red Yellow Argisol (Melo et al., 2014) (Table 1). 

The experiment was carried out using two soybean 
cultivars: 1) BONUS, with indeterminate growth habit, 
maturity group (MG) 7.9, a cycle of 105-122 days; and 2) 
BRS-8980, with determinate growth habit, MG 8.9, and a 
cycle of 125-136 days. The design adopted was a 
randomized block arranged in a split-plot scheme, in which 
plots comprised two water regimes (WR): deficit irrigation 
(50% crop evapotranspiration [ETc] replacement) and full 
irrigation (100% ETc replacement), while subplots 
consisted of two nitrogen (N) supplementation levels (NS): 
without N (N0) and with N (N1; 1,000 kg ha-1). Therefore, 
four treatments (I0N0, I0N1, I1N0, and I1N1) were 
performed, with five replicates each. 

Sowing was performed manually on July 23, 2019, 
by distributing 20 seeds per meter along furrows. Before 
sowing, seeds were inoculated with Bradyrhizobium 
japonicum (SEMIA 5079 and 5080) at a ratio of 100 mL 
inoculant to 7 kg seeds. After germination, seedlings were 
thinned out, leaving 10 to 12 plants per meter. For the 
cultivar BONUS, each plot contained twenty 6-m rows 
spaced 0.5 m apart (60 m²) and a 24-m² useful area. For the 
cultivar BRS-8980, each plot contained twenty 4.5-m rows 
spaced 0.5 m apart (45 m²) and an 18-m² useful area.
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FIGURE 1. Location (A) and detailing (B) of the experimental area. Teresina, PI, 2019. 
 
TABLE 1. Chemical properties and soil granulometry of the experimental area. Teresina, PI, 2019. 

 Depth 
Layer (m) 

 Sand  Fine Sand  Silt  Clay  Textural Classification 

 --------------------------- g kg-1 ----------------------------  

0.0-0.2 267.3 470.6 116.0 146.1  Loam-sandy 

0.2-0.4 231.6 424.0 105.5 238.9  Loam-clay-sandy 

Depth Layer  P  K  Ca  Mg  H+Al  SB  CEC  OM  S 
 % 

pH (CaCl2) 
 (m)  mg/dm³  ---------------------- cmolc/dm³ --------------------  dag/kg 

0.0-0.2 10.15 0.23 2.40 0.83 1.18 3.45 4.63 1.03 74.5 5.50 

0.2-0.4 5.41 0.22 2.63 0.83 1.34 3.68 5.01 0.91 73.4 5.38 

P: phosphorus; K: potassium; Ca: calcium; Mg: magnesium; H+Al: potential acidity; SB: sum of bases; CEC: cation exchange capacity; OM: 
organic matter; V%: base saturation; pH (CaCl2): pH in calcium chloride. 

 
Fertilization was managed based on the soil 

chemical analysis. Nitrogen (urea), phosphorus (simple 
superphosphate), and potassium (potassium chloride) were 
applied to the soil, while micronutrients were sprayed on 
leaves (Silva, 2021). The dose of 1,000 kg N ha-1 was 
selected to meet soybean N demands throughout the crop 
season so that both cultivars could express their maximum 
yield potentials (6 Mg ha-1 expected yield). To that end, for 
each Mg soybean produced, 80 kg N ha-1 were estimated, at 
an N fertilization efficiency of 50% (Hungria et al., 2001). 

Irrigation was managed to replace crop 
evapotranspiration (ETc), using the Penman-Monteith 

estimated reference evapotranspiration (ETo) and soybean 
FAO crop coefficients – Kc (Allen et al., 1998). Climatic 
data (global solar radiation [MJ m-2], air temperature [°C], 
relative air humidity [%], and wind speed [ms-1]) were 
acquired from an automatic agro-meteorological station, 
which is 500 m away from the experimental area. Irrigation 
was performed using a fixed conventional sprinkler system, 
with 24 sprinklers spaced at 12 m x 12 m. Irrigation depth 
was controlled by installing two blocks of 12 collectors 
each, one for each water regime (WR), spaced 3 m between 
lateral sprinkler lines and in the center of the experimental 
area. Soil moisture was monitored using Campbell’s CS616 
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soil moisture probes, with three rods for each WR, two for 
the 0.0-0.3 m and one for the 0.3-0.6 m depth layers, with 
continuous measures recorded in a CR1000 datalogger. 

WRs were applied as a function of soybean 
development stages (Thomas, 2018 adapted from Fehr & 
Caviness, 1977). From sowing to stage V3 (three main stem 
nodes with fully developed leaves), irrigation was fully 
applied in both treatments (100% ETc). Thereafter, from V4 
(four main stem nodes with fully developed leaves) to R5 
(beginning of seed enlargement), both WRs were performed, 
namely replacing 50 and 100% ETc. After R5, irrigation was 
again fully applied in both treatments (100% ETc). 

The imagery was acquired from a hexacopter 
unmanned aerial vehicle (UAV), model X800, produced by 
XFly Brasil (XFly Tecnologia, Bauru, Brazil). A flight was 
performed on September 24, 2019, 62 days after soybean 
sowing - DAS (at R5 stage for BONUS and R3 for BRS-
8980), between 11:00 am and 12:00 pm. The flight was 
planned using the software Pix4D Capture® 
(www.pix4d.com) to ensure image capture with 80% side 
and front overlap. The flight line was maintained at 30 
meters above ground level, with a GSD (ground sample 
distance) of ≈ 1.5 cm. 

Multispectral images were acquired by a Micasense 
sensor, model RedEdge®, capable of capturing five spectral 

bands simultaneously: blue (475 nm), green (560 nm), red 
(668 nm), Red Edge (717 nm), and NIR (840 nm). The 
generated images were georeferenced and corrected using 
GPS and a solar radiation sensor installed on the top of the 
aircraft, respectively. A radiometric calibration standard 
was also used to correct the images, which were saved in 
16-bit tiff format. Then, orthomosaic images were created, 
using the Pix4D Mapper® software. 

The orthomosaic generated underwent a supervised 
classification process (maximum likelihood method), 
allowing the rasterization of the orthomosaic into two 
classes (soil and leaves). This enabled the removal of pixels 
classified as mosaic soil, ensuring that the VIs had been 
estimated only with pixels classified as leaves. The process 
was performed using the Semi-Automatic Classification 
(SCP) plug-in of QGIS v. 218 (QGIS, 2016). 

The spectral responses of soybeans to the treatments 
were quantified using 35 VIs from multispectral image 
bands (R, G, B, Red Edge, and NIR) (Table 2). The 
multispectral indexes were estimated using the QGIS raster 
calculator (QGIS, 2016). The VI values of each subplot 
were extracted with the QGIS zonal statistics plugin (QGIS, 
2016). To this end, the vector layer of the subplots was used, 
containing only the areas classified as leaves.

 
TABLE 2. Spectral bands and vegetation indexes evaluated in the study. 

Band/Index Acronym  Equation  Reference 

 Green band GREEN / / 

 Red band RED / / 

 Red-Edge band RED-EDGE / / 

 NIR band NIR / / 

 Chlorophyll index red CI-RED 
𝑅௡

𝑅௥

− 1 Gitelson et al. (2005) 

 Chlorophyll vegetation index CVI 
𝑅௡𝑅௥

𝑅௚
ଶ  Vincini et al. (2008) 

 Enhanced vegetation index EVI 
2.5(𝑅௡ − 𝑅௥)

𝑅௡ + 6𝑅௥ − 7.5𝑅௕ + 1
 Huete et al. (2002) 

 Two-band enhanced vegetation index EVI2 
2.5(𝑅௡ − 𝑅௥)

𝑅௡ + 2.4𝑅௥ + 1
 Jiang et al. (2008) 

 Excess green red EXGR 
3𝑅௚ − 2.4𝑅௥ − 𝑅௕

𝑅௥ + 𝑅௚ + 𝑅௕

 Meyer & Camargo Neto 
(2008) 

 Green chlorophyll index GCI 
𝑅௡

𝑅௚

− 1 Gitelson et al. (2005) 

 Green leaf index GLI 
2𝑅௚ − 𝑅௥ − 𝑅௕

2𝑅௚ + 𝑅௥ + 𝑅௕

 Hunt et al. (2013) 

 Green normalized 
 difference vegetation 

GNDVI 
𝑅௡ − 𝑅௚

𝑅௡ + 𝑅௚

 Hunt e Daughtry (2018) 

 Green ratio vegetation index GRVI 
𝑅௡

𝑅௚

 Sripada et al. (2006) 

 Modified excess green MEXG 1.262𝑅௚ − 0.884𝑅௥ − 0.311𝑅௕ Burgos-Artizzu et al. 
(2011) 

 Modified normalized green red difference MNGRD 
𝑅௚

ଶ − 𝑅௥
ଶ

𝑅௚
ଶ + 𝑅௥

ଶ
 Bendig et al. (2015) 

Normalized difference Red-Edge NDRE 
𝑅௡ − 𝑅ோா

𝑅௡ + 𝑅ோா

 Wang et al. (2019) 
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 Normalized difference Red-Edge index NDREI 
𝑅ோா − 𝑅௚

𝑅ோா + 𝑅௚

 Hassan et al. (2018) 

 Normalized difference vegetation index NDVI 
𝑅௡ − 𝑅௥

𝑅௡ + 𝑅௥

 Gitelson et al. (2005) 

 Normalized green NG 
𝑅௚

𝑅௥ + 𝑅௚ + 𝑅௕

 Woebbecke et al. (1995) 

 Normalized green red difference NGRD 
𝑅௚ − 𝑅௥

𝑅௚ + 𝑅௥

 Hamuda et al. (2016) 

 Optimized Soil Adjusted Vegetation Index OSAVI 
𝑅௡ − 𝑅௥

𝑅௡ + 𝑅௥ + 0.16
 Rondeaux et al. (1996) 

 Pigment-specific normalized difference 
index 

PSND 
𝑅௡ − 𝑅௕

𝑅௡ + 𝑅௕

 Blackburn (1998) 

 Renormalized Difference Vegetation 
Index 

RDVI 
𝑅௡ − 𝑅௥

(𝑅௡ − 𝑅௥)଴.ହ
 Roujean & Breon (1995) 

 Red-Edge chlorophyll index RECI 
𝑅௡

𝑅ோா

− 1 Gitelson et al. (2005) 

 Red-green difference GDPR 𝑅௥ − 𝑅௚ Sanjerehei (2014) 

 Ratio vegetation index RVI 
𝑅௡

𝑅௥

 Tucker (1979) 

 Soil Adjusted Vegetation Index SAVI 
1.5(𝑅௡ − 𝑅௥)

(𝑅௡ + 𝑅௥ + 0.5)
 Zhong et al. (2019) 

 Simplified canopy chlorophyll content 
index 

SCCCI 
𝑁𝐷𝑅𝐸

𝑁𝐷𝑉𝐼
 Raper & Varco (2015) 

 Transformed chlorophyll absorption in Nir 
index 

TCARI 3 ൤(𝑅௡ − 𝑅௥) − 0.2൫𝑅௡ − 𝑅௚൯ ൬
𝑅௡

𝑅௥

൰൨ Haboudane et al. (2002) 

 TCARI/OSAVI index 
TCARI-
OSAVI 

𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
 Haboudane et al. (2002) 

 Transformed chlorophyll absorption in the 
Red-edge index 

TCARI-RE 3 ൤(𝑅ோா − 𝑅௥) − 0.2൫𝑅ோா − 𝑅௚൯ ൬
𝑅ோா

𝑅௥

൰൨ Daughtry et al. (2000) 

 TCARI/OSAVI-RE index 
TCARI-

OSAVI-RE 
𝑇𝐶𝐴𝑅𝐼ோா

𝑂𝑆𝐴𝑉𝐼
 Daughtry et al. (2000) 

 Triangular greenness index GIT 𝑅௚ − (0.39𝑅௥) − (0.61𝑅௕) Hunt et al. (2011) 

 Wide dynamic range vegetation index WDRVI 
(0.12𝑅௡) − 𝑅௥

(0.12𝑅௡) + 𝑅௥

 Gitelson (2004) 

 Weighted difference vegetation index WDVI 𝑅௡ − 𝑅௥ ቆ
𝑅௡

ᇱ

𝑅௥
ᇱ
ቇ Clevers (1989) 

Rn: Spectral reflectance - near infrared (840 nm); Rg: Spectral reflectance - green (560 nm); RRE: Spectral reflectance - near red (717 nm); Rr: 
Spectral reflectance red (668 nm) and Rb: Spectral reflectance - blue (475 nm); R'

n: Spectral reflectance - near infrared (soil); R'
r: Red spectral 

reflectance (soil). 
 
Gas exchange measurements were performed in the 

electromagnetic spectrum IR region, using a portable gas 
analyzer LI-COR model 6400XT (LI-COR, Lincoln, NE, 
USA), equipped with a measuring chamber and artificial 
lighting LI-COR model 6400-02B. The measurements were 
performed on the same day of the flight, using one plant per 
subplot of the cultivar BRS-8980 at the R3 stage, between 
8:00 and 10:00 am, under cloudless conditions. The extracted 
data provided by Open Software version 6.3 were as follows: 
A: Net CO2 assimilation rate (micromol CO2 m-2 s-1), gs: 
stomatal conductance (mmol H2O m-2 s- 1), and E: 
transpiration rate (mmol H2O m−2 s−1). 

Leaf N accumulation (NF) was quantified on the 
same day of the flight in plants of the cultivar BONUS at 
the R5 stage. Four plants were collected from each subplot 
and split into organs (stem, leaves, reproductive structures, 
and grains), washed in running and distilled water, and then 
dried in a forced-air oven at 65 °C until reaching constant 
weight for subsequent dry biomass quantification. After 

drying, the samples were processed and used for plant tissue 
chemical analysis for N by the Kjeldahl method (Teixeira et 
al., 2017). Leaf dry biomass and N content data were used 
to estimate leaf N accumulations per unit area (g m-2), with 
the dry biomass per area being estimated based on each 
subplot stand. 

The data were subjected to the Shapiro-Wilk test 
(normality of errors) and Cochran’s t-test (homogeneity of 
variance). Once the basic normality criteria were met, the 
data were subjected to analysis of variance, mean comparison 
test (Tukey’s test) at 5% probability, Pearson’s correlation (r), 
and regression between vegetation indexes and measurements 
of stomatal conductance (gs) and leaf N accumulation (NF). 
The statistical analyses were performed using the ExpDes.pt 
package of the R software (Ferreira et al., 2018). The degree 
of fit of the linear regression models for estimating gs and NF 
was evaluated by the coefficient of determination (R2) 
(equation 1) and standard error of the regression (SEE), which 
represent the average distance of the observed values 
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concerning the line of the regression (equation 2). For this 
purpose, the Excel Real Statistics Resource Pack (version 7.6) 
supplement (Zaiontz, 2020) was used. 

𝑅ଶ =
∑ (௒ሗ ೔ି௒ሗ೘)మ೙

೔సభ

∑ ൫௒೔ି௒೔൯
మ೙

೔సభ

                      (1) 

 

𝑆𝐸𝐸 = ට
∑ (௒೔ି௒ሗ ೔)మ೙

೔సభ

௡ିଶ
        (2) 

Where:  

n - number of observations;  

Yi - gs and NF values measured in the field;  

Y ̀i - gs and NF values estimated by the regression models, 

Y ̀m - means of gs and NF estimated by the regression 
models. 

 
RESULTS AND DISCUSSION 

Irrigation depths and soil moisture 

Table 3 shows the accumulated irrigation depths 
(mm) for each water regime (WR) applied during the 
soybean season. From the beginning of irrigation until the 
application of differentiated WRs (IT), accumulated 
irrigation depths were 125.3 and 127.1 mm for treatments 
with 50 and 100% ETc, respectively. Therefore, during the 
initial period, both treatments received similar irrigation 
depths regardless of the soybean cultivar.

 
TABLE 3. Accumulated irrigation depths (mm) for each water regime applied during the soybean crop season. Teresina, PI, 2019. 

WR (% ETc) S – IT IT – TT TT – TI Season 

BONUS 

50 % ETc 125.3 132.9 87.6 345.8 

100 % ETc 127.1 252.8 85.3 465,2 

BRS-8980 

50 % ETc 125.3 174.6 56.1 356.0 

100 % ETc 127.1 326.5 57.7 511.3 

WR: water regime (% ETc); S: sowing date; IT: beginning of the application of differentiated WRs (40 DAS) (V3); TT: end of the application 
of differentiated WRs (72 DAS) (R7); TI: end of irrigation application (93 – DAS for BONUS, and 103 DAS for BRS-8980) (R8). 
 

During the application of differentiated WRs (IT-
TT), treatments with 50% ETc received 132.9 and 174.6 
mm, while those with 100% ETc had 252.8 and 326.5 mm 
for the cultivars BONUS and BRS-8980, respectively. 
During the IT-TT period, deficit irrigation (50% ETc) 
corresponded to 47% of the full irrigation (100% ETc) for 
both soybean cultivars. Thus, irrigation depths were 
different between the WR evaluated. After the application 
of differentiated WRs until the end of irrigation (TT-TI), 
treatments with 50% ETc received 87.6 and 56.1 mm, while 
those with 100% ETc had 85.3 and 57.7 mm for the 
cultivars BONUS and BRS-8980, respectively (Table 3). 
Throughout the crop season, for both soybean cultivars, 
treatments with 50% ETc received irrigation depths of 
345.8 mm for the cultivar BONUS, and 356 mm for the 
cultivar BRS-8980. Under full irrigation (100% ETc), 465.2 
mm were applied for the cultivar BONUS, and 511.3 mm 
for the cultivar BRS-8980 (Table 3). These irrigation depth 
differences may be related to each cultivar maturation 
group, i.e., BONUS (7.9) and BRS-8989 (8.9). In this sense, 
some studies have pointed out that, depending on soil 
conditions, climate, sowing date, and cultivars, soybeans 
may require total irrigation depths from 450 to 850 mm 
during the crop season to achieve maximum grain yields 
(Allen et al., 1998).  

From the beginning of irrigation until the application 
of differentiated WRs (IT), the average soil moisture 
contents in the 0.0-0.3 m depth layer were 13.0 and 14.2% 
for treatments with 50% and 100% ETc, respectively. In the 
0.3-0.6 m depth layer, the soil moisture contents averaged 
8.6% for 50% ETc and 10.3% for 100% ETc (Figure 2). 
These results demonstrate that, before the application of 
differentiated WRs, the average soil moisture in the 0.0-0.3 
m depth layer for both WRs was close to and above the 
critical level for soybeans (12.5%), thus favoring the full 
development of the crop. 

Throughout the application of differentiated WRs 
(IT-TT), the average soil moisture in the 0.0-0.3 m depth 
layer was 9.9 and 14.7% for treatments with 50 and 100% 
ETc, respectively; in the 0.3-0.6 m depth layer, these 
contents were 7.7% for 50% ETc and 12.7% for 100% ETc. 
From the beginning of irrigation until the flight date (62 
DAS; at R5 stage for BONUS and R3 for BRS-8980), the 
average soil moisture contents in the 0.0-0.3 m depth layer 
were 10.0% and 13.2% for treatments with 50% and 100% 
ETc, respectively, while in the 0.3-0.6 m depth layer these 
contents were 7.6% for 50% ETc and 12.3% for 100% ETc 
(Figure 2).
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FC: field capacity; CM: critical moisture; PWP: permanent wilting point; TI: beginning of the application of differentiated WR (40 DAS) 
(V3); TT: end of the application of differentiated WR (72 DAS) (R7); IT: end of irrigation application (93 DAS) (R8); Flight: flight date (62 
DAS; at R5 stage for BONUS and R3 for BRS-8980). 

FIGURE 2. Soil moisture changes during the soybean crop season in the 0.0-0.3 and 0.3-0.6 m depth layers in response to the 
applied water regimes (WR). Teresina, PI, 2019.  

 
Our results show that, in both depth layers (0.0-0.3 

and 0.3-0.6 m), full irrigation kept soil moisture above 
critical levels, allowing proper soybean development and 
production. Conversely, deficit irrigation promoted soil 
moisture levels below the critical and above the permanent 
wilting point during the evaluated period, limiting soybean 
development and grain yields.  
 

Vegetation indexes and gas exchange 

 Among the gas-exchange-related parameters, for 
the cultivar BRS-8980, only stomatal conductance (gs) had 
significant changes (p<0.01) in response to the WRs 
applied. However, no significant effect was observed due to 
N supplementation levels (NS) or WR*NS interaction 
(Table 4). Moreover, neither internal CO2 concentrations 
nor transpiration showed responses to those parameters. 

TABLE 4. F-test for stomatal conductance (gs), leaf nitrogen content (NF), and vegetation indexes (VIs) in response to water 
regimes (WR) and nitrogen supplementation levels (NS) for the soybean cultivars BRS-8980 and BONUS. Teresina, PI, 2019. 

 VI 
BRS-8980  BONUS 

 VI 
BRS-8980  BONUS 

 WR  NS  WR*NS  WR  NS  WR*NS WR  NS  WR*NS  WR  NS  WR*NS 

gs  **  ns  ns    OSAVI  *** ns ns ** ns ns 

NF    * * ns PSND  **  ns  ns  **  *  ns 

CI-RED  ***  ns  ns  ***  ns  ns RDVI  ***  ns  ns  ***  ns  ns 

CVI  ***  ***  ns  ***  ns  ns RECI  ***  ns  ns  ***  ns  ns 

EVI  ***  ns  ns  ***  ns  ns RED  ns  ns  ns  **  *  ns 

EVI2  ***  ns  ns  ***  ns  ns RED-EDGE  *  ns  ns  **  *  ns 

EXGR  *  ***  ns  *  **  ns GDPR  *  ns  ns  ns  ns  ns 

CI  ***  **  ns  ***  ns  ns RVI  ***  ns  ns  ***  ns  ns 

GLI  **  ***  ns  ns  **  ns SAVI  ***  ns  ns  ***  ns  ns 

GNDVI  ***  *  *  **  ns  ns SCCCI  ***  ns  ns  ***  ns  ns 

GREEN  *  **  ns  **  ns  * ICART  ***  ns  ns  ***  ns  ns 

GRVI  ***  **  ns  ***  ns  ns TCARI-OSAVI  ***  ns  ns  ***  ns  ns 

MEXG  **  ***  ns  **  ns  ns TCARI-OSAVI-RE  ns  *  ns  **  *  * 

MNGRD  ns  ***  ns  **  **  ns TCARI-RE  ns  *  ns  **  *  * 

NDRE  ***  *  ns  ***  ns  ns GIT  **  ***  ns  **  ns  ns 

NRDEI  **  *  ns  **  ns  ns WDRVI  ***  ns  ns  **  ns  * 

NDVI  ***  ns  ns  **  ns  ns WDRVI-1  ***  ns  ns  ***  ns  * 

NG  **  ***  ns  ns  **  ns WDRVI-2  ***  ns  ns  **  ns  ns 

NGRD  ns  ***  ns  **  **  ns WDVI  ns  ns  ns  ns  ns  * 

NIR  ***  ns  ns  *** ns ns               

WR: ETc-based water regime (50-ETc and 100-ETc); NS: nitrogen supplementation levels (N0 and N1). Significance levels by the F-test: 
***: p <0.001; **: p <0.01; *: p <0.05; ns: non-significant. 
 

 
 
 

 
 



Aderson S. de Andrade Junior, Silvestre P. da Silva, Ingrid S. Setúbal, et al. 
 

 
Engenharia Agrícola, Jaboticabal, v.42, n.2, e20210177, 2022 

For the cultivar BRS-8980, except for NGRD, 
TCARI-OSAVI-RE, TCARI-RE, and WDVI IVs, all the 
other VIs responded to the applied WRs. On the other hand, 
for the cultivar BONUS, only GLI, NG, RGD, and WDVI 
did not respond to this factor. The VIs with a significant F-
test had the potential to detect soybean water status; 
however, the promising VIs were those showing the highest 
correlations with stomatal conductance measurements 
performed in the field. 

Stomatal conductance (gs) in treatments under full 
irrigation (690.8 mmol H2O m-2 s-1) was higher than that of  

treatments under deficient irrigation (487.6 mmol H2O m-2 
s-1) (Figure 3). Machado Junior et al. (2017) and Silva et al. 
(2020) also observed gs reductions in soybeans under soil 
water restriction. Stomatal conductance was the highest 
when solar radiation was high and leaf water potential had 
not yet reached minimum values to induce stomatal closure. 
Under soil water restriction, soybeans tend to reduce 
stomatal conductance, as a strategy to avoid water losses to 
the atmosphere, but reducing photosynthetic activity and 
hence grain yields (Gorthi et al., 2019).

 

 
FIGURE 3. Stomatal conductance (cultivar BRS-8980) in response to the water regimes (WR) applied to soybeans. Teresina, 
PI, 2019. 
 

Chavarria et al. (2015) observed that soil water 
potentials equal to or below -0.026 MPa cause significant 
reductions in the photosynthetic activity of soybeans, of the 
cultivar 'BMX Apolo RR', due to lower gs under water 
deficiency in the soil. The authors obtained gs equal to 
741.0 mmol H2O m-2 s-1 under adequate water availability 
conditions in the soil (-0.004 MPa), while under soil water 
restriction (-0.026 MPa) it decreased to 426.5 mmol H2O m-

2 s-1, which is very close to our values. Karaca et al. (2018) 
obtained mean values of gs for two soybean cultivars equal 
to 574.5 mmol H2O m-2 s-1 under full irrigation and 251.5 
mmol H2O m-2 s-1 under water deficit conditions in the soil. 

Given the importance of biological N fixation for 
soybeans, one should note that this process can be 
compromised by water restriction (Chavarria et al., 2015). 
Under conditions of water stress, there is a reduction in 
biological nitrogen fixation and a consequent decrease in 

photosynthetic rates. Furthermore, due to higher leaf 
activity and continuous N supply, N2 fixation slows leaf 
senescence and increases grain filling in soybean plants 
(Kaschuk et al., 2010). 

The parameter gs showed a significant correlation 
with several VIs. As the VIs with r≥0.6 are considered 
promising (Yue et al., 2020), the six best VIs to detect water 
status were: NIR (r = 0.6779; p<0.001), EVI (r = 0.6741; p 
<0.01), SAVI (r = 0.6723; p <0.01), RDVI (r = 0.6713; p 
<0.01), OSAVI (r = 0.6611; p <0.01), and NDRE (r = 
0.6294; p <0.01) (Figure 4). A few studies have indicated 
that VIs using spectral bands in the NIR are the most 
suitable to detect water status in crops grown in soils under 
water stress conditions (Elsayed et al., 2015). In our study, 
EVI, SAVI, RDVI, OSAVI, and NDRE fit the condition 
established by Elsayed et al. (2015).
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Significance levels by the t-test: ***: p<0.001; **: p<0.01; *: p<0.05; ns: non-significant. 

FIGURE 4. Pearson’s correlation between the evaluated vegetation indexes (VI) and leaf stomatal conductance (gs) for the 
cultivar BRS-8980. Teresina, PI, Brazil, 2019.  
 

Soybean Leaf water potential (Ψf) was correlated 
with the spectral indexes evaluated by Wijewardana et al. 
(2019b). The indexes NDVI (r = 0.905), RNDVI (r = 0.905), 
NWI (r = 0.866), NWI4 (r = 0.843), and NWI5 (r = 0.742) 
increased linearly with increasing leaf Ψf values. In our 
study, this parameter showed a positive linear correlation 
with gs in soybean leaves (y = 0.94 + 0.60x, R2 = 0.6). 
NDVI had a higher correlation (r = 0.905) with leaf water 
potential than did the other VIs. Overall, NDVI is the index 
that best indicates soil cover by plant canopy (Zhao et al. 
2007). Soil water stress reduces chlorophyll and other 
photosynthetic pigments, thus reducing the biomass and 
height of soybean plants, hence resulting in low NDVI 
values (Crusiol et al., 2017). 

We observed that trend since NDVI and gs 
correlation reached only r = 0.576 (p <0.01). However, the 
indexes EVI, SAVI, RDVI, OSAVI, and NDRE, which use 
spectral bands in the NIR region, stood out in detecting 
soybean water status. This is because they allowed gs 
estimates with R2 ranging from 0.462 (NIR) at 0.4506 
(RDVI) and SSE from 108.1 (NIR) at 109.2 mmol H2O m-2 
s-1 (RDVI) (Figure 5). Wijewardana et al. (2019b) obtained 
a positive linear correlation between Ψf and NDVI, using 
the ratio y = 0.9495+0.08636x (y: NDVI ex: Ψf, in MPa) 
and R2 = 0.82; therefore, NDVI can be used as a promising 
VI to detect soybean water status. Crusiol et al. (2017) also 
concluded that NDVI can be used as a soybean water status 

index, mainly at the reproductive stage, with potential for 
phenotyping and as a water deficit tolerance indicator. 

Vegetation indexes and leaf nitrogen accumulation 

Leaf N accumulations (NF) in the cultivar BONUS 
were significantly affected (p <0.05) by the WRs and N 
supplementation (NS) levels (Table 4). For the cultivar 
BRS-8980, the indexes CVI, EXGR, GLI, MEXG, 
MNGRD, NG, NGRD, and TGI responded to the N 
supplementation (NS) levels applied to the soil (p<0.001), 
while for the cultivar BONUS the indexes EXGR, GLI, 
MNGRD, NG, and NGRD stood out (p<0.01) (Table 4). 
These Vis, therefore, have the potential for N detection in 
soybeans; however, the promising VIs will be those with the 
best correlations with the NF measurements performed in 
the field. 

Full irrigation promoted higher leaf N accumulations 
(6.4 g N m-2) than did deficit irrigation (4.3 g N m-2) (Figure 
6). Nitrogen supplementation showed higher leaf N 
accumulation (5.5 g m-2) compared to the absence of N 
application (5.2 g N m-2) (Figure 6). The lowest leaf N 
accumulation (4.3 g N m-2) was observed under deficit 
irrigation conditions (Figure 6). According to Chavarria et 
al. (2015), biological nitrogen fixation by soybeans may be 
compromised by soil water restriction, decreasing 
photosynthetic rates and hence final grain yields (Basal & 
Szabó, 2020).
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FIGURE 5. Regression between promising vegetation indexes and leaf stomatal conductance for the soybean cultivar BRS-
8980. Teresina, PI, Brazil, 2019. Significance levels by t-test: ***: p<0.001; **: p<0.01; *: p<0.05; ns: non-significant. 
 

 
FIGURE 6. Leaf nitrogen accumulations in the soybean cultivar BONUS in response to the water regimes (WR) and nitrogen 
supplementation (NS) applied to the soil. Teresina, PI, Brazil, 2019. Means followed by the same letter do not differ from each 
other by the F-test (p<0.05). Lowercase (WR) and uppercase (NS) letters. 
 

In a study performed in Piracicaba city - SP (Brazil) 
with the soybean cultivar RK7518 IPRO (indeterminate 
growth habit, average growth cycle, and maturation group 
7.5), Zambon (2020) observed that leaf N accumulations 
reached maximum levels at the first phenological stages 
(64.2 g N kg-1) and then had gradual reduction until the R6 
stage (23.1 g N kg-1). These authors observed a leaf N 
concentration of 27.3 g N kg-1 dry leaf biomass at the R5.2 
stage (85 days after soybean emergence); as dry leaf 
biomass was 444.1 g m-2, leaf N accumulation was 12.12 g 
N m-2. This N accumulation was higher than that observed 
in our study under full irrigation (6.4 g N m-2). This may be 
due to leaf dry biomass differences between both studies, as 

the cultivars had different cycles, maturation groups, and 
plant population stands. 

Leaf N accumulation (NF) had significant 
correlations with several VIs evaluated in our study. 
Considering as promising the VIs with r≥0.6 (Yue et al., 
2020), the six best ones for detecting leaf N accumulations 
were: CVI (r = 0.7266; p <0.001), NIR (r = 0.7065; p 
<0.001), RECI (r = 0.6912; p <0.001), GCI (r = 0.6869; p 
<0.001), GRVI (r = 0.6869, p <0.001), and SCCCI (r = 
0.6795; p <0.001) (Figure 7). Moreover, for plant N 
contents, the same indexes stood out: CVI (r = 0.7601; p 
<0.001), GIT (r = -0.6923; p <0.001), SCCCI (r = 0.6803; p 
<0.001), RECI (r = 0.6749; p <0.001), GCI (r = 0.6733; p 
<0.001), and GRVI (r = 0.6733; p <0.001) (Figure 7).
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Significance levels by the t-test: ***: p <0.001; **: p <0.01; *: p <0.05; ns: non-significant. 

FIGURE 7. Pearson’s correlation between vegetation indexes and leaf nitrogen accumulations for the soybean cultivar BONUS. 
Teresina, PI, Brazil, 2019.  
 

Yue et al. (2020) evaluated soybean leaf chlorophyll 
contents using VIs from multispectral images and found 
that the best ones in terms of Pearson’s correlation (r) were: 
TCARI/OSAVI-RE (r = 0.95; p <0.01), PSND (r = 0.88; p 
<0.01), and NDRE2 (r = 0.85; p <0.01). These authors 
concluded that soybean leaf chlorophyll contents are 
directly related to leaf N contents and emphasized that VI 
performance in detecting chlorophyll contents depends on 
soybean leaf area indexes. Therefore, the ratio between VI 
and chlorophyll content must be defined for different 
soybean phenological stages. 

In our study, the indexes SCCCI, RECI, GRVI, CVI, 
TCARI-OSAVI, and TCARI promoted the best leaf N 
content estimates, with R2 ranging from 0.8347 (p <0.001) 

to 0.7475 (p <0.001) and SSE from 0.500 g m-2 to 0.618 g 
m-2 (Figure 8). Such a superior performance of SCCCI in 
predicting leaf N contents has already been reported for 
other crops. For instance, among the numerous VIs 
evaluated by Raper & Varco (2015), SCCCI had the best 
correlation with leaf N contents in cotton (r = 0.787). As in 
our study, these authors found an increasing linear 
regression between SCCCI and leaf N contents (R2 = 0.62). 
For wheat plants, Cammarano et al. (2011) also concluded 
that SCCCI has potential for leaf N content estimations (y 
= 0.94x + 0.15; R2 = 0.97; RMSE = 0.2 g N m-2) and 
suggested future studies to validate its applicability under 
different production environments, sowing dates, and soil 
water conditions.
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Significance levels by the t-test: ***: p <0.001; **: p <0.01; *: p <0.05; ns: non-significant. 

FIGURE 8. Linear regression between promising vegetation indexes and leaf nitrogen contents for the soybean cultivar 
BONUS. Teresina, PI, Brazil, 2019.  
 

In a study with corn, Ciganda et al. (2009) found that 
RECI was a promising index to estimate leaf chlorophyll 
contents and reported a linear regression, with R2 = 0.9429 
and SSE = 50.9 mg N m -2 (y = 37.904+1353.7x). These 
authors highlighted a high linear correlation between 
model-estimated and field-observed chlorophyll contents 
(R2 = 0.9761; RMSE = 37.5 mg N m-2); thus, RECI has great 
potential for estimating leaf chlorophyll contents in          
corn plants. 
 
CONCLUSIONS 

The near-infrared spectral band and the vegetation 
indexes EVI, SAVI, and RDVI are promising for detecting 
soybean water status, while the indexes SCCCI, RECI, 
GRVI, and CVI are promising for estimating soybean 
nutritional status in terms of nitrogen contents. 
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