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ABSTRACT 

In this study, we present computational procedures to solve problems for the 
maximization of production and net income from crops or trees in a randomly generated 
agroforestry system with limited inputs, based on the Logarithmic Barrier Method. The 
results obtained showed numerical consistency for viability and optimality of both 
problems in the agroforestry scenarios tested, as well as promoted conditions to solve the 
problems with real data.  

 
 
INTRODUCTION 

An agroforestry system (AFS) is a food production 
practice that aims to conserve and restore nature. This is 
possible because instead of removing original vegetation 
and single-crop farming on a large area, this form of 
production respects and imitates nature, using the 
relationships among living beings to its advantage and 
stimulating local biodiversity (Götsch, 1997, Götz et al., 
2016). In agroforestry systems, the crops, trees, and animals 
are managed considering time and space and, to do so, the 
characteristics of each species used and its relationship with 
the others must be understood. 

Undoubtedly, AFSs are a fusion between food 
production and environmental conservation, as these 
systems control soil erosion and recover degraded areas and 
those used for the production of food and other products. 
Moreover, AFSs generate economic benefits such as 
improved family income and reduced external input costs, 
besides having affordable implementation and 
maintenance costs. 

Solar radiation, water, and nitrogen are important 
factors for evaluations of crop or tree yield responses in an 
AFS. Solar radiation is related to photosynthesis and is 
also responsible for other plant physiological mechanisms. 
In this sense, studies on interactions between this factor 
and crop physiology are relevant, especially on 
photosynthesis and light interception, thus determining the 
most effective photosynthetic radiation fraction for plant 
productivity gains. 

One strategy to increase radiation-use efficiency by 
crops is implementing moderate water restrictions. Under 
such conditions, plants partially close their stomata to 
reduce water loss to the environment, while photosynthesis 
remains active but at lower rates (Confalone et al., 1997; 
Pereira, 2002; Plevich et al., 2019). 

Regarding fertilization, AFSs make use of natural 
resources available and forest nutrient-cycling dynamics, 
which are supplied by tree pruning and green manuring. 
Notably, plants growing under dense vegetation have 
nitrogen concentrations parallel to radiation availability. In 
this sense, it is known that the greater the uniformity in leaf 
nitrogen concentrations, the greater the efficiency of its use 
in photosynthesis.  

Considering that in an AFS the competition for 
sunlight, water, and nutrients (nitrogen fertilization) is high, 
and seeking to optimize production values, this article 
presents computational procedures to maximize food 
production and net income as a function of solar radiation, 
water, and nutrients (nitrogen) at upper and lower limits. 

 
MATERIAL AND METHODS 

Considering an “ideal SAF”, that is, a system that, 
before its installation, had been considered local physical 
characteristics such as relief, original vegetation, wind 
direction and intensity, soil type, solar radiation, water 
availability, available nutrients, and usage history, as well 
as the crop and tree species to be grown. In this context, 
native species should be prioritized to ensure subsistence 



Vinicius T. do Nascimento, Sergio D. Ventura, Angel R. S. Delgado, et al. 
 

 
Engenharia Agrícola, Jaboticabal, v.42, n.2, e20210017, 2022 

and food security for families, as well as commercial 
species with greater acceptance in the local markets. We 
highlight that the main goal of our work is to maximize 
production and net income generated by each species (crop 
or tree) in an “ideal SAF”, as a function of solar radiation, 
water depth, and nitrogen dose. 

To do so, we supposed that 𝑦(𝑟, 𝑤, 𝑛) analytically 
represents the production (or response) function of a given 
plant species (𝑘𝑔. 𝑚 ) according to solar radiation 
(𝑟; 𝑖𝑛 %), water depth (𝑤; 𝑖𝑛 𝑚𝑚), and nitrogen dose (𝑛; in 
𝑘𝑔. 𝑚 ) in an “ideal AFS”. Thus, the production function 
of this system was given as follows:

 
𝑦(𝑟, 𝑤, 𝑛) = 𝑎𝑟 + 𝑏𝑤 + 𝑐𝑛 + 𝑑𝑟𝑤 + 𝑒𝑤𝑛 + 𝑓𝑟 + 𝑔𝑤 + ℎ𝑛 + 𝑚, 

Where: 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑚 ∈ ℝ (coefficients obtained by regression). Note that ∇𝑦(𝑟, 𝑤, 𝑛) =

⎝

⎜
⎛

( , , )

( , , )

( , , )

⎠

⎟
⎞

=

2𝑎𝑟 + 𝑑𝑤 + 𝑓
2𝑏𝑤 + 𝑑𝑟 + 𝑒𝑛 + 𝑔

2𝑐𝑛 + 𝑒𝑤 + ℎ

, and the Hessian matrix  𝐻 =
2𝑎 𝑑 0
𝑑 2𝑏 𝑒
0 𝑒 2𝑐

 is asymmetric negative definite matrix if 𝑎, 𝑏, 𝑐 < 0,  𝑑 =

𝑒 = 0.  In this sense, 𝑦(𝑟, 𝑤, 𝑛) is a strictly concave function. We assumed that problems related to the maximization of 
production and net income for a given plant species can be expressed mathematically as two nonlinear programming problems 
with the following linear constraints: 

maximize   𝑦(𝑟, 𝑤, 𝑛) = 𝑎𝑟 + 𝑏𝑤 + 𝑐𝑛 + 𝑓𝑟 + 𝑔𝑤 + ℎ𝑛 + 𝑚 (1)
subject to 𝑟 ≤ 𝑟 ≤ 𝑟  

𝑤 ≤ 𝑤 ≤ 𝑤  
𝑛 ≤ 𝑛 ≤ 𝑛  

and                                  

maximize 𝑁𝐼(𝑟, 𝑤, 𝑛) = 𝑝 𝑦(𝑟, 𝑤, 𝑛) − 𝑐 𝑤 − 𝑐 𝑛 − 𝑐  (2)
subject to 𝑟 ≤ 𝑟 ≤ 𝑟  

𝑤 ≤ 𝑤 ≤ 𝑤  
𝑛 ≤ 𝑛 ≤ 𝑛 , 

Where:  

0 ≤ 𝑟 , 𝑟 , 𝑤 , 𝑤 , 𝑛 , 𝑛 − represent the lower and upper limits for the variables 𝑟, 𝑤, 𝑛, respectively; 𝑁𝐼(𝑟, 𝑤, 𝑛) is 
the net income obtained (𝑅$. 𝑚 ) as a function of 𝑟, 𝑤, 𝑛; 𝑝  is the price of plant production (𝑅$. 𝑚 ); 𝑐  is the cost of water 
depth (𝑅$. 𝑚𝑚 . ℎ𝑎 ); 𝑐  is the cost of nitrogen dose (𝑅$. 𝑘𝑔 ℎ𝑎 ); and 𝑐  is the fixed cost of production (𝑅$. 𝑚 ) that 
may encompass labour and/or machinery costs, etc. Note that problem (2) can be written as: 

maximize 𝑁𝐼(𝑟, 𝑤, 𝑛) = 𝑎𝑝  𝑟 + 𝑏𝑝  𝑤 + 𝑐𝑝  𝑛 + 𝑓𝑝  𝑟 + (𝑔𝑝  − 𝑐 )𝑤 +  (ℎ𝑝  𝑛 − 𝑐 )𝑛 + (𝑝 𝑚 − 𝑐 ) 
subject to 𝑟 ≤ 𝑟 ≤ 𝑟  

𝑤 ≤ 𝑤 ≤ 𝑤  
𝑛 ≤ 𝑛 ≤ 𝑛 . 

 
Therefore, to maximize the production of a given 

plant species in an “ideal AFS” with limited inputs (1), we 
developed a computational procedure based on the 
“logarithmic barrier” method (Bertsekas, 2016; Carvalho et 
al., 2009; Delgado et al., 2020). Conceptually, this procedure  

works as follows: setting a parameter 𝜇 > 0 and 
incorporating the constraints that define the objective function 
using a logarithmic barrier function, then an unconstrained 
non-linear programming problem is solved as follows: 

maximize                    𝜑 (𝑟, 𝑤, 𝑛),  (3)

Where: 

𝜑 (𝑟, 𝑤, 𝑛) = 𝑦(𝑟, 𝑤, 𝑛) + 𝜇𝐵(𝑟, 𝑤, 𝑛) 
and  

𝐵(𝑟, 𝑤, 𝑛) = 𝐿𝑛 𝑟 − 𝑟 + 𝐿𝑛 𝑟 − 𝑟 + 𝐿𝑛 𝑤 − 𝑤 + 𝐿𝑛 𝑤 − 𝑤 + 𝐿𝑛 𝑛 − 𝑛 + 𝐿𝑛 𝑛 − 𝑛 . 
 

Then, the parameter 𝜇 is decreased, and the process 
is repeated until a stop criterion is met. It is known as a 
logarithmic barrier because the logarithm function 
generates interior points away from the limits of a three-
dimensional constraint box. For each 𝜇, a maximum of 𝜑  
is reached at an interior point in the set of viable solutions 
to the problem, as 𝜑 (𝑟, 𝑤, 𝑛) is a strictly concave function 
and, when 𝜇 tends to zero, that point moves up to near the  

optimal solution of (1). As a function of 𝜇, the set of optimal 
solutions for the unconstrained problems (3) defines a curve 
known as the central path (Drumond et al., 2015).  

This method is important for maximizing 
𝜑 (𝑟, 𝑤, 𝑛) for a fixed 𝜇. As 𝜑  is strictly concave, an 
optimal solution of (3) is defined by the first-order condition 
(𝑟, 𝑤, 𝑛) =  𝑟(𝜇), 𝑤(𝜇), 𝑛(𝜇)  if and only if: 
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𝜕𝜑 (𝑟, 𝑤, 𝑛)

𝜕𝑟
= 2𝑎𝑟 + 𝑓 −

𝜇

𝑟 − 𝑟
+

𝜇

𝑟 − 𝑟
= 0 (4)

𝜕𝜑 (𝑟, 𝑤, 𝑛)

𝜕𝑤
= 2𝑏𝑤 + 𝑔 −

𝜇

𝑤 − 𝑤
+

𝜇

𝑤 − 𝑤
= 0 (5)

𝜕𝜑 (𝑟, 𝑤, 𝑛)

𝜕𝑛
= 2𝑐𝑛 + ℎ −

𝜇

𝑛 − 𝑛
+

𝜇

𝑛 − 𝑛
= 0 (6)

By defining 𝛼 = , 𝛼 = , 𝛽 = , 𝛽 = , 𝛾 = , 𝛾 = , the system (4)-

(6) can be written as: 

2𝑎𝑟 + 𝛼 − 𝛼 = −𝑓 (7)

2𝑏𝑤 + 𝛽 − 𝛽 = −𝑔 (8)

2𝑐𝑛 + 𝛾 − 𝛾 = −ℎ (9)

𝛼 𝑟 − 𝑟 = 𝜇 (10)

𝛼 𝑟 − 𝑟 = 𝜇 (11)

𝛽 𝑤 − 𝑤 = 𝜇 (12)

𝛽 𝑤 − 𝑤 = 𝜇 (13)

𝛾 𝑛 − 𝑛 = 𝜇 (14)

𝛾 𝑛 − 𝑛 = 𝜇 (15)

𝑟, 𝑤, 𝑛, 𝛼 , 𝛼 , 𝛽 , 𝛽 , 𝛾 , 𝛾 > 0. 

The points that approximately solve equations (7)-
(15) are near the central path associated with productivity. 
Moreover, equations (7)-(8) represent the constraints that 
define the region of the viability of the corresponding dual 
problem, while equations (10)-(15) represent the conditions 
of "approximate complementary slackness”. 

Among the advantages of dual solutions is the 
potential provision of economic information about resources 
such as decision making regarding the acquisition of 
additional resources or sensitivity analysis. In this case, the 
variables 𝛼 , 𝛼 , 𝛽 , 𝛽 , 𝛾 , 𝛾  represent the 
percentage of changes in production and net income as a 
function of variations in water volume and nitrogen dose limits. 

Conceptually, the numerical procedure implemented 
to maximize production works as follows: given a 
parameter 𝜇 > 0 and a point close to (𝑟(𝜇), 𝑤(𝜇), 𝑛(𝜇)) for 
each iteration, we approximately solve the nonlinear system 
(7)-(15) using Newton's method (Fonseca, 2017). Then, the 
parameter 𝜇 is decreased, and the process is repeated until a 
predetermined stop condition is met. Likewise, a procedure 
can be implemented to maximize net income (2). 

To test the above procedure computationally, we 
created an ideal random AFS using the MATLAB 7.4 
platform. To do so, we generated four crop or tree 
production functions (𝑖 = 1,2,3,4), as follows:

 
𝑦 (𝑟, 𝑤, 𝑛) = 𝑎𝑟 + 𝑏𝑤 + 𝑐𝑛 + 𝑑𝑟𝑤 + 𝑒𝑤𝑛 + 𝑓𝑟 + 𝑔𝑤 + ℎ𝑛 + 𝑚,  

Where:  

𝑎, 𝑏, 𝑐 < 0, and 𝑑 = 𝑒 = 0 (Table 1). Each one of these functions was maximized over three agroforestry scenarios, considering 
minimum solar radiation of 2%, water depth range between 50 and 600 𝑚𝑚, and nitrogen dose from 0 to 300 𝑘𝑔. These lower 
and upper limits for 𝑟, 𝑤, 𝑛 were fixed based on the input management recommendations (solar radiation, water, and nitrogen) 
for agroforestry systems. Thus, the numerical experiments were carried out in 3 three-dimensional boxes: [0.02,1] × [50,500] ×
[0,100], [0.02,1] × [150,400] × [75,300] and  [0.02,1] × [100,600] × [75,200]. 
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TABLE 1. Response or production functions in quadratic forms for the variables 𝑟, 𝑤, 𝑛. 

PLANT PRODUCTION FUNCTION (𝒌𝒈. 𝒉𝒂 𝟏) 

1 𝑦 (𝑟, 𝑤, 𝑛) = −9.47 ∙ 10 𝑟 − 4.52 ∙ 10  𝑤 − 4.27 ∙ 10 𝑛 + 4,943.42 𝑟 + 0.0257349 𝑤 + 0.0317876 𝑛 + 0.1225433𝑟 

2 𝑦 (𝑟, 𝑤, 𝑛) = −5.07 ∙ 10 𝑟 − 8.50 ∙ 10  𝑤 − 5.94 ∙ 10 𝑛 + 73,350.85 𝑟 + 0.0335390 𝑤 + 0.0157880 𝑛 + 4.3457454 

3 𝑦 (𝑟, 𝑤, 𝑛) =  −6.99 ∙ 10  𝑟 − 8.15 ∙ 10  𝑤 − 6.92 ∙ 10 𝑛 + 32,280.66 𝑟 + 0.0000010 𝑤 + 0.0610159 𝑛 + 0.1779493   

4 𝑦 (𝑟, 𝑤, 𝑛) =  −7.11 ∙ 10 𝑟 − 3.82 ∙ 10  𝑤 − 7.07 ∙ 10 𝑛 + 38,956.53 𝑟 + 0.0131744 𝑤 + 0.0432329 𝑛 + 2.6488897   

 
Afterwards, net incomes associated with each 

response function in Table 1 were maximized, as follows: 
𝑁𝐼 (𝑟, 𝑤, 𝑛) = 𝑝 𝑦 (𝑟, 𝑤, 𝑛) − 𝑐 𝑤 − 𝑐 𝑛 − 𝑐 , for each 
one of the previously described scenarios. In the numerical 
experiments, the values fixed for the parameters prices (𝑝 ), 
input costs (𝑐 , 𝑐 ), and fixed costs (𝑐 ) were randomly 
determined within the following intervals: p ∈
[23.02, 84.33],  𝑐 ∈ [0.0008, 0.16], c ∈ [16.85,34.90], 
and c  ϵ [2.800, 4.060,10]. The lower and upper limits of 
each interval respond approximately to the average values 
found in the literature for AFSs. 
 
RESULTS AND DISCUSSION 

Tables 2, 3, and 4 show the optimal numerical results 
of productivity for each plant and scenario considered. Each 

table shows the values corresponding to optimal 
solution (𝑟∗, 𝑤∗, 𝑛∗); optimal production 𝑦 (𝑟∗, 𝑤∗, 𝑛∗), 
(𝑖 = 1,2,3,4); and iteration number by the implemented 
procedure. It is worth mentioning that all optimal solutions 
obtained satisfy each of the constraints imposed on              
the problem (1). 

At first, one can see that all tables (2, 3, and 4) 
showed that solar radiation values are invariant for the three 
scenarios. Plants 1, 3, and 4 obtained the lowest solar 
radiation (2%), while crop 3 had the highest (7%). 
Regarding water depth (𝑤) in all scenarios, plant 1 obtained 
284,67 𝑚𝑚, just as plant 2 (197.29 𝑚𝑚) and 4 
(197.29 𝑚𝑚). Yet for plant 3, optimal water depths were 
equal to the lower limit imposed in the first (50 𝑚𝑚), 
second (150 𝑚𝑚), and third (100 𝑚𝑚) scenarios. 

 
TABLE 2. Optimal solution (𝑟∗, 𝑤∗, 𝑛∗)  and production 𝑦(𝑟∗, 𝑤∗, 𝑛∗) of (1) in the three-dimensional box [0.02,1] × [50,500] ×
[0,100]. 

CROP 
𝑟∗ 

(%) 
𝑤∗ 

(𝑚𝑚) 
𝑛∗ 

(𝑘𝑔) 
𝑦 (𝑤∗, 𝑛∗) 
(𝑘𝑔. ℎ𝑎 ) 

iterations 

1 0.020000 284.677897 99.997970 127.737290 22 

2 0.072338 197.289649 99.980918 2,661.670057 18 

3 0.023091 50.002803 99.999517 378.073711 24 

4 0.027396 172.444253 99.997712 541.019584 21 
 
TABLE 3. Optimal solution (𝑟∗, 𝑤∗, 𝑛∗)  and production 𝑦(𝑟∗, 𝑤∗, 𝑛∗) of (1) in the three-dimensional box [0.02,1] ×
[150,400] × [75,300]. 

CROP 
𝑟∗ 

(%) 
𝑤∗ 

(𝑚𝑚) 
𝑛∗ 

(𝑘𝑔) 
𝑦 (𝑤∗, 𝑛∗) 
(𝑘𝑔. ℎ𝑎 ) 

iterations 

1 0.020000 284.677198 249.993749 130.263644 22 

2 0.072338 197.294137 132.900164 2,661.734410 18 

3 0.023091 150.001472 249.998638 381.963170 22 

4 0.027396 172.463383 249.995135 543.792798 22 
 
TABLE 4. Optimal solution (𝑟∗, 𝑤∗, 𝑛∗)  and production 𝑦(𝑟∗, 𝑤∗, 𝑛∗) of (1) in the three-dimensional box [0.02,1] ×
[100,600] × [75,200]. 

CROP 
𝑟∗ 

(%) 
𝑤∗ 

(𝑚𝑚) 
𝑛∗ 

(𝑘𝑔) 
𝑦 (𝑤∗, 𝑛∗) 
(𝑘𝑔. ℎ𝑎 ) 

iterations 

1 0.020000 284.679514 199.996114 129.635030 22 

2 0.072338 197.290397 132.896571 2,661.734410 18 

3 0.023091 100.000656 199.999679 381.488126 23 

4 0.027396 172.442217 199.998920 543.221925 22 
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As for nitrogen dose (𝑛) in the first scenario, all 
plants required a maximum of 100 𝑘𝑔. 𝑚 , which is the 
upper limit. In the second scenario, plants 1, 3, and 4 had an 
optimal nitrogen dose equal to 250 𝑘𝑔. 𝑚 , an interior 
value within the range [𝑜𝑓 150,400]. In the third scenario, 
plants 1, 3, and 4 again reached an extreme value of 

200 𝑘𝑔. 𝑚 . As for plant 3 in scenarios 2 and 3, an optimal 
nitrogen dose of 133 𝑘𝑔. 𝑚  was obtained, which is also 
within the intervals [75,300] and [75,200], respectively.  

Tables 5, 6, and 7 show the optimal numerical results 
of net income for each crop and scenario considered 
(problem [2]).

 
TABLE 5. Optimal solution (𝑟∗, 𝑤∗, 𝑛∗)  and net income 𝑁𝐼 (𝑟∗, 𝑤∗, 𝑛∗) in the three-dimensional box [0.02,1] × [50,500] ×
[0,100], wherein: 𝒑𝒊 = 𝟕𝟕. 𝟏𝟏𝟖𝟕𝟕𝟓, 𝒄𝒘 = 𝟎. 𝟏𝟑𝟎𝟏𝟖𝟏, 𝒄𝒏 = 𝟐𝟗. 𝟗𝟐𝟒𝟖𝟗𝟔, 𝒄𝟎 = 𝟑𝟓𝟐𝟔. 𝟎𝟎𝟑𝟔𝟏𝟕. 

PLANT 
𝑟∗ 

(%) 
𝑤∗ 

(𝑚𝑚) 
𝑛∗ 

(𝑘𝑔) 
𝑁𝐼 (𝑤∗, 𝑛∗) 
(𝑅$. ℎ𝑎 ) 

iterations 

1 0.020000 266.004924 0.000008 6,076.890235 82 

2 0.072338 187.358504 0.000007 20,1637.752514 79 

3 0.023091 50.000015 0.000008 25,206.891131 81 

4 0.027396 150.344844 0.000008 37,896.874814 81 

 
TABLE 6. Optimal solution (𝑟∗, 𝑤∗, 𝑛∗)  and net income 𝑁𝐼 (𝑟∗, 𝑤∗, 𝑛∗) in the three-dimensional box [0.02,1] × [150,400] ×
[75,300], wherein: 𝒑𝒊 = 𝟕𝟑. 𝟓𝟓𝟒𝟑𝟗𝟗, 𝒄𝒘 = 𝟎. 𝟎𝟎𝟕𝟏𝟕𝟗, 𝒄𝒏 = 𝟑𝟏. 𝟓𝟐𝟏𝟐𝟒𝟒,  𝒄𝟎 = 𝟐𝟗𝟔𝟔. 𝟐𝟒𝟏𝟔𝟐𝟔. 

PLANT 
𝑟∗ 

(%) 
𝑤∗ 

(𝑚𝑚) 
𝑛∗ 

(𝑘𝑔) 
𝑁𝐼 (𝑤∗, 𝑛∗) 
(𝑅$. ℎ𝑎 ) 

iterations 

1 0.020000 283.598369 75.000001 4,018.559499 23 

2 0.072338 196.714125 75.000001 190,435.879388 19 

3 0.023091 150.000010 75.000001 22,267.758534 23 

4 0.027396 171.162354 75.000001 34,406.058711 23 

 
As can be seen in the above tables, solar radiation values in the three scenarios are again invariant and have the same 

values as those for productivity maximization. The lowest solar radiation (2%) was obtained for plants 1, 3, and 4, while the 
highest (7%) was for plant 3.  
 
TABLE 7. Optimal solution (𝑟∗, 𝑤∗, 𝑛∗)  and net income 𝑁𝐼 (𝑟∗, 𝑤∗, 𝑛∗) in the three-dimensional box [0.02,1] × [100,600] ×
[75,200], wherein: 𝒑𝒊 = 𝟓𝟓. 𝟗𝟐𝟕𝟗𝟕𝟓, 𝒄𝒘 = 𝟎. 𝟏𝟏𝟓𝟔𝟓𝟎, 𝒄𝒏 = 𝟐𝟕. 𝟑𝟗𝟗𝟎𝟓𝟕, 𝒄𝟎 = 𝟐𝟗𝟎𝟐. 𝟏𝟖𝟓𝟓𝟒𝟗. 

PLANT 
𝑟∗ 

(%) 
𝑤∗ 

(𝑚𝑚) 
𝑛∗ 

(𝑘𝑔) 
𝑁𝐼 (𝑤∗, 𝑛∗) 
(𝑅$. ℎ𝑎 ) 

iterations 

1 0.020000 261.803849 75.000001 2,121.380755 23 

2 0.072338 185.124526 75.000001 143,875.052563 19 

3 0.023091 100.000032 75.000001 16,073.656423 23 

4 0.027396 145.374247 75.000003 25,239.492131 22 

     
In the first scenario ([0.02,1] × [50,500] ×

[0,100]), optimal water depths were within the range 
[𝑜𝑓 50,500], except for plant 3 which reached a value equal 
to the lower limit (50 𝑚𝑚). The highest water depth was 
283 𝑚𝑚. We can also see in this scenario that 𝑛∗ =
0 for all plants, that is, no nitrogen dose was required. 
Among all plants, 4 had the highest net income 
(R$ 37,896.874814) with 150 𝑚𝑚 water depth, while 1 
reached the lowest (R$ 6,076.890235) with 266 𝑚𝑚. 

In the second scenario ([0.02,1] × [150,400] ×
[75,300]), optimal water depths were within the range 
[𝑜𝑓 150,400], except for plant 3 which reached a value 
equal to the lower limit (150 𝑚𝑚). All plants in this 
scenario required at least an application of the lowest 
nitrogen dose (75 𝑘𝑔). Among all plants, 2 reached the 
highest net income (R$ 190,435.879388) with 197 𝑚𝑚 
water depth, and again plant 1 had the lowest net income 
(R$ 4,018.559499) with 284 𝑚𝑚. 

Finally, in the third scenario ([0.02,1] ×
[100,600] × [75,200]), Table 7 shows that despite the 

values of 𝑝 , 𝑐 , 𝑐 , 𝑐  being different from those in Table 6, 
they had a similar trend in which optimal water depths were 
within the range [100,600], except for plant 3 that reached 
a value equal to the lower limit (100 𝑚𝑚). As in the 
previous scenario (Table 6), all plants equally required an 
application of at least the lowest nitrogen dose (75 𝑘𝑔), and 
plant 2 reached the highest net income 
(R$ 143,875.052563) with 185 𝑚𝑚 water depth. 
Likewise, plant 1 also reached the lowest net income 
(R$ 2,121.380755) with 262 𝑚𝑚 water depth. 
 

CONCLUSIONS 

 This study presents computational procedures to 
solve problems to maximize production (1) and net 
income (2) of a certain agroforestry crop under a 
randomly generated “ideal” agroforestry system 
with limited inputs, based on the “logarithmic 
barrier” method. 
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 The numbers of iterations performed by 
procedures are low; between 18 and 24 for 
production maximization, and from 19 to 82 for net 
income maximization. The first scenario has the 
largest number of iterations by the procedure 
implemented and for all plants evaluated. 

 The procedures implemented with randomly 
generated data are consistent and can solve 
problems (1) and (2) with real data. 

 All plants required no nitrogen application ( 𝑛∗ =
0). This is feasible because fertilization in AFS can 
be naturally made using available resources and 
forest nutrient cycling dynamics, through tree 
pruning and green manuring. 
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ERRATUM 
 
In the paper “MAXIMIZATION OF PRODUCTION AND NET INCOME IN AGRO-FOREST 
SYSTEMS”, with DOI number: 10.1590/1809-4430-Eng.Agric.v42n2e20210017/2022, published in the 
journal Agricultural Engineering 42(2):e20210017, on page 1: 
 

Where it reads: 

 

Vinicius T. do Nascimento1*, Sergio D. Ventura1,  
Angel R. S. Delgado1, Washigton S. da Silva1 

 

It should read: 

 

Vinicius T. do Nascimento1*, Sergio D. Ventura1,  
Angel R. S. Delgado1, Washington S. da Silva1 

 


