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ABSTRACT 

The peanuts harvesting mechanization is affected by the soil physical characteristics and it 
may increase the losses due to the production of pods in subsurface. The objective of the 
experiment was to identify the clusters through multivariate exploratory approaches from 
similarity in six soil textures (very clayey, clayey, silty clayey loam, clayey loam, sandy 
loam and sandy) in the state of São Paulo, Brazil, determining the main agronomic 
variables that most influenced the clustering division to assist the decision-making process 
in peanuts mechanized harvesting. The data were analyzed by the multivariate exploratory 
that is performed to simplify the description of a set of interrelated variables, using: yield, 
maturity, soil and pod moisture content, windrow width and height, visible and invisible 
digging losses, and gathering losses, as agronomic indicators of quality. The low and high 
clay content were grouped into clusters I and III, respectively, according to the agronomic 
traits of the peanut crop. The principal components analysis (PC) allowed a single 
distribution of accesses since only two eigenvalues were higher than “one”: the highest 
eigenvalues of 4.51 and 1.79, resulted in a Biplot that explained 70% of the original 
variability, 50.11% and 19.89% of which in the PC1 and PC2, respectively. The 
multivariate analysis indicated that high peanut yields in soils with low clay are correlated 
with the losses during the peanut mechanized harvesting operation.  

 

 
INTRODUCTION 

Peanuts (Arachis hypogaea L.) are an important 

oilseed in the Brazilian market, but even more in the state 

of São Paulo. The state produced 98% of the 418,300 tons 

of peanuts produced in the 2016/2017 harvest in Brazil, 

and peanuts are currently used as a rotational crop in 

sugarcane area and even pastures (CONAB, 2018). 

The peanut production process is a critical time 

which it seeks mechanized operational excellence via new 

technologies to overcome the challenges and seize the 

opportunities of foreign markets in a sustainable way by 

increasing production volume, productivity and reducing 

production costs (Grotta et al., 2008) because in this 

operation losses are inevitable (Barbosa et al., 2014). 

Most of the losses in the peanut harvest occurs in 

the digging operation and can reach high levels when the 

operation is not carefully managed; the values range from 

3.1 to 47.1% of pod losses in relation to yield (Santos et 

al., 2013; Zerbato et al., 2014). 

Monitoring the losses allows detecting and 

correcting the errors that might occur during the process so 

they can be min imized thus avoiding yield dropping 

(Bertonha et al., 2014; Câmara et al., 2007). 

Multivariate analysis can be defined as exploratory 

statistical method that analyzes simultaneously multiple 

measurements in the experimental unit. The random 

variables must be interrelated so their effects cannot be 

meaningfully  interpreted separately. The Clustering 

Analysis (CA) uses the Ward method (hierarchical) for 

extract statistical properties of a dataset, clustering similar 

vectors into classes (Hair, 2005). 

The Principal Component Analysis (PCA) is 

performed to simplify the description of a set of 

interrelated variables. The created orthogonal axes are 

linear combinations of the original variab les, starting with 

the eigenvalues of the covariance and/or correlation matrix 

of the studied variables in which the two largest 

eigenvalues generate the first two principal components, 

explain more variability than any other components (Hair 

et al., 2005). 

The use of Multivariate exploratory techniques to 

control mechanized farming operations is a reality, as an 

innovative tool in the estimat ion of operating costs of 
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agricultural and forestry machineries (Guerrieri et al., 

2017). The studies about the impact of mechanization 

through soil tillage on the behavior of weeds were efficient 

based on the similarity (CA) of the weeds (Boscardin et 

al., 2016; Nagahama et al., 2014). 

Azevedo et al. (2015) and Silva & Lima (2012) 

investigated, respectively, the selection of lettuce cultivars 

and the nutritional status and productivity of coffee plants, 

and showed the efficiency of mult ivariate analysis, 

because the effects of multip le variables (random and 

interrelated) could not be interpreted separately.  

Multivariate exploratory analysis is used in sectors 

of the agricultural production due to the high complexity 

of the produced informat ion. Lampkowski & Biaggioni 

(2013) and Paredes Junior et al. (2015) reported that it is 

used to better interpret, understand, manage and assist the 

decision-making process in the sugar-energy sector. 

It is assumed that the peanut mechanized harvesting 

needs tools to assist in the effective control of loss 

variability and to understand the behavior of the 

agronomic t raits in relation to soil textural classes for 

multip le traits.  

This study aimed at identifying the clusters through 

multivariate exploratory approaches from similar soil 

textures and determining the variab les that most influenced 

the clustering division to assist the decision-making 

process in mechanized agricultural operations. 

 

MATERIAL AND METHODS 

The experiment was conducted in six farms in 

Ribeirão Preto region, SP (Table 1). The 120-ha assessed 

area was planted with peanut of the Runner IAC 886 

variety, sown in October 2015 with 0.90-m spaced rows. 

The crop was harvested in all evaluated areas in February 

2016, 130 days after sowing. The farms were located 

between 20º58’ and 21º10’S and 47º51’ and 48º13’W, at 

593 m average alt itude. The soil in the areas presented 

between 7.0 and 66.8% clay (Tab le 1).  

 

TABLE 1. Part icle size analysis and soil textural classes. 

TREATMENTS 
Clay Silt  Sand 

Textural Class  
------------- g/kg -------------  

VCL 668 152 180 Very Clayey 
CLA 496 143 361 Clayey 

CLL 387 248 365 Clayey Loam 

SCL 383 515 102 Silty Clayey Loam 

SAL 186 258 556 Sandy Loam 

SAN 70 40 890 Sandy 

 

The digging was performed by a 680 HD Massey 

Ferguson tractor with maximum engine power of 127 kW 

(173 hp) at 2000 rpm coupled with an EIA-2 Santal 

digger-shaker-inverter, 2 x 1 (two harvested/digging rows, 

formed a windrow). However, the tractor worked at 1,500 

rpm to meet the digger-shaker-inverter manufacturer’s  

recommendation of 340 rpm in the PTO. Although the 

conditions were unsuitable from the mechanical viewpoint, 

this rotation was used because they represented the real 

conditions of the equipment in the field, since it has no 

reduction mechanisms able to provide the indicated 

rotation. 

The mechanized harvesting of peanuts was 

evaluated for six textural soil classes as follows very 

clayey (VCL), clayey (CLA ), silty clayey loam (SCL), 

clayey loam (CLL), sandy loam (SAL), and sandy (SAN) 

with 10 repetit ions per soil textural classes, totaling 60 

plots in a randomized design, each plot formed a regular 

grid of 25 x 50 m. 

The evaluated variables were yield, maturity, soil 

and pods moisture content, height and width of the 

windrow after digging, digg ing crop losses (visible and 

invisible losses), and gathering operation. The windrow 

formed after the passage of the digger was carefully 

removed to determine the visible and invisible digging 

losses. For this purpose, a metal frame of approximately 2 

m
2
 (1.11 x 1.80m) was placed across the windrow and the 

material was manually collected up to 0.25 m deep.  

The frame width corresponded to the working 

width of the digger-shaker-inverter. After collecting, the 

pods were placed in paper bags, tagged, and sent to the 

laboratory where the samples were washed to remove the 

dirt from the exocarp. After that, the pods were weighed 

on a digital scale with 0.01 g precision and oven dried at 

105 ± 3°C for 24 hours. After drying, they were weighed 

again to determine the losses, which were extrapolated to 

kg ha
-1

 with fu rther adjustment to 8% moisture. The losses 

were calculated in kg ha
-1

 and expressed as percentage. 

The previously described frame of approximately 2 

m
2
 was placed on the windrows at all sampling points  to 

determine yield. All pods within the frame area were 

collected, and yield was calculated based on 8% moisture, 

the standard value for peanut storage in the processing 

companies. Subsequently, gross crop yield was calculated 

by adding total digging losses (sum of invisible and visible 

digging losses). 

Pod moisture content (calculated on wet basis) was 

obtained following the oven method for samples collected 

after the digger-shaker-inverter passage, with subsequent 

correction for 8% water content value used for peanut 

storage in hulling (Mart ins & Lago, 2008). Soil moisture 

was determined is samples collected by a Dutch auger in 

the 0.0 to 0.2 m layer. The soil samples were placed in 

aluminum containers, sent to the laboratory, and oven 

dried at 105°C for 24 hours. Soil moisture was obtained on 

a dry basis, according to the methodology recommended 

by EMBRAPA (2006). The 0.0 to 0.2 m layer was defined 

as the soil-sampling layer to determine the moisture 

content because this region concentrates most of the 

peanut pods. One soil sample was collected per plot, 

totaling 60 samples. 

Maturity (Hull scrape method) was determined by 

scraping the exocarp of 100 random pods for each 

sampling point, exposing the color of the mesocarp. The 

pods were classified by color, according to the Peanut 

Maturity Table, developed by the University of Georgia in 

the United States (Williams & Drexler, 1981). 

The windrow width and height were measured 

using a graded ruler to indicate the quality of windrow 

reversal since they can affect the drying and gathering 

mechanized process. 

The data were standardized (null mean and unit 

variance) prio r to the conduction of the multivariate 

analysis and the variables did not present collinearity . 

Exp loratory statistics of the data was performed using the 

Statistica software to analyze the hierarchical clusters, 

calculating the Euclidean distance between accesses by the 

Ward algorithm to obtain similar accesses, which was then 

graphically represented by a dendrogram (clustering the 
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accesses) and the k-means (minimizing access variance 

within each cluster).  

The Discriminant Analysis  (DA) is the oldest of the 

three classificat ion methods. It was originally developed 

for mult ivariate normal distributed data. The data as a 

whole should not be normally distributed but within each 

class the data should be normally distributed.  This means 

that if you could plot the data, each class would form an 

ellipsoid, but the means would differ. The Mahalanobis 

distance between x and the center ci of class i is the S-

weighted distance where S is the estimated variance-

covariance matrix of the class. 

After forming the clusters using the clustering 

method (Ward), the dendrogram branches were coded for 

technical application of principal components (Hair et al., 

2005), using the same traits. The objective was to visualize 

the soil texture class in the two-dimensional plane formed 

by the principal components and interpret the 

discriminatory power of the variables in each major 

component, as: 

                    (1) 

where, 

     : Standard deviation of variable j;  

  : Coefficient of variable j in the h-th main 

principal component; 

   : Eigenvalue h; 

  : Correlation of the variab le xj to the h-

th principal component. 

 
 

The eigenvectors (PC1, PC2, ...., PCh) were 

determined from the eigenvalues of the covariance and/or 

correlation matrix of branch traits in descending order. 

Thus, PC1 is the component that exp lains more variability 

in the original dataset, while the last component explains 

less. 

The variance in each principal component can be 

calculated as follows: 

                   (2) 

where, 

 : Principal component h; 

: Eigenvalue h;  

C  : covariance and/or correlat ion matrix;  

: λ1+λ2+ ... +λh; 

The principal component analysis was performed 

based on the diagonalization of a symmetric correlation 

matrix after analyzing the population variance to identify 

new numerical variables that explained most of the 

variability (Hair, 2005) by the Kaiser method with 

eigenvalues higher than “1”. 

 

RES ULTS AND DISCUSS ION 

The dendrogram that resulted from the clustering 

analysis is presented in Figure 1. The results corroborated 

with Lacerda et al. (2016) which in the evaluation on the 

discrimination of soil texture, the authors considered the 

similar soil textural groups to differentiat ion of the soil 

managements and production potential. 
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FIGURE 1. Dendrogram of hierarchical clustering analysis of peanut production parameters showing the clustering according 

to soil texture classes, very clayey (VCL), clayey (CLA), clayey loam (CLL), silty clayey loam (SCL), sandy loam (SAL), and 

sandy (SAN). 
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The processes were divided into 3 groups: I, II, and 

III and the clustering analysis by the discriminants analysis 

method (Figure 2) and the non-significant variables were 

excluded (IDL and VDL). The Classification and 

Discriminant Function Analysis Summary are presented 

for seven variables for three groups (Table 2 and 3). The 

Classification Matrix of groups (G1: 33.8%, G2: 16.7% 

and G3:50.0%) are represented for Observed 

classifications versus Predicted classifications (Table 4). 

Both characterized by the I and III opposing soil classes 

with low and high clay content, respectively, where higher 

yield was achieved but more advanced maturity stage 

caused major losses in peanut mechanized digging 

operation due to increased peduncle fragility. In addition, 

the mechanized gathering (GAL) became more d ifficu lt 

due to lower windrow height, and lower soil and pod 

moisture content, corroborating Santos et al. (2013) and 

Zerbato et al. (2014) that reported pod moisture contents 

of 35 to 45% at d igging time. The GAL is a variable that 

most influenced the discriminant division to assist the 

decision-making process in mechanized agricultural 

operations. 

 

TABLE 2. Classificat ion and Discriminant Function Analysis Summary for seven variables for three groups  

Variables 
Classification Discriminant Function Analysis 

G3  G1 G2 Wilks Lambda  Partial F-remove Toler. 

GAL -21.14 43.27 -23.11 0.009002  0.31 55.68    0.88 

MAT 3.59 -1.19 -8.40 0.006780  0.42 35.64    0.73 

SMC 7.02 -11.83 2.58 0.004489  0.63 14.98    0.32 

YLD -3.02 7.92 -6.78 0.003444  0.82 5.56    0.82 

HEW  4.98 -6.69 -1.56 0.003956  0.71 10.17    0.41 

WCP 0.94 -5.27 7.72 0.003439  0.82 5.51    0.85 

WIW -1.47 0.74 2.92 0.003408  0.83 5.23    0.68 

Constant -12.50 -46.70 -30.00     

Wilks' Lambda: .00283 approx. F (14.102) =129.73 p<0.0000. Yield (YLD), maturity (MAT), windrow width (WIW) and height 

(HEW), soil (SMC) and pod (PMC) moisture content, visible and (VDL) and invisible (IDL) digging losses, and gathering 

losses (GAL). 

 

TABLE 3. Square Mahalanobis distances (upper half 

table) between the centroids of the group distributions (G1, 

G2 and G3) o f the soil textural classes and respective F-

values (lower half table). 

 G1 G2 G3 

G1  251.98 201.62 

G2 214.72  48.08 

G3 309.26 46.09  

 

Tables 4 shows the results for the three groups used 

in the model with agronomic variab les to observed and 

predicted classification. The consideration concerns the 

percentage of well classified with the DA. In fact, all the 

soils of the estimation groups are well-classified (100%). 

Thus, there is not a situation of over-fitt ing: the analysis 

works well for the base model (Table 2 and 3), considering 

it is appropriate for predict ions (Lucadamo & Leone, 

2015) which using all the explicative and response 

variables, the DA works perfectly for the basic soil 

textural classes as the percentage of well classified, 

denoting better classification rates for the new model.  

 

TABLE 4. Classificat ion Matrix of groups (G1, G2 and 

G3) with Observed classifications (Rows) and Predicted 
classifications (Columns) 

Observed 

Classifications 

Predicted classificat ions Percent 

Correct  G1 G2 G3 

G1 20   100 

G2  10  100 

G3   30 100 

Percent 33.8 16.7 50.00  
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FIGURE 2. Standardized coefficients for agronomic traits 

of peanut crop and soil texture for each group, according 

to the discriminants analysis. Yield (YLD), maturity 

(MAT), windrow width (WIW) and height (HEW), soil 

(SMC) and pod (PMC) moisture content, visible and 

(VDL) and invisible (IDL) d igging losses, and gathering 

losses (GAL). 

 

The principal component analysis allowed a single 

distribution of accesses (PC1 and PC2), since only two 

eigenvalues were greater than “one”, 4.51 and 1.79, 

respectively. The two largest principal components 

together enabled a two-dimensional ordering of accesses 

and variables, producing a Biplot graph (Figure 3). The 

distribution of soil textures and agronomic traits for the 

peanut crop showed that these components explained 70% 

of the variability, 50.11% and 19.89% of which in PC1 

and PC2, respectively. 
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FIGURE 3. Distribution of soil textures according to the principal co mponents 1 and 2 and their vectors with the agronomic 

traits for the mechanized harvesting of peanuts. Yield (YLD), maturity (MAT), windrow width (WIW) and height (HEW), soil 

(SMC) and pod (PMC) moisture content, visible and (VDL) and invisible (IDL) digging losses, and gathering losses (GAL). 

Very clayey (VCL), clayey (CLA), clayey loam (CLL), silty clayey loam (SCL), sandy loam (SAL), and sandy (SAN). 

 

The biplot graph (Figure 3) shows the distribution 

of soil classes in the peanut areas on the plan formed by 

the first two principal components (PC1 and PC2) and 

coded according to the clusters determined in the 

dendrogram. The x-axis (PC1) shows the contrasts of the 

six soil classes, three textural classes (VCL, CLA, and 

CLL) to the right and two (SAN and SAL) to the left, and 

the centralized intermediate behavior (SCL). The y-axis 

(PC2) shows a high direct correlation between the visible 

losses and windrow height, explained by the adjustment of 

alignment rolls and inverters of branches together with the 

plant mass being processed directly interfering with the 

windrow dimensions in the digging process (Zerbato et al., 

2017). 

Table 5 shows the variables with higher 

discriminatory power in the first principal component that 

had direct correlations between YLD, MAT, VDL, IDL, 

and GAL, enabling an efficient multivariate approach to 

mechanized harvesting of peanuts. Likewise, Silva et al. 

(2010) and Santos et al. (2016) successfully used the 

agronomic traits of great economic importance in the 

agricultural production system. 

 

TABLE 5. Correlation between peanut production 

variables and the principal components 1 and 2 for the 

different soil classes. 

 PC1 PC2 

YLD -0.88 0.14 

MAT -0.64           -0.33 

WIW  0.04           -0.33 

HEW  0.47           -0.79 

SMC  0.66 0.27 

PMC  0.86           -0.36 

VDL            -0.69           -0.61 

IDL            -0.86           -0.42 

GAL            -0.85 0.41 

Principal component 1 (PC1); principal component 

2 (PC2); Yield (YLD); maturity (MAT); windrow width 

(WIW) and height (HEW); soil (SMC) and pod (PMC) 

moisture content; visible (VDL) and invisible (IDL) 

digging losses; and gathering losses (GAL).  

The values of the correlations (Table 5) between 

the peanut harvest variables and the first two principal 

components according to soil textual class, PC1 has a high 

discriminatory power for the following peanut harvest 

variables: YLD (-0.88), MAT (-0.64), VDL (-0.69), IDL (-

0.86), and GAL (-0.85). The negative associations of the 

variables presented their respective projections in the 

agglomerat ion directions of SAN and SAL soil textural 

classes (Figure 3). Then, the positive associations of SMC 

(0.66) and WPC (0.86) correlated with VCL, CLA and 

CLL soil textural classes.  Thus, the peanuts digging 

operation could represent the PC1. It is noteworthy that the 

high impact of losses on the gathering of pods directly 

affected the final yield of the peanut crop (Ferezin et al., 

2015). 

Yield is the variable correlated to maturity that can 

directly influence peanut mechanized  harvesting, in 

addition to the moisture content of the pods. The dry 

peduncles, with lower moisture content, breaking easily, 

cause higher losses in the gathering operation (Zerbato et 

al., 2014). 

The PC2 showed a high discriminatory power for 

the HEW and VDL variab les (Figure 3) with respective 

negative associations of -0.79 and -0.61 (Tab le 5). The 

windrow height influenced the gathering process since 

losses were higher for lower windrow heights because the 

gathering operation (PC2 representation) becomes more 

difficult closer to the ground. 

The three multivariate statistical statistics showed, 

together, an efficient method of discriminating soil textural 

classes. 
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CONCLUS IONS  

The hierarchical and non-hierarchical clustering 

analysis allowed ordering the accesses into three clusters, 

discriminant analysis and the principal component analysis 

indicating that high peanut yields in soils with low clay are 

correlated with losses in the mechanized harvesting 

operation. 

Multivariate analysis procedures effectively 

summarized the losses and yield informat ion and made 

easier to determine the GAL that most influenced the 

discriminant division to assist the decision-making process 

in mechanized agricu ltural operations. 
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