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ABSTRACT 

Land-use and land-cover (LULC) are important environmental properties of the Earth's 
surface. Satellite platforms and state-of-the-art algorithms enable the mapping of large 
areas, but they still need to be improved. This study aimed to compare free- and open-
access images from radar and optical sensors, using the Google Earth Engine™ (GEE) 
for supervised classification of LULC for five municipalities in Roraima State, Brazil. 
Sentinel-1 (S1) scenes were used along with Landsat 8 (L8) and Sentinel-2 (S2) ones, 
resulting in five classification approaches S1 (SD), L8 (ODL), S2 (ODS), S1+L8 (SODL), 
and S1+S2 (SODS), with an auxiliary ALOS World 3D dataset (DEM≈30m). Accuracy 
was assessed by an error matrix. The SD approach was significantly different (P ≤ 0.01) 
from the others using a mean F1-score of 0.80. ODL and ODS had barely perceptible 
differences (P ≤ 0.1), showing F1-scores of 0.95 and 0.92, respectively. When comparing 
ODL (F1=0.95) and SODL (F1=0.95) no difference was found (P > 0.1). However, by 
comparing ODS (F1=0.92) and SODS (F1=0.94), there was a significant classification 
improvement (P ≤ 0.05). In short, the approaches SODL and SODS had the best pixel-
based supervised classification performance. 

 
INTRODUCTION 

Land-cover defines the physical condition and 
characteristics of the biotic component at the local, regional, 
national, or continental scale. It also shows how human 
needs and actions have modified the environment to give it 
uses different from those of its original condition and 
aptitude (Chu, 2020; Hassan et al., 2016). 

Understanding land-use and land-cover (LULC) 
changes of large areas in a jointly and dynamic manner is 
essential to plan urban spaces (Silva et al., 2020), assess 
environmental impacts from anthropic intervention or 
natural disasters (Gomes et al., 2019; Ishihara & Tadono, 
2017), evaluate expansion of agricultural frontiers (Bacarji 
et al., 2021; Ferreira et al., 2021; Souza et al., 2020), 
manage water resources and soil (Lopes et al., 2020; Silva 
et al., 2021), among many other applications. 

LULC can be mapped directly in the field at several 
scales, adding information with different precision levels. 
However, this method is excessively demanding of the 
workforce, time, and financial resources, which makes it 
practically unfeasible for large surfaces. 

Technological advances in recent decades and the 
availability of satellite platforms have allowed mapping and 
monitoring landscape components such as relief, vegetation 
cover, water resources, and land use (Pandey et al., 2021). 
Among its advantages, state-of-art orbital sensor imagery 
has multi-temporal availability, great spatial coverage, fast 
availability at reduced costs, or even free, facilitating, and 
cheapening LULC mapping.  

There are now data processing workflows 
integrated with machine learning classification 
algorithms, which allow land cover to be accurately 
mapped over large areas using multi-temporal imagery 
(Floreano & De Moraes, 2021; Ghayour et al., 2021; 
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Gupta et al., 2021; Talukdar et al., 2020). Such advances 
have helped in creating some operational monitoring 
programs for LULC in many countries. 

The Brazilian territory has continental dimensions, 
with 8,510,345.538 km² (IBGE, 2021). It also has a great 
diversity in landscape, making it a full sample of tropical 
ecology. Therefore, to map LULC at a national or regional 
scale, the Biome to which the area belongs should be 
considered, demanding the use of specific classes for each 
ecological unit. 

In Brazil, many studies have focused on obtaining 
basic information for monitoring spatial-temporal changes 
at the Biome scale. One of the most recent and complete is 
the MapBiomas collection, which contains 35-year (1985-
2019) annual data at a 30-m spatial resolution. Its accuracy 
has substantially improved in terms of the Biomes and new 
agricultural cover types. MapBiomas is based on optical 
images, specifically from the Landsat 5/7/8 platforms 
(Souza et al., 2020).  

Although the overall average accuracy of LULC 
time series has improved considerably, these methods have 
to further develop to improve temporal resolution in cloudy 
areas, such as the state of Roraima in the Brazilian Legal 
Amazon. Of the fifteen municipalities in Roraima State, 
Alto Alegre, Boa Vista, Cantá, Normandia, and Bonfim 
stand out for their importance in agricultural activity (IBGE, 
2009; IBGE, 2021); yet, all of them have high cloudiness 
throughout the year. 

A combination of radar with optical imaging has 
shown promising results, as SAR can penetrate clouds and 
cirrus clouds (Carneiro et al., 2020; Hirschmugl et al., 2020; 
Rao et al., 2021). Platforms, such as Sentinel-1 (radar) and 
Sentinel-2 (optical), are a new data-rich source that can be 
used in LULC mapping to monitor crop phenology, as well 
as to detect cultivated and irrigated plots, with high spatial 
and temporal resolutions (Gutiérrez-Vélez & Defries, 2013; 
Kou et al., 2015; Tian et al., 2019). 

This study aimed to compare free- and open-access 
images from radar and optical sensors, hosted on the Google 
Earth Engine™ (GEE) cloud computing platform for 

supervised classification of LULC in five municipalities of 
Roraima State, Brazil.  

MATERIAL AND METHODS  

Study Area Description 

Roraima State is the northernmost of Brazil and 
extends from latitude 1°35'11'' S to 5°16'20'' N (Figure 1). 
It occupies an area of 223,644.527 km2, and more than 80% 
of its territory is in the northern hemisphere (IBGE, 2021). 
Roraima has a diverse phyto-physiognomy, with forests 
being the largest portion, followed by savanna zones 
(known as Cerrado), a peculiar characteristic of the Amazon 
in the north-east and center-northeast, occupying an area of 
17% of the state (IBGE, 2009). 

Regarding hydrography, the Branco River is the 
main tributary of the Negro River and is formed from the 
confluence of the Uraricoera and Tacutu rivers. The rivers 
Mucajaí, Água Boa, Univini, Catrimani, and Xeruini are the 
main tributaries on the right bank and the Anauá River on 
the left bank. The Branco River basin virtually covers the 
whole state of Roraima; however, three other basins are also 
important. Those are of the Jauaperi and Jufari rivers, also 
tributaries of the Negro River, and the Jatapu, a tributary of 
the Amazon River (IBGE, 2009). 

According to Köppen's classification, the main 
climate is divided into three groups: Aw (tropical savanna 
climate), Am (tropical monsoon climate, between April and 
September with a peak in June), and Af (tropical humid 
climate, between March and August with a peak in May). 
The local rainfall regime is split into two well-defined 
periods, a rainy season (May-August) and a dry period 
(September-April), with an annual rainfall of 1,925 ± 339.7 
mm (Barni et al., 2020). 

As for the Brazilian classification system, the main soil 
classes are Latossolos (Ferrasol), Argissolos (Lixisols), 
Gleissolos (Gleysols), Plintossolos (Plinthosols), Neossolos 
Flúvicos (Fluvisols), and Neossolos Quartzarênicos 
(Arenosols) (Vale Júnior et al., 2011). 

This study aimed to identify land-use and -cover 
conditions in the municipalities of Alto Alegre, Boa Vista, 
Cantá, Normandia, and Bonfim.

 

 
FIGURE 1. Location of the study area and municipalities of Alto Alegre (1), Boa Vista (2), Cantá (3), Normandia (4) and Bonfim 
(5), Roraima state, Brazil. Coordinate system: WGS84 (EPSG: 4326). 
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Sensors, orbital datasets, and preprocessing 

In this study, we used a collection of images from 
three sensors (Table 1). One is a synthetic aperture radar 
(SAR) operating in the C-band (at the 5.405 GHz central 
frequency), which corresponds to a 5.55-cm wavelength, 
while the other two are optical sensors, Multispectral 

Instrument (MSI) and Operational Land Imager (OLI). The 
Sentinel-1 satellite constellation provides SAR images, and 
the Sentinel-2 and Landsat 8 satellites provide optical 
images. The Digital Elevation Model (DEM) known as 
“ALOS World 3D-30m (1 arcsec)” was used as an auxiliary 
dataset (Tadono et al., 2016).

 
TABLE 1. Different datasets used in per-pixel LULC classification to compare Sentinel-1, Sentinel-2, and Landsat 8. 

Input Data Satellite Sensors/Spectral Bands/Polarization/Vegetation index Reference/Source 

MapBiomas Landsat (5,7,8) TM, ETM+, OLI Souza et al. (2020) 

DEM ALOS World 3D (30m) AVE_DSM [elevation; slope] Tadono et al. (2016) 

Satellite 
images 

Sentinel-1 VV, VH ESA/Sentinel-1 

Sentinel-2 
B02/B, B03/G, B04/R, B05/Red-Edge1, B06/Red-Edge2, 

B07/Red-Edge3, B08/NIR, B08A/Red-Edge4, B11/SWIR1; 
B12/SWIR2; NDVI 

ESA/Sentinel-2 

Landsat 8 
B02/B, B03/G, B04/R, B05/NIR, B06/SWIR1, B07/SWIR2, 

B10/TIRS, NDVI 
USGS/NASA 

Rouse et al. (1973) 
Notes: Acronyms are as follows: ESA, European Space Agency; USGS, United States Geological Survey; NASA, National Aeronautics and 
Space Administration; NDVI, Normalized Difference Vegetation Index. 

 
All orbital data were acquired and processed using 

the GEE cloud computing platform, which runs on the 
portal: https://earthengine.google.com (Gorelick et al., 
2017). This tool allows handling and processing large 

amounts of data, with high computing power. The images 
were taken over the study area from 2018 to 2019. Table 2 
summarizes the satellite specifications and the main 
characteristics of the available dataset for the study area. 

 
TABLE 2. Description and main characteristics of the dataset available by Sentinel-1, Sentinel-2, and Landsat 8 for five 
municipalities of Roraima state, Brazil.  

Satellites and        
Specifications 

Radar Imagery Optical Imagery 

Sentinel-1A/B Sentinel-2A/B Landsat 8 

Sensor SAR C-Band MSI  OLI  

Spatial resolution (m) 10 10/20 30 

Number of bands 
(used) 

1 9 7 

Revisit frequency 
(days) 

<6 <6 16 

Swath (km) 250 290 180 

 Central frequency  Spectral bands 

 5.405 GHz 
B, G, R, Red-ege(1,2,3), 

NIR, SWIR(1,2) 
Ultra-Blue, B, G, 

R, NIR, SWIR(1,2) 
 Orbit,  

[relative number] and incident angle range  

 Descending Ascending MGRS Tile Path/Row 

Normandia [164] 34.22° - 41.25° [83] 34.33° - 41.42° 
20NQJ, 20NQK, 20NRJ, 

20NRK, 21NTE 
231/57, 231/58, 
232/57, 232/58 

Number of scenes 118 82 377 126 

    

Alto Alegre 
[54] 30.89° - 37.70° 

[156] 30.83° - 46.13° 
[83] 42.12° - 46.19° 

[134] 35.91° - 46.05° 
[135] 35.92° - 46.05° 
[62] 30.78° - 44.06° 

20NLH, 20NLJ, 
20NMH, 20NMJ, 
20NMK, 20NNH, 

20NNJ, 20NPH, 20NPJ, 
20NQH, 20NQJ 

232/57, 232/58, 
233/57/, 233/58, 

1/57, 1/58,  

Number of scenes 238 192 1460 142 
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Boa Vista 
[83] 39.16° - 43.55° 

- 
[62] 43.37° - 46.02° 

[164] 30.75° - 35.05° 
20NQH, 20NQJ, 
20NRJ, 20NQK 

232/57, 232/58 

Number of scenes 118 179 303 73 

    

Bonfim [83] 32.60° - 39.94° 
[164] 32.51° - 39.02° 
[163] 33.36° - 37.45° 

20NQH, 20NQJ, 
20NRH, 20NRJ, 20NRK 

231/58, 231/59, 
232/57 

Number of scenes 118 122 376 149 

    

Cantá 
[83] 35.98° - 42.11° 

- 

[62] 41.94° - 46.01° 
[163] 35.04° - 30.74° 
[164] 30.75° - 34.22° 

20NQG, 20NQH, 
20NQJ, 20NRH, 20NRJ 

231/58, 231/59 

Number of scenes 118 122 375 111 

 
Sentinel-1 

A total of 1407 images of the Sentinel-1 (S1A/S1B) 
were analyzed. These are high temporal and spatial 
resolution products in Interferometric Wide Swath (IW) and 
Level-1 Ground Range Detected High Resolution (GRDH) 
modes, with incidence angles from -30.74° to 46.19° (Table 
2). These scenes are projected on a regular 10 m × 10 m 
grid, with a reference spatial resolution of 20 m × 22 m 
(range and azimuth directions, respectively). 

GEE pre-processing includes applying an orbit file, 
GRD border denoising, thermal denoising, radiometric 
calibration to radar brightness (σ^°), Range-Doppler Terrain 
correction to geocode the Universal Transverse Mercator 
(UTM) coordinates, WGS-84 ellipsoid (UTM-WGS84). A 
speckle filter was applied to the mosaic as a circle with a 
smoothing radius of 50 to remove backscatter noise (salt and 
pepper effect) in the images, which is characteristic of SAR 
scenes (ESA, 2021; Mullissa et al., 2021). 

Sentinel-2 

For the Sentinel-2 (S2A/S2B) dataset, a total of 
2,891 images were acquired on the GEE platform over the 
study area for the years 2018-2019, of which 382 were 
processed with a criterion of less than 30% of cloudiness, 
with a spatial resolution of 10 and 20 m, and spectral 
resolution integrated by 10 bands (Table 2). 

As a source, level-2A products were used, which are 
a Bottom-Of-Atmosphere (BOA) reflectance product, 
which is radiometrically and geometrically corrected, 
including orthorectification using Sentinel-2 Toolbox 
(ESA, 2021).  

Moreover, a cloud-masking function, known as 
cloud probability collection or S2cloudless (Ke et al., 2017), 
was applied. This algorithm created with the sentinel2-
cloud-detector library is based on a highly efficient gradient 
boosting decision tree (Highly Efficient Gradient Boosting 
Decision Tree, LightGBM). Data from 10 Sentinel-2 bands 
(B1-B5 and B8-B12) were sampled by bilinear interpolation 
at 10 µm resolution before applying the algorithm. This pre-
processing was performed to remove clouds, cirrus clouds, 
and shadows, using a cloud scoring algorithm to mask 
polluted pixels as described in ESA (2021), and projected in 
UTM-WGS 84 coordinates. 

Landsat 8 

A series of 601 Landsat-8 OLI images (Table 2) was 
evaluated before selecting the least affected by clouds 
(filtering), resulting in 278 scenes. All of these belong to the 
Landsat-8 tier 1 SR (T1) collection, which was uploaded to 
GEE for analysis. The T1 collection contains the highest 
quality Level-1 Precision (L1TP) data that is considered 
suitable for time series analysis. This dataset comprises 
atmospherically-corrected surface reflectance that has been 
orthorectified, geo-registered (terrain corrected), and 
projected to UTM-WGS 84 coordinates. 

A per-pixel mask function was applied to treat the 
presence of clouds, cloud shadows, and cirrus clouds, which 
are derived from the CFmask algorithm for this dataset from 
the T1 collection (Foga et al., 2017). 

Regarding sensor selection, used orbital dataset and 
to achieve the research goal, five supervised pixel-based 
classification approaches were established (Table 3). 

 
TABLE 3. Different approaches used to compare Sentinel-1, Landsat 8, and Sentinel-2 for LULC classification. 

Code Image type 
Numbers 
of bands 

Platform Bands composite 

SD SAR, DEM 4 Sentinel-1, ALOS World 3D VH, VV, elev, slope 

ODL Optical, DEM 10 Landsat 8, ALOS World 3D 
B2, B3, B4, B5, B6, B7, B10, NDVI, 

elev, slope 

SODL SAR, Optical, DEM 14 Sentinel-1, Landsat 8, ALOS World 3D 
VH, VV, B2, B3, B4, B5, B6, B7, B10, 

NDVI, elev, slope, 

ODS Optical, DEM 13 Sentinel-2, ALOS World 3D 
B2, B3, B4, B5, B6, B7, B8, B8A, B11, 

B12, NDVI, elev, slope 

SODS SAR, Optical, DEM 15 Sentinel-1, Sentinel-2, ALOS World 3D 
VH, VV, B2, B3, B4, B5, B6, B7, B8, 

B8A, B11, B12, NDVI, elev, slope 
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Reference classification (MapBiomas collection) and 
land-use and -cover classes used  

Land-use and -cover was mapped using the 
Collection 5-derived product for the period 1985–2019 and 
updated in August 2020 (https://mapbiomas.org/), with a 
30-m spatial resolution. This first approximation was used 
to select the classifier training areas and define the LULC 
classes. This resulted in 10 classes (Table 4) namely: Forest 
Formation, Forest Plantation, Non-Forest Formation in 

Wetland, Grassland Formation, Pasture, Agriculture, Beach 
(sandbanks), Savanna, Urban Infrastructure, and Water. 

A total of 36 field inspections (field reality) were 
carried out in the five municipalities during the 2 years 
studied, identifying in situ areas corresponding to each 
selected class. Geographical coordinates were taken at these 
sites using an Android cell phone application (As Minhas 
Coordenadas GPSTM). From these sites were obtained spectral 
signatures of the actual cover (training), as well as subsequent 
verification of classification accuracy (validation).

 
TABLE 4. Description of the targeted LULC classes based on MapBiomas classification collection. 

ID LULC Class Name Description 

1  Forest Formation 
Vegetation types dominated by tree species with high-density continuous 
canopy, and forest resulting from natural regrowth 

2  Forest Plantation Planted tree species for commercial use 

3  
Non-Forest Formation in 
Wetland 

Floodplain with fluvial and lake influence, located along watercourses and in 
lowlands areas that accumulate water 

4  Grassland Formation 
Vegetation type with a predominance of herbaceous stratum, shrub-herbaceous 
stratum, natural grasslands 

5  Pasture 
Pasture areas, related to farming activity. Part of the area classified as grassland 
formation also includes pasture areas 

6  Agriculture 
Areas predominantly occupied by annual and perennial crops where it was not 
possible to distinguish between pasture and agriculture 

7  Beach* 
Sandy areas, with bright white color, where there is no vegetation 
predominance of vegetation of any kind, river sandbank 

8  Savanna* 
Savanna (lavrado, cerrado), open vegetation, dominated by grass and grasses, 
where trees and shrubs may or may not be present 

9  Urban Infrastructure 
Urban areas with a predominance of non-vegetated surfaces, including roads, 
highways, and constructions 

10  Water River, lake, and other water bodies. 
* Classification modified by the authors  

 
A selection criterion was applied in training areas 

under the following conditions: a) easy-access areas, 
preferably interurban roads, rural roads and, in the last case, 
property internal access; b) areas with the presence of at 
least three of the classes to be classified; c) if the area was 
being cultivated, it should preferably be with crops 
representative of those produced in the state, that is, grains 
and/or cereals. 

In difficult access areas, both related to road 
limitations and circulation restrictions due to the Covid-19 
pandemic regulations, land covers were identified using 
false color and true color composites of Sentinel-2 imagery 
at 10-m spatial resolution. The researchers' knowledge of 
the area under study was used, as well as high-resolution 
images available from the Google Earth© and Bing Maps© 
online sites for the identification of land covers. 

To avoid overfitting, the data were pseudo-randomly 
separated in the proportions 60-40%, 70-30%, and 80-20% 
(training-validation), observing the best model fit in the 
proportion 70 -30%. After the validation, the required 
statistics were generated to validate and measure 
classification reliability. The training areas, selected by 
polygonal vectors, were uniformly distributed over the 
collected images to represent each class to be classified. 

Lastly, classification accuracy was evaluated by the 
following statistics: a) overall accuracy (OA), b) Kappa 
index, c) commission error (CE), d) omission error (OE), e) 
user accuracy (UA), f) producer precision (PA), and g) F1 
measurement (Congalton & Green, 2019; Olofsson et al., 
2014; Sasaki, 2007); and Sokolova et al., 2006). 

The classification approaches were statistically 
compared by a pairwise Sign Test on every two samples, 
using the BSDA© version 1.2.0 package in the R 
environment (Mangiafico, 2016). The p-value associated 
with F1 was obtained, i.e., the probability that the F1 score 
measures the evidence against the null hypothesis (Ho: the 
median of the paired differences [F1] in the population from 
which the sample was drawn [approaches] is equal to zero).  

Classification algorithm 

The non-parametric machine-learning Random 
Forest classifier was used for the supervised classification 
(Breiman, 2001), which is a widely used high-precision 
classifier. Its robustness lies in the fact that it can combine 
multiple decision-tree results through a selection of random 
subsets within the training set. This algorithm classifies 
each pixel individually, resulting in a final classification by 
majority voting. In other words, each decision tree is 
generated using a different subset of training samples in 
each interaction, thus building multiple singular or 
disconnected trees, which may not contain all classes in 
each tree (Gareth et al., 2013). 
 
RESULTS AND DISCUSSION 

Except for SD, in all classification approaches, elev 
(elevation) band corresponding to DEM resulted in a higher 
record of importance variable. This variable is used to rank 
the classification from the algorithm (Behnamian et al., 
2017). On the other hand, in this same scenario, the slope 
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range was more important than the elevation range, with 
records of 1852.7 (S1/A) and 1435.5 (S1/B), respectively 
(Figure 2 [C, D]). It suggests that, in the case of radar, 
discrimination between the evaluated classes is influenced 
by backscatter (VH, VV) and terrain slope, rather than        
by elevation.  

The foregoing demonstrates the great utility of 
incorporating a DEM into a supervised classification. In this 
regard, Hurskainen et al. (2019) found that geospatial 
datasets used as classification aids, such as topography, soil 
characteristics, settlement patterns, watercourses, and 

vegetation phenology, can significantly increase the 
discriminatory potential of LULC categories, improving 
classifications in the context of complex heterogeneous 
landscapes. 

Spectral behavior of the land-use and -cover classes 

Sentinel-1 

Figure 2 [A, B] shows the backscatter values in 
decibels (dB) corresponding to the thematic categories 
identified using the SAR collection.  

 

                                                                     

 

    

FIGURE 2. [A, B] Spectral behavior of the ten LULC classes obtained with Sentinel-1. [C, D] Ranking showing the importance 
of the four variables (bands) used in the Random Forest algorithm with Sentinel-1. 

 
In general, the classes Water and Beach showed the 

lowest intensity among the ten categories for both 
polarizations studied and both orbits. Regarding Water, the 
backscatter values in the Descending and Ascending orbits 
were -29.78 dB and -29.80 dB for the VH band, and -21.10 
dB and -16.45 dB for the VV, respectively. However, in the 
category Beach, the intensities found were -27.47 dB (VH) 
and -17.45 dB (VV) for S1/A and -27.47 dB (VH) and -
15.07 dB (VV) for S1/B. Such low backscattering measures 
are because these land-cover classes comprise flat surfaces 
with little roughness (specular), which causes the SAR 
signal to bounce away from the radar antenna (ESA, 2021). 

In contrast, the highest backscatter records 
corresponded to the Forest Formation classes, with -13.24 
dB and -13.54 dB (VH), -9.31 dB and -7.18 dB (VV), as 
well as to Forest Plantation classes, with values of -15.06 
dB and -15.76 dB (VH), -9.31 dB and -10.01 dB (VV) in 
both orbits considered, respectively. These surfaces behave 
like rough surfaces, causing volume dispersion. 

As has been reported by Carneiro et al. (2020), 
Hirschmugl et al. (2020), and Rao et al. (2021), the classes 

Water, Forest Formation, Forest Plantation, and Grassland 
can be easily distinguished using the VH and VV 
polarizations individually. Conversely, the classes Pasture, 
Agriculture, and Savanna are not easily differentiated, as the 
average range of values among them is narrower for both 
VH and VV polarization. 

The combined revisit time of the 
COPERNICUS/S1_GRD image collection (S1/A and S1/B) 
over the study area was between 1 and 3 days, which is a 
characteristic of this constellation in its passage over 
latitudes close to the equator (ESA, 2021). Moreover, the 
backscatter values obtained in the two analyzed orbits were 
highly coincident, which is why we decided to use only the 
Descending orbit (S1/A) to combine with the optical sensors 
onboard Landsat-8 and Sentinel-2 in the classification. 

Landsat 8 

Figure 3 [A] displays the spectral profile of bands 
and NDVI of L8 used, while Figure 3 [B] shows the ranking 
of each band used to obtain the ten cover classes.
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FIGURE 3. [A] Spectral behavior of the ten LULC classes obtained with Landsat 8. [B] Ranking showing the importance of the 
ten variables (bands) used in the Random Forest algorithm with Landsat 8. 
 

Visible bands (RGB) express the lowest relative 
pixel values. It is difficult to differentiate cover classes 
using only these bands, as these spectral bands are poorly 
differentiated. Among these bands, B03 is the least 
important as for the variable importance of the RF algorithm 
with a value of 167.2 (dimensionless). These bands are very 
useful in identifying classes made up of plant covers 
because they are related to chlorophyll and other pigments 
present in leaves (Pelletier et al., 2016).  

Although band B10 (thermal) shows a high 
importance value (231.7), it does not discriminate between 
the classified categories. The NIR bands, SWIR1 and 
SWIR2, have great potential for spectral differentiation 
between classes, with importance values of 222.5, 214.1, 
and 196.3 respectively. The NDVI had good discrimination 
potential for the categories studied, with its importance 
value being 212. 

Sentinel-2 

Figure 4 [A, B] displays the spectral behavior of 
bands and NDVI, as well as the ranking of importance 
corresponding to S2.  

The group of visible region bands (RGB) showed the 
lowest pixel relative values, with importance values of 
217.3, 223.1, and 254.8, respectively. A second group was 
made up of the so-called Red Edge vegetation bands (1, 2, 
3), with mean pixel values. These bands show good 
differentiation among vegetation, water, and urban 
infrastructure cover classes, with importance values of 
224.6, 223.5, and 219.9, respectively. The bands with the 
highest relative values of reflectance turned out to be NIR, 
Red Edge-4, SWIR (1.2), and NDVI. Of these, the most 
important were SWIR2 and SWIR1, with importance values 
of 271.1 and 261.1, respectively. Studies have shown that 
the 20-m Red Edge (1, 2, 3), NIR, and SWIR (1, 2) bands 
yield reflectance measurements that allow an optimal 
differentiation between vegetation-related classes 
(Hernandez et al., 2020; Phiri et al., 2020). 

NDVI showed an importance value of 253.8 in 
classification, as it had a greater effect in differentiating 
Water, Forest Formation, Forest Plantation, Beach, and 
Urban classes, as reported by Da Silva et al. (2020).

 

     

FIGURE 4. [A] Spectral behavior of the ten LULC classes obtained with Sentinel-2. [B] Ranking showing the importance of the 
thirteen variables (bands) used in the Random Forest algorithm with Sentinel-2. 
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By comparing Landsat 8 and Sentinel-2 results, the 
latter had better spectral behavior in the classification. This 
may be influenced by its narrower bandwidth and better 
spatial resolution. The classes related to forest vegetation, 
lower native vegetation, agriculture, urban infrastructure, and 
water were clearly defined with the NIR and SWIR channels 
of S2. Mandanici & Bitelli (2016) reported similar results.  

Classification accuracy 

Table 5 shows the summary of accuracy metrics 
derived from the RF sorting approaches. The overall 
evaluation of each sorting approach is expressed in the AO 
and Kappa index. The metrics UA, PA, F1, CE, and OE 
showed more details for each classified class. 

In the SD approach, AO was 97.18% and Kappa 
index 0.88 (dimensionless). For ODL and ODS, these 
metrics had the following values 99.56% and 0.98, and 
99.33% and 0.97, respectively. Radar and optical sensor 
classifications showed a notorious difference. However, 
when ODL is compared with ODS, such difference was 
practically imperceptible. When evaluating how adding S1 
improved L8 and S2 classifications, SODL had an OA of 
99.71 and a Kappa index of 0.99, while for SODS these 
values were 99.53% (OA) and 0.98 (Kappa). This represents 

0.15- and 0.20-unit precision increases for SODL and SODS, 
respectively, and in a Kappa index of 0.01 for both.  

Notably, we could not assess the advantage of 
adding radar images to optical ones for classification. 
However, when going into the detail of some classes, such 
a difference was more noticeable. The classes with the 
highest CE and OE errors were Urban (9) and Wetland (3). 

In the ODL scenario, the Urban class had an OE of 
18.68% when assigning pixels belonging to another class, 
whereas OE was reduced to 10.81% in the SODL, 
improving classification for urban infrastructure. A similar 
situation was evident in the ODS and SODS scenarios, 
wherein the Urban class had a CE of 52.27% for ODS and 
in SODS the CE fell to 44.80%. 

Regarding the Wetland class in the ODL, the CE was 
15% when predicting pixels in this class, while the CE was 
higher (17.02%) in the SODL scenario. However, in the 
ODS and SODS scenarios, the Wetland class showed an EC 
of 16.95% for ODS and in SODS it increased to 28.95%. 
The best-classified classes, both with S2 and L8 and added 
with S1, were the Forest Formation and Beach, with CE 
values below 0.01%. In the Water class, no OE was 
observed in the ODS, SODL, and SODS scenarios.  

 
TABLE 5. Summary of statistics with a computed area (km2 and %) for the ten LULC classes derived from Random Forest 
algorithm, classified with radar and optical sensors. Metrics: User Accuracy (UA), Producer Accuracy (PA), F1-score value 
(F1), Omission Error (OE), Commission Error (CE), Overall Accuracy (OA), and Kappa Index (Kappa).  

   SD    ODL 

Code 
UA 
(%) 

PA 
(%) 

F1 
CE 
(%) 

OE 
(%) 

Area 
(km2) 

%  
UA 
(%) 

PA 
(%) 

F1 
CE 
(%) 

OE 
(%) 

Area 
(km2) 

% 

1 98.79 99.60 0.99 0.40 1.21 28148.45 52.28  99.94 99.99 1 0.01 0.06 29728.80 55.21 

2 76.73 79.22 0.78 20.78 23.27 1962.26 3.64  98.54 96.73 0.98 3.27 1.46 1173.41 2.18 

3 85.71 55.56 0.67 44.44 14.29 689.65 1.28  97.14 85.00 0.91 15.00 2.86 1160.31 2.15 

4 95.78 97.21 0.96 2.79 4.22 4396.38 8.16  97.94 98.83 0.98 1.17 2.06 6737.28 12.51 

5 71.47 47.18 0.57 52.82 28.53 1873.58 3.48  98.31 97.15 0.98 2.85 1.69 3881.10 7.21 

6 87.64 90.07 0.89 9.93 12.36 4747.70 8.82  98.00 99.22 0.99 0.78 2.00 749.79 1.39 

7 90.53 86.87 0.89 13.13 9.47 86.89 0.16  100 99.07 1 0.93 0 14.84 0.03 

8 83.31 80.00 0.82 20.00 16.69 11224.21 20.85  95.55 96.57 0.96 3.43 4.45 9272.63 17.22 

9 67.12 40.50 0.51 59.50 32.88 488.70 0.91  81.32 59.68 0.69 40.32 18.68 1021.91 1.90 

10 91.39 93.24 0.92 6.76 8.61 227.98 0.42  99.28 100 1 0 0.72 103.55 0.19 

 Total 53845.80 100  Total 53843.63 100 
AO 
(%) 

  97.18%    99.56% 

Kappa   0.88    0.98 

        

   ODS    SODL 

Code 
UA 
(%) 

PA 
(%) 

F1 
CE 
(%) 

OE 
(%) 

Area 
(km2) 

%  
UA 
(%) 

PA 
(%) 

F1 
CE 
(%) 

OE 
(%) 

Area 
(km2) 

% 

1 99.87 99.93 1 0.09 0.13 30555.67 56.75  99.97 99.99 1 0.01 0.03 30457.31 56.57 

2 94.32 88.87 0.88 10.40 7.25 1070.10 1.99  99.56 98.28 0.99 1.72 0.44 1370.85 2.55 

3 100 78.72 0.87 16.95 2.00 1126.74 2.09  97.50 82.98 0.90 17.02 2.50 521.85 0.97 

4 97.17 98.14 0.98 1.88 2.67 9160.83 17.01  99.04 99.72 0.99 0.28 0.96 5680.11 10.55 

5 94.27 96.81 0.95 4.03 4.67 4897.22 9.10  98.42 99.65 0.99 0.35 1.58 3469.72 6.44 

6 98.24 99.70 0.99 0.60 1.93 896.61 1.67  99.37 99.84 1 0.16 0.63 375.66 0.70 

7 99.06 100 1 0 1.02 6.83 0.01  100 100 1 0 0 2.97 0.01 

8 93.66 96.27 0.95 2.70 5.64 4674.30 8.68  96.10 98.40 0.97 1.60 3.90 11859.07 22.03 

9 81.13 36.13 0.59 52.27 14.86 1350.48 2.51  89.19 53.66 0.67 46.34 10.81 80.13 0.15 

10 100 100 1 0.74 0 104.86 0.19  100 99.35 1 0.65 0 25.96 0.05 

 Total 53843.63 100  Total 53843.63 100 
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AO 
(%) 

  99.33%    99.71% 

Kappa   0.97    0.99 

        

   SODS     

Code 
UA 
(%) 

PA 
(%) 

F1 
EC 
(%) 

EO 
(%) 

Area 
(km2) 

%  Code Class name 

1 99.91 99.96 1 0.05 0.09 30967.13 57.51  1 Forest Formation 

2 98.25 91.99 0.94 5.90 3.04 1021.88 1.90  2 Forest Plantation 

3 100 85.71 0.89 28.95 3.57 613.90 1.14  3 Wetland 

4 98.89 99.48 0.99 0.20 1.76 7042.96 13.08  4 Grassland 

5 95.58 97.33 0.97 2.55 4.97 4822.75 8.96  5 Pasture 

6 99.06 99.85 0.99 0.46 0.92 793.79 1.47  6 Agriculture 

7 100 100 1 0 0 2.37 0.00  7 Beach 

8 95.40 97.34 0.96 3.09 3.69 8360.04 15.53  8 Savanna 

9 91.30 50.00 0.64 44.80 16.87 209.28 0.39  9 Urban 

10 100 100 1 0 0 9.53 0.02  10 Water 

 Total 53843.63 100    
AO 
(%) 

  99.53%         

Kappa   0.98         

 
Table 6 displays the sign test applied to F1. Such a 

test allowed us to verify statistical differences among the 
approaches. Thus, the SD approach was significantly 
different (p ≤ 0.01) from the others, reflecting its worst 
performance in the classification. 

ODL and ODS, both optical, showed barely 
perceptible differences (p ≤ 0.1). Likewise, for ODL, the 
combination of L8 with S1 (SODL) had no significant effect  

(p > 0.1). So, under these conditions, classification did not 
improve when images from these platforms were combined. 
However, for ODS, the combination of S2 and S1 (SODS) 
improved classification significantly (p ≤ 0.05). As for the 
SODL and SODS approaches, the combination of S2 and 
S1 had a better classification performance than did L8 and 
S1, which were different from each other (p ≤ 0.05).

 
TABLE 6.  Sign Test for the F1 scores of the five approaches used in LULC classification classes derived from Random Forest 
algorithm, classified with radar and optical sensors.  

 SD ODL SODL ODS SODS 

SD - 0.001953 *** 0.001953 *** 0.001953 *** 0.001953 *** 

ODL 0.001953 *** - 0.4531 NS 0.0625 * 0.375 NS 

SODL 0.001953 *** 0.4531 NS - 0.01563 ** 0.03125 ** 

ODS 0.001953 *** 0.0625 * 0.01563 ** - 0.03125 ** 

SODS 0.001953 *** 0.375 NS 0.03125 ** 0.03125 ** - 

Note: SD = Sentinel-1 + DEM, ODL = Landsat 8 + DEM, SODL = Sentinel-1 + Landsat 8 + DEM, ODS = Sentinel-2 + DEM, SODS = 
Sentinel-1 + Sentinel-2 + DEM. *** = P ≤ 0.01, ** = P ≤ 0.05, * = P ≤ 0.1, NS = Not Significant. 
 
Maps of land-uses and covers obtained with RF 
classifier 

Although classifications are quantitatively 
evaluated, the final product must be subjected to a 
qualitative analysis by the specialist who carried it out, as  

well as by the users to whom it is intended. Furthermore, 
another influencing criterion is the knowledge of the area of 
study that those involved in the work have. Figure 5 shows 
the maps of LULC types classified at the pixel level, with a 
30-m spatial resolution.
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FIGURE  5. Maps of the land-use and -cover (LULC) classes produced by a per-pixel classification (30 m) with Random Forest 
algorithm and Sentinel-1, Landsat 8, and Sentinel-2 satellites. 

Given the expertise and knowledge of the authors on the study area, we can state that SODL and SODS maps were the 
fittest to the reality of the field. Figure 6 demonstrates a detailed analysis, wherein four Sentinel-2 true color mapped sample 
sites (S2 4-3-2/A, B, C and D) are compared for each classification approach.  
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FIGURE  6. Visual comparison of four example sites with LULC classes. Row [S24-3-2] show true color Sentinel-2 at 10m 
images. Rows [SD, ODL, SODL, ODS, SODS] correspond classification (30 m) based on radar and optical sensors with simple 
and combined scenes. 
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Clip S2 4-3-2/A corresponds to an area with a 
predominance forest plantation (Acacia mangium), whose 
borders are covered with savanna and grasslands. In the clip 
S2 4-3-2/B, agricultural areas with 5 central pivots and other 
crops with a watercourse (Cauamé river) are clearly seen. 
Clip S2 4-3-2/C is mainly composed of forest vegetation, 
crop areas, water (Branco River), sandbanks, savanna, and 
grasslands. Lastly, clip S2 4-3-2/D is mostly represented by 
the urban planning of the city of Boa Vista, which is the 
capital of Roraima State, besides being flanked by the 
Branco River.  

Both SODL and SODS approaches were 
qualitatively the best to define all 10 evaluated cover 
classes. However, ODL tended to erroneously classify 
exposed lands and savannahs as urban areas. Regarding 
ODS, urban areas were classified as savanna, highlighting 
only paved roads. Lastly, SD showed a high degree                
of classification confusion, hindering a proper land          
class differentiation. 
 
CONCLUSIONS 

Our results indicate that the fusion of multitemporal 
SAR and optical data increases overall accuracy for LULC 
mapping when compared to the use of temporal optical and 
SAR data independently. The LULC classes Water, Forest 
Formation, Forest Plantation, and Grassland are easily 
differentiated with the use of SAR. RGB bands of optical 
sensors are highly sensitive to the spectral response of the 
classes vegetation, Water, and Urban. 

The incorporation of SAR images into classification 
with optical time series increases the possibility of 
classifying areas highly affected by clouds during long 
periods, as is the case of the Brazilian Legal Amazon. This 
is due to variations in backscattering that different covers 
experience in geometry, roughness, and moisture content, 
which are the main physical factors inherent in any surface 
object or target detected by radar. 

High spatial resolution optical images, such as 
Sentinel-2 ones, are useful to classify areas of difficult 
access, at least for first-class level, but this is limited by the 
presence of clouds. Conversely, SAR images allow to 
classify the LULC categories of particular interest, such as 
bodies of water, flooded areas, or urban infrastructure. 

Google Earth Engine™ cloud computing platform 
allows the analysis of many images from optical and radar 
sensors with free and open access. Such analysis results in 
products with each of the approaches studied. Overall, for 
LULC determined and using the method presented in this 
study, the SODL and SODS approaches show the best 
visual results in the final product.   
 
ACKNOWLEDGEMENTS 

We thank the following data providers: Japan 
Aerospace Exploration Agency (JAXA) for ALOS Global 
Digital Surface Model "ALOS World 3D - 30m 
(AW3D30)"; Sentinel dataset provided by the European 
Space Agency (ESA), Landsat 8 images courtesy of the 
National Aeronautics and Space Administration (NASA), 
U.S. Geological Survey (USGS) and also grateful to Google 
for providing access to the Google Earth Engine. The first 
author would also like to thank the PAEC OEA-GCUB 
Brazil Scholarship Program, International Cooperation 

Group of Brazilian Universities (GCUB), and Organization 
of American States (OAS) for providing a scholarship to 
pursue her PhD study in the Universidade Federal de Roraima 
(UFRR). Publication support of the EDITAL 06/2021 
PRPPG/PRÓ-PESQUISA/APOIO À PUBLICAÇÃO 
CIENTÍFICA–LINHA VI (Dean of Research and Graduate 
Studies of the Federal University of Roraima). 
 
REFERENCES 

Bacarji AG, Vilpoux OF, Paranhos Filho AC (2021) 
Impacts of agrarian reform on land use in the biomes of 
the Midwest region of Brazil between 2004 and 2014. 
Anais da Academia Brasileira de Ciências 
93(1):e20181106. DOI: https://doi.org/10.1590/0001-
3765202120181106 

Barni PE, Barbosa RI, Xaud HAM, Xaud MR, Fearnside 
PM (2020) Precipitação no extremo norte da Amazônia: 
distribuição espacial no estado de Roraima, Brasil. 
Sociedade & Natureza 32:439-456. DOI: 
https://doi.org/10.14393/SN-v32-2020-52769 

Behnamian A, Millard K, Banks SN, White L, Richardson 
M, Pasher J (2017) A systematic approach for variable 
selection with random forests: achieving stable variable 
importance values. IEEE Geoscience and Remote Sensing 
Letters 14(11):1988-1992. DOI: https://doi.org/10.1109/ 
LGRS.2017.2745049 

Breiman L (2001) Random forests. Machine learning 45: 
5-32. DOI: https://doi.org/10.1023/A: 1010933404324 

Carneiro AF, Oliveira WV, Sant’Anna SJS, Doblas J, Vaz 
DV (2020) Exploiting Sentinel-1 SAR time series to detect 
grasslands in the northern Brazilian Amazon. The 
International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences XLIII-B3-
2020:259-265. DOI: https://doi.org/10.5194/isprs-
archives-XLIII-B3-2020-259-2020 

Chu D (2020) Remote Sensing of Land Use and Land 
Cover in Mountain Region: A Comprehensive Study at the 
Central Tibetan Plateau. Springer Singapore, Singapore. 
DOI: http://link.springer.com/ 10.1007/978-981-13-7580-4 

Congalton RG, Green K (2019) Assessing the accuracy of 
remotely sensed data: principles and practices. Boca 
Raton, CRC Press. 347 p. 

Da Silva JF, Cicerelli RE, Almeida T, Neumann MRB, 
Souza ALF de (2020) Land Use/ Cover (LULC) mapping 
in Brazilian Cerrado using a neural network with Sentinel-
2 data. Floresta 50(3):1430-1438. DOI: 
https://doi.org/10.5380/rf.v50i3.59747 

ESA - EUROPEAN SPACE AGENCY (2021). User 
guides - sentinel online - sentinel online. Available: 
https://sentinel.esa.int/web/sentinel/user-guides/ Accessed: 
23 Jul, 2021. 

Ferreira ABR, Pereira G, Fonseca BM, Cardozo FDS 
(2021) As mudanças no uso e cobertura da terra na região 
oeste da Bahia a partir da expansão agrícola. Formação 
28(53). DOI: 
https://doi.org/10.33081/formacao.v28i53.7871 



Land-use and land-cover mapping using a combination of radar and optical sensors in Roraima - Brazil

 

 
Engenharia Agrícola, Jaboticabal, v.42, n.2, e20210142, 2022 

Floreano IX, Moraes LAF de (2021) Land use/land cover 
(LULC) analysis (2009-2019) with Google Earth Engine and 
2030 prediction using Markov-CA in the Rondônia State, 
Brazil. Environmental Monitoring and Assessment 
193(4):239. DOI: https://doi.org/10.1007/s10661-021-09016-y 

Foga S, Scaramuzza PL, Guo S, Zhu Z, Dilley RD, 
Beckmann T, Schmidt GL, Dwyer JL, Joseph Hughes M, 
Laue B (2017) Cloud detection algorithm comparison and 
validation for operational Landsat data products. Remote 
Sensing of Environment 194:379-390. DOI: 
https://doi.org/ 10.1016/j.rse.2017.03.026 

Gareth J, Witten D, Hastie T, Tibshirani R (2013) An 
Introduction to Statistical Learning: with Applications in 
R. 4 Classification. Springer-Verlag, New York, p127-168. 
DOI: https://doi.org/ 10.1007/978-1-4614-7138-7 

Ghayour L, Neshat A, Paryani S, Shahabi H, Shirzadi A, 
Chen W, Al-Ansari N, Geertsema M, Pourmehdi Amiri M, 
Gholamnia M, Dou J, Ahmad A (2021) Performance 
Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land 
Cover/Use Classification Using a Comparison between 
Machine Learning Algorithms. Remote Sensing 
13(7):1349. DOI: https://doi.org/10.3390/rs13071349 

Gomes M, Ferreira RL, Ruchkys Ú de A (2019) 
Landscape evolution in ferruginous geosystems of the Iron 
Quadrangle, Brazil: a speleological approach in a 
biodiversity hotspot. SN Applied Sciences 1(9):1102. DOI: 
https://doi.org/10.1007/s42452-019-1139-3 

Gupta D, Sethi D, Bathija R (2021) A Review on Land-use 
and Land-change with Machine Learning Algorithm. IOP 
Conference Series: Materials Science and Engineering 
1119(1):012006. DOI: https://doi.org/10.1088/1757-
899X/1119/1/012006 

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau 
D, Moore R (2017) Google Earth Engine: Planetary-scale 
geospatial analysis for everyone. Remote Sensing of 
Environment 202:18-27. DOI: 
https://doi.org/10.1016/j.rse.2017.06.031 

Gutiérrez-Vélez VH, DeFries R (2013) Annual multi-
resolution detection of land cover conversion to oil palm in 
the Peruvian Amazon. Remote Sensing of Environment 
129:154-167. DOI: https://doi.org/ 
10.1016/j.rse.2012.10.033 

Hassan Z, Shabbir R, Ahmad SS, Malik AH, Aziz N, Butt 
A, Erum S (2016) Dynamics of land use and land cover 
change (LULCC) using geospatial techniques: a case study 
of Islamabad Pakistan. SpringerPlus 5(1):812. DOI: 
https://doi.org/10.1186/s40064-016-2414-z 

Hernandez I, Benevides P, Costa H, Caetano M (2020) 
Exploring Sentinel-2 for land cover and crop mapping in 
Portugal. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences XLIII-B3-2020:83-89. DOI: 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-83-2020 

Hirschmugl M, Deutscher J, Sobe C, Bouvet A, Mermoz 
S, Schardt M (2020) Use of SAR and Optical Time Series 
for Tropical Forest Disturbance Mapping. Remote Sensing 
12(4):727. DOI: https://doi.org/10.3390/rs12040727 

 

Hurskainen P, Adhikari H, Siljander M, Pellikka PKE, 
Hemp A (2019) Auxiliary datasets improve accuracy of 
object-based land use/land cover classification in 
heterogeneous savanna landscapes. Remote Sensing of 
Environment 233:111354. DOI: 
https://doi.org/10.1016/j.rse.2019.111354 

IBGE - Instituto Brasileiro de Geografia e Estatística (2009) 
Uso da terra e a gestão do território no Estado de Roraima: 
relatório técnico. Rio de Janeiro, IBGE, Coordenação de 
Recursos Naturais e Estudos Ambientais. 46p. Available: 
https://biblioteca.ibge.gov.br/visualizacao/livros/ 
liv95887.pdf Accessed: 3 Feb, 2021. 

IBGE - Instituto Brasileiro de Geografia e Estatística 
(2021) Áreas Territoriais | IBGE. Available: 
https://www.ibge.gov.br/geociencias/organizacao-do-
territorio/estrutura-territorial/15761-areas-dos-
municipios.html?=&t=saiba-mais-edicao Accessed: 5 May 
2021. 

Ishihara M, Tadono T (2017) Land cover changes induced 
by the great east Japan earthquake in 2011. Scientific 
Reports 7(1):45769. DOI: https://doi.org/10.1038/srep45769 

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, 
Liu TY (2017) LightGBM: A Highly Efficient Gradient 
Boosting Decision Tree. In: Conference on Neural 
Information Processing Systems (NIPS 2017). Long 
Beach. Proceedings… 

Kou W, Xiao X, Dong J, Gan S, Zhai D, Zhang G, Qin Y, 
Li L (2015) Mapping Deciduous Rubber Plantation Areas 
and Stand Ages with PALSAR and Landsat Images. 
Remote Sensing 7(1):1048-1073. DOI: 
https://doi.org/10.3390/rs70101048 

Lopes M, Frison PL, Crowson M, Warren‐Thomas E, 
Hariyadi B, Kartika WD, Agus F, Hamer KC, Stringer L, 
Hill JK, Pettorelli N (2020) Improving the accuracy of 
land cover classification in cloud persistent areas using 
optical and radar satellite image time series. Methods in 
Ecology and Evolution 11(4):532-541. DOI: 
https://doi.org/10.1111/2041-210X.13359 

Mandanici E, Bitelli G (2016) Preliminary Comparison of 
Sentinel-2 and Landsat 8 Imagery for a Combined Use. 
Remote Sensing 8(12):1014. DOI: 
https://doi.org/10.3390/rs8121014 

Mangiafico SS (2016) Summary and analysis of extension 
program evaluation in R. Rutgers Cooperative Extension: 
New Brunswick, NJ, USA 125, 16-22. 787 p. Web 
version. Available: http://rcompanion.org/handbook/ 
Accessed: 12 Jul. 2021. 

Mullissa A, Vollrath A, Odongo-Braun C, Slagter B, 
Balling J, Gou Y, Gorelick N, Reiche J (2021) Sentinel-1 
SAR Backscatter Analysis Ready Data Preparation in 
Google Earth Engine. Remote Sensing 13(10):1954. DOI: 
https://doi.org/10.3390/rs13101954 

Olofsson P, Foody GM, Herold M, Stehman SV, 
Woodcock CE, Wulder MA (2014) Good practices for 
estimating area and assessing accuracy of land change. 
Remote Sensing of Environment 148:42-57. DOI: 
https://doi.org/10.1016/j.rse.2014.02.015 

 



Miguel A. Maffei Valero, Wellington F. Araújo, Valdinar F. Melo, et al. 
 

 
Engenharia Agrícola, Jaboticabal, v.42, n.2, e20210142, 2022 

Pandey PC, Koutsias N, Petropoulos GP, Srivastava PK, 
Ben Dor E (2021) Land use/land cover in view of earth 
observation: data sources, input dimensions, and 
classifiers-a review of the state of the art. Geocarto 
International 36(9):957-988. DOI: 
https://doi.org/10.1080/10106049.2019.1629647 

Pelletier C, Valero S, Inglada J, Champion N, Dedieu G 
(2016) Assessing the robustness of Random Forests to map 
land cover with high-resolution satellite image time series 
over large areas. Remote Sensing of Environment 187:156-
168. DOI: https://doi.org/10.1016/j.rse.2016.10.010 

Phiri D, Simwanda M, Salekin S, Nyirenda V, Murayama 
Y, Ranagalage M (2020) Sentinel-2 data for Land 
Cover/Use mapping: A review. Remote Sensing 
12(14):2291. DOI: https://doi.org/10.3390/ rs12142291 

Rao P, Zhou W, Bhattarai N, Srivastava AK, Singh B, 
Poonia S, Lobell DB, Jain M (2021) Using Sentinel-1, 
Sentinel-2, and Planet Imagery to Map Crop Type of 
Smallholder Farms. Remote Sensing 13(10):1870. DOI: 
https://doi.org/10.3390/rs13101870 

Rouse JW, Haas RH, Schell JA, Deering DW (1973) 
Monitoring vegetation systems in the Great Plains with 
ERTS. In: ERTS Symposium. Washington. p309-317.  

Sasaki Y (2007) The Truth of the F-Measure, Manchester: 
MIB-School of computer science. Manchester, University 
of Manchester. 5p. Available: 
http://people.cs.pitt.edu/~litman/courses/ cs1671s20/F-
measure-YS-26Oct07.pdf Accessed: 3 Jul, 2021. 

Silva C de O, Delgado RC, Teodoro PE, Silva Junior CA, 
Rodrigues R de A (2020) Spatially explicit modeling of 
land use and land cover in the State of Rio de Janeiro-
Brazil. Remote Sensing Applications: Society and 
Environment 18:100303. DOI: 
https://doi.org/10.1016/j.rsase.2020. 100303 

Silva CVT, Andrade EM de, Lemos Filho LC de A, 
Ribeiro Filho JC, Oliveira Júnior HS de (2021) Temporal 
dynamics of soil susceptibility to erosion in semiarid 
watersheds. Acta Scientiarum Agronomy 43:e51378. DOI: 
https://doi.org/10.4025/actasciagron.v43i1.51378 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sokolova M, Japkowicz N., Szpkowicz S (2006) Beyond 
Accuracy, F-Score and ROC: A family of discriminant 
measures for performance evaluation. In: Sattar A, Kang 
B, (editors). AI 2006: advances in artificial intelligence. AI 
2006. Berlin, Springer, p1015-1021. DOI: 
https://doi.org/10.1007/11941439_114 

Souza CM, Z. Shimbo J, Rosa MR, Parente LL, A. 
Alencar A, Rudorff BFT, Hasenack H, Matsumoto M, G. 
Ferreira L, Souza-Filho PWM, Oliveira SW de, Rocha 
WF, Fonseca AV, Marques CB, Diniz CG, Costa D, 
Monteiro D, Rosa ER, Vélez-Martin E, Weber EJ, Lenti 
FEB, Paternost FF, Pareyn FGC, Siqueira JV, Viera JL, 
Neto LCF, Saraiva MM, Sales MH, Salgado MPG, 
Vasconcelos R, Galano S, Mesquita VV, Azevedo T 
(2020) Reconstructing three decades of Land use and Land 
cover changes in Brazilian biomes with Landsat archive 
and earth engine. Remote Sensing 12(17):2735. DOI: 
https://doi.org/10.3390/rs12172735 

Tadono T, Nagai H, Ishida H, Oda F, Naito S, Minakawa K, 
Iwamoto H (2016) Generation of the 30 m-mesh global 
digital surface model by ALOS prism. ISPRS - International 
Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences XLI-B4:157-162. DOI: 
https://doi.org/10.5194/isprsarchives-XLI-B4-157-2016 

Talukdar S, Singha P, Mahato S, Shahfahad, Pal S, Liou 
YA, Rahman A (2020) Land-Use Land-Cover 
Classification by Machine Learning Classifiers for 
Satellite Observations-A Review. Remote Sensing 
12(7):1135. DOI: https://doi.org/10.3390/rs12071135 

Tian F, Wu B, Zeng H, Zhang X, Xu J (2019) Efficient 
Identification of Corn Cultivation Area with Multitemporal 
Synthetic Aperture Radar and Optical Images in the 
Google Earth Engine Cloud Platform. Remote Sensing 
11(6):629. DOI: https://doi.org/10.3390/rs11060629 

Vale Júnior JF, Leitão De Souza MI, Ramos R P P, De 
Souza CDL (2011) Solos da Amazônia: etnopedologia e 
desenvolvimento sustentável. Revista Agro@mbiente On-
line 5(2):158-165. DOI: http://dx.doi.org/10.18227/1982-
8470ragro.v5i2.562 


