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ABSTRACT 

Studies that seek to identify a smaller number of soil attributes that represent others can 

generate less expenditure of time and financial resources for monitoring cultivated areas. 

Thus, this study aimed to analyze the spatial distribution and spatial autocorrelation of 

physical attributes of an Oxisol (Latossolo Vermelho Amarelo, Brazilian Soil 

Classification System). The evaluated attributes consisted of soil density (SD), total 

porosity (TP), free porosity (FP), field capacity (FC), permanent wilt point (PW), and 

total water availability (TW). Semivariogram adjustments and semivariance estimates 

were performed to characterize the structure and magnitude of the spatial dependence of 

soil attributes. The attributes were distributed on thematic maps and the spatial 

autocorrelation was estimated by the Moran index, which quantifies the degree of 

autocorrelation. TP showed a high positive correlation with PWP. Soil TW showed a high 

positive correlation with SD and a high negative correlation with FP. In turn, FP showed 

a high negative correlation with SD. The results showed spatial dependence for all 

attributes, standing out the apparent soil density and permanent wilt point, which were 

good evaluators of strong spatial dependence. 

 

INTRODUCTION 

Changes in soil structure, evidenced by alterations in 

its density, affect different soil physico-hydric attributes 

(Tavanti et al., 2020). These attributes include total 

porosity, pore diameter distribution, aeration porosity, 

water storage and availability for plants, and water 

dynamics on the surface and in the soil profile. All these 

attributes are important but evaluating them all together is 

not a quick and cheap task. Thus, alternatives to overcome 

these problems should be sought. One possible way would 

be to evaluate a smaller number of attributes that represent 

the majority, i.e., verify which attributes have higher 

autocorrelations and estimate the others from them 

(Oliveira, 2020b). 

Spatial autocorrelation can be defined as the 

coincidence of similar values in close locations or even the 

absence of randomness of a variable due to its spatial 

distribution (Neves et al., 2015). Two forms of spatial 

autocorrelation can occur: a positive autocorrelation, when 

high or low values for a random variable tend to cluster in 

space, and a negative autocorrelation, when a dissimilarity is 

found in the data between the high and low values spatially 

distributed (Anselin et al., 2006; Neves et al., 2015). 

Spatial autocorrelation can be measured in different 

ways, including the Moran index (I). I is a very widespread 

statistic and determines the spatial autocorrelation from the 

product of deviations from the mean. This index is a global 

measure of spatial autocorrelation, as it indicates the degree 

of the spatial association present in the data set. In general, 

the Moran index is used in a test whose null hypothesis 

represents spatial independence. In this case, its value 

would be zero. Positive values between 0 and +1 indicate a 

direct correlation, while negative values between 0 and −1 

indicate an inverse correlation (Almeida, 2012). 

The spatial correlation analysis can be performed 

using several tools. Georeferencing, spatial distribution, and 

the use of thematic maps in production fields are techniques 
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of great importance in the analysis of risks to crop 

management. The analysis of the spatial distribution of 

indicators is an instrument that can contribute to 

understanding the processes involved in a particular 

phenomenon to be studied, allowing the analysis of 

characteristics and differences of each territorial space 

beyond the simple geographical view, covering the 

constructed production space (Oliveira, 2020b). 

Tavanti et al. (2020) highlighted the importance of 

studying the physical quality of soils, and these evaluations 

can be applied for studies of spatial variability of soil 

attributes and precision agriculture, thus assisting in 

decisions related to the physical management of soils. 

Thus, studies that seek to identify which soil 

attributes represent others can generate less time and 

financial resources to monitor cultivated areas. Thus, this 

study aimed to analyze the spatial distribution and spatial 

autocorrelation of physical attributes of an Oxisol (Latossolo 

Vermelho Amarelo, Brazilian Soil Classification System). 

 

MATERIAL AND METHODS 

The study was carried out in the irrigation and 

drainage area at the Federal University of Viçosa, Viçosa, 

Minas Gerais, Brazil (Figure 1). This area is located close 

to the geographic coordinates: 23 K, 722569.09 m E; 

7701897.59 m S (UTM). 

 

 

FIGURE 1. Sampling grid and details of the sampling carried out in the irrigation and drainage area of the Federal University of 

Viçosa, Viçosa, Minas Gerais, Brazil. 

 

The average temperature in Viçosa is 20.6 °C and the 

climate is classified as Cwa according to the Köppen and 

Geiger classification. The average annual rainfall is 1229 

mm, and its distribution is concentrated mainly in the 

summer period. 

The soil in which the experimental grids were 

installed was classified as a sand clay-textured Oxisol 

(Latossolo Vermelho Amarelo, Brazilian Soil Classification 

System) according to EMBRAPA (2018). The particle size 

analysis in the layers of 0.0 to 0.2 m showed values of 460, 

150, and 390 g kg−1 for sand, silt, and clay, respectively. 

Soil chemical analysis showed average values of pH (in 

H2O) of 6.0, organic matter content of 2.18 dag kg−1, P and 

K of 21.2 and 135.0 mg dm−3, respectively, and sum of 

bases and CEC of 3.7 and 6.1 cmolc dm−3, respectively. 

The x and y directions of the Cartesian coordinate 

system were defined, and the experimental grid was staked 

in the second ten-day period of September 2018, spaced at 

1.60 m from each other. The experimental grid represented 

an area of 230.4 m2 and consisted of 90 sample points with 

dimensions of 1.60 × 1.60 m. 

The experimental area has been explored for many 

years with successive crops, such as corn, bean, and passion 

fruit. The soil was cultivated with purple noble garlic of the 

variety Ito during the soil analysis period. 

Laboratory analyses were carried out from October 

to November 2018. Soil samples with a preserved structure 

were taken to determine soil physical properties at depths of 

0 to 0.10 m (1) and 0.10 to 0.20 m (2). A Kopecky steel ring 

with sharp edges and dimensions of 50 mm in height and 50 

mm in diameter was used. The following soil physical 

attributes were obtained: apparent soil density (SD1 and 

SD2), which consisted of the relationship between the dry 

soil and its volume; total porosity (TP1 and TP2), consisting 

of determining the total pore volume of the soil occupied by 

water and/or air; free porosity (FP1 and FP2), which is the 

difference between the total porosity and volumetric soil 

moisture; field capacity (FC1 and FC2), which was obtained 

with a tension of 0.01 MPa, determined with the Richards 

extractor; permanent wilting point (PW1 and PW2), 

obtained with a tension of 1.5 MPa, determined with the 

Richards extractor; and total soil water availability (TW1 

and TW2). 

TWA was obtained according to [eq. (1)], being 

adapted from Bernardo et al. (2019). However, this equation 

is appropriate only to determine the amount of water in the 

10 cm soil layer. The other soil physical attributes were 

obtained following the methodologies presented by 

EMBRAPA (2018). 

𝑇𝑊 = 𝑆𝐷 (𝐹𝐶 − 𝑃𝑊) (1) 

Where:  

TW is the total soil water availability (mm);  

SD is the soil density (g cm−3);  

FC is the field capacity (% db), and  

PW is the permanent wilt point (% db). 

 

A classical descriptive analysis was performed for 

each studied attribute using the statistical program Rbio v. 

17 (biometric in R). The mean, median, minimum, and 
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maximum values, standard deviation, coefficient of 

variation, data normality by Shapiro-Wilk method, and 

Pearson correlation, presented as a correlation network, 

were calculated. 

The Moran index provides statistical significance 

and shows whether the data are randomly distributed. The 

results of Moran’s bivariate correlation were expressed 

graphically by the correlation network, in which the 

proximity between nodes (features) was proportional to the 

absolute value between their correlation. The edge thickness 

was controlled by applying a cut-off value of 0.50, which 

meant that only | rij | ≥ 0.50 had the edges highlighted. 

Finally, positive correlations were represented in green, 

while negative correlations were represented in red. 

The structure and magnitude of spatial dependence 

on soil attributes were characterized by adjusting 

semivariograms and estimating the semivariance through 

the coefficients of the theoretical model for the 

semivariogram, that is, the nugget effect (C0), sill (C0+C), 

and the range (A0). 

The global Moran and local Moran (LISA) indices 

were used as statistical tools for spatial autocorrelation. 

Spatial autocorrelation measures the relationship between 

observations with spatial proximity, considering that 

spatially close observations have similar values 

(Nascimento et al., 2007). The global indicators of spatial 

autocorrelation (Moran I and II) provide measurements for 

the set of all points of the geostatistical grid, characterizing 

the entire study region. 

One possibility to visualize the global spatial 

autocorrelation is through Moran’s scatter diagram (Figure 

2). The variable of interest (X) is placed on the horizontal 

axis and the spatial lag of the variable of interest (W_X) is 

placed on the vertical axis. The diagram allows verifying the 

pattern of data concentration divided into four types of 

associations: high-high (HH), low-low (LL), low-high 

(LH), and high-low (HL). The regression line is increasing 

and the values of soil attributes tend to group in the first and 

third quadrants in case of positive spatial association, and 

the regression line is decreasing and units are predominantly 

grouped in the second and fourth quadrants when the 

relationship is negative (Almeida, 2012). 

 

 

FIGURE 2. Moran’s scatter diagram. Adapted from Almeida (2012). 

 

The 5% significance level (p<0.05) was considered 

in the analyses and the cartographic products were 

elaborated using the software QGIS 3.6.0. The pseudo-

significance level of Moran’s bivariate index was tested by 

the software GeoDa, using randomization with the 

processing of 999 permutations. These permutations are 

used to perform a statistical pseudo-test based on the Monte 

Carlo method (Anselin et al., 2006). 

 

RESULTS AND DISCUSSION 

The data from the descriptive analysis of soil 

attributes are shown in Table 1. The analysis of the 

minimum, maximum, and mean values and the variance of 

attribute values showed a considerable variation in the data. 

However, the knowledge of this variation alone is not 

sufficient to identify the locations where the high and low 

values of an attribute are found. 

TABLE 1. Descriptive statistics of soil attributes. 

Attribute(a) Mean Minimum Maximum Standard deviation Coefficient of variation (%) Pr<w FD 

SD1 1.15 1.00 1.30 0.08 7.06 1.3x10-7 ID 

TP1 47.42 33.90 56.80 4.01 8.45 0.0759 NO 

FP1 20.23 10.80 39.00 6.01 29.74 0.0054 ID 

FC1 31.72 27.30 36.60 1.85 5.82 0.5250 NO 

PW1 17.09 15.70 18.60 0.54 3.18 0.9235 NO 

TW1 50.72 36.70 71.00 7.16 14.12 0.2154 NO 

SD2 1.12 0.90 1.30 0.08 7.41 4.5x10-7 ID 

TP2 49.29 34.40 72.10 5.38 10.92 1.9x10-7 ID 

FP2 20.68 10.00 51.50 7.90 38.18 5.6x10-5 ID 

FC2 32.79 25.70 39.20 1.88 5.73 6.3x10-4 ID 

PW2 17.52 16.10 19.10 0.62 3.52 0.7420 NO 

TW2 51.11 26.20 62.90 6.09 11.92 0.0042 ID 

SD = soil density (g cm−3); TP = total porosity (%); FP = free porosity (%); FC = field capacity (%); PW = permanent wilting point (%); TW 

= total water availability (mm); FD = frequency distribution: NO, normal frequency distribution and ID, indeterminate frequency distribution. 

Pr<w = probability of the Shapiro-Wilk test at the 5% probability level. 
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Table 1 shows the descriptive analysis of the studied 

attributes. Oliveira et al. (2020a) observed that the 

variability of an attribute can be classified according to the 

magnitude of its coefficient of variation (CV). The classes 

were determined as low (CV < 10%), medium (10% < CV 

< 20%), high (20% < CV < 30%), and very high (CV > 

30%). Therefore, the attributes varied from low to very 

high, with SD1, TP1, FC1, PW1, SD2, FC2, and PW2 

showing low variability. The attributes TW1 and TP2 

showed a medium coefficient of variation. Martins et al. 

(2019) studied the effects of spatial variability of soil 

attributes and found low and medium coefficients of 

variation for SD, with values of 9.12 and 10.80%, 

respectively. Soares et al. (2018) found low coefficients of 

variation for SD and TP. The variability rates from low to 

very high found for soil attributes can possibly be explained 

by the fact that the studied soil is heterogeneous,                   

de-standardizing the coefficient of variation of the       

studied attributes. 

The correlation network of Moran’s bivariate 

analyses (Figure 3) showed negative and significant 

correlations between SD1 and TP1, TP1 and TW1, FP1 and 

TW1, TP2 and SD2, with values of correlation coefficients 

of −0.1869**, −0.1751**, −0.1973**, and −0.1597**, 

respectively. These results were already expected. SD is the 

denominator of a fraction that is subtracted by the unit to 

calculate TP and hence the lower the SD, the higher the TP. 

Oliveira et al. (2020b) correlated physical attributes and 

highlighted the importance of maintaining good soil 

porosity conditions. 

 

 

FIGURE 3. Correlation network of Moran’s bivariate analysis of the attributes soil density (SD, g cm−3), total porosity (TP, %), 

free porosity (FP, %), field capacity (FC, %), permanent wilting point (PW, %), and total water availability (TW, mm). Green lines 

represent positive correlation and red lines represent negative correlations. Line thickness indicates the highest degree of correlation. 

 

Regarding TP and TW, we can initially imagine that 

the higher the volume of empty spaces, the higher the 

amount of water that the soil can store and, consequently, 

the higher the TW. It would be valid when comparing 

different soils, but the soil is the same in this research. 

Therefore, this difference in TP may have been caused by 

compaction processes and, thus, soil macroporosity may 

have been reduced to a higher extent than microporosity. 

Water is retained in soil micropores and, consequently, the 

volume occupied by macropores may have been replaced by 

another volume occupied with soil particles and 

microporosity, thus increasing soil water retention. It can be 

confirmed by the negative correlation between FP and TW. 

Tavanti et al. (2020) found negative correlations between 

soil quality and the water available in the soil. 

Significant positive correlations were observed 

between the attributes TW1 and SD1, PW1 and FC1, PW2 

and PW1, and FC2 and PW2, with values of 0.1752**, 

0.2120**, 0.2708**, and 0.1239**, respectively. The 

positive correlation between TW and SD also corroborates 

with the explanation for TP and TW. Imagine scenario 1 in 

which we have a volume occupied by soil particles (macro-

and microporosity). If we use more soil to fill that same 

volume, we will have scenario 2, in which macropores will 

be reduced to make room for this new soil to be inserted. 

Thus, we will have a higher mass for the same volume and, 

consequently, higher SD. On the other hand, assuming that 

most of the microporosity was maintained from scenario 1 

to 2 and more soil particle and microporosity entered 

scenario 2, we may conclude that scenario 2 will have 

higher microporosity and, consequently, higher water 

retention, affecting TW. 

Several studies in the literature have corroborated 

the positive correlation between FC and PW (Alencar et al., 

2009; Bezerra et al., 2019). Some methodologies in the 

literature can be used to estimate PW from FC, confirming 

this high positive correlation. 

The geostatistical analysis (Table 2) showed spatial 

dependence for all the studied attributes. Cross-

semivariograms adjusted to the spherical and Gaussian 

models. Oliveira et al. (2020a) also found the same adjustment 

models in a study performed with soil physical attributes. 
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TABLE 2. Parameters estimated for simple and cross-semivariograms of soil physical attributes.  

Attribute(a) 
Model(b) Nugget effect (Co) Sill (Co+C) Range (Ao, m) r2 SSR (C) 

SDE(d) 

% Class 

Simple semivariogram 

SD1 exp 9.40x10-4  0.01 4.5 0.522 2.97x10-6 0.831 Strong 

TP1 exp 4.91  1.64x101 4.0 0.522 1.89x101 0.700 Moderate 

FP1 gau 1.37x101  3.75x101 3.5 0.762 4.27x101 0.635 Moderate 

FC1 exp 2.30  3.60 16.0 0.441 0.77 0.361 Moderate 

PW1 exp 0.08  0.31 5.5 0.494 3.07x10-3 0.754 Strong 

TW1 sph 2.32x101  5.05x101 3.0 0.537 9.03x101 0.540 Moderate 

SD2 exp 1.20x10-3  0.01 7.0 0.433 3.16x10-6 0.783 Strong 

TP2 sph 1.56x101  3.40x101 10.8 0.728 7.75x101 0.541 Moderate 

FP2 sph 3.74x101  7.48x101 15.8 0.877 1.40x102 0.500 Moderate 

FC2 exp 1.84  3.70 13.0 0.377 0.84 0.503 Moderate 

PW2 exp 0.08  0.31 7.0 0.474 3.9x10-3 0.761 Strong 

TW2 exp 7.00  3.00x101 6.0 0.179 8.88x101 0.767 Strong 

Cross-semivariogram 

TW1=f(SD1) sph 0.03  0.31 4.9 0.740 8.02x10-3 0.89 Strong 

PW1=f(FC1) sph 0.00  0.40 4.9 0.936 3.31x10-3 1.00 Strong 

PW2=f(PW1) gau 0.03  0.26 5.1 0.959 1.30x10-3 0.88 Strong 

FC2=f(PW2) sph 0.22  0.50 11.2 0.813 1.41x10-2 0.57 Moderate 

SD1=f(TP1) sph -0.03  -0.18 4.6 0.714 2.21x10-3 0.81 Strong 

TP1=f(TW1) gau -4.28 - 1.41x101 4.5 0.788 1.17x101 0.70 Moderate 

FP1=f(TW1) gau -0.01 - 1.02x101 4.7 0.703 3.41x101 1.00 Strong 

TP2=f(SD2) sph -0.12   -0.27 10.9 0.885 2.00x10-3 0.55 Moderate 

(a) SD = soil density (g cm−3); TP = total porosity (%); FP = free porosity (%); FC = field capacity (%); PW = permanent wilt point (%); TW 

= total water availability (mm). (b) sph = spherical; exp = exponential; and Gau = Gaussian. (c) SSR = sum of squared residuals. (d) SDE = 

spatial dependence evaluator. 

 

A strong spatial dependence evaluator (SDE) occurs 

when semivariograms have a nugget effect < 25% of the sill, 

moderate when it is between 25 and 75%, and weak > 75%. 

According to this classification, which was used by Oliveira 

et al. (2020a, 2020b), the values of the variables SD1, PW1, 

SD2, PW2, and TW2, TW1=f(SD1), PW1= f(FC1), 

PW2=f(PW1), SD1=f(TP1), and FP1=f(TW1), presented a 

strong SDE. 

The cross-semivariograms TW1=f(SD1), 

PW1=f(FC1), PW2=f(PW1), and FC2=f(PW2) showed a 

positive spatial dependence between variables, and 

SD1=f(TP1), TP1=f(TW1), FP1=f(TW1), TP2=f(SD2) 

showed a negative spatial dependence between variables, as 

can be observed by the negative sign of the nugget effect 

and sill. The explanations for these behaviors would be the 

same as those already reported for the correlation network. 

The use of Moran’s bivariate index becomes an 

appropriate tool for determining spatial correlation. Figure 

4 shows the significance maps of the soil attributes that 

present Moran’s global bivariate indices verified in Figure 

3 and cross-semivariograms in Table 2. 
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FIGURE 4. Moran’s scatter diagram between (a) TW1=f(SD1), (b) PW1=f(FC1), (c) PW2=f(PW1), (d) FC2=f(PW2), (e) 

SD1=f(TP1), (f) TP1=f(TW1), (g) FP1=f (TW1), and (h) TP2=f(SD2). SD = soil density (g cm−3); TP = total porosity (%);         

FP = free porosity (%); FC = field capacity (%); PW = permanent wilt point (%); TW = total water availability (mm). 

 

Values were estimated using the cluster maps after adjusting the scatter diagrams (Figure 4) relative to soil attributes. In 

this sense, maps with concentration patterns were constructed for the studied variables (Figure 5), which showed the significant 

spatial clusters. 
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FIGURE 5. Cluster maps of Moran’s bivariate indices: (a) TW1=f(SD1), (b) PW1=f (FC1), (c) PW2=f(PW1), (d) FC2=f(PW2), 

(e) SD1=f(TP1), (f) TP1=f(TW1), (g) FP1=f(TW1), and (h) TP2=f(SD2). SD = soil density (g cm−3); TP = total porosity (%); 

FP = free porosity (%); FC = field capacity (%); PW = permanent wilt point (%); TW = total water availability (mm). 

 

The maps of bivariate clusters (Figure 5) show which 

regions formed statistically significant spatial clusters at 

least 5% of the relationship between the soil attribute 

indicators. These mappings of bivariate regimes allow a 

more adequate geographic visualization of the degree of 

concentration of the studied variables, referring to the local 

bivariate Moran indices or local spatial autocorrelation 

analysis (Moran LISA). 

Four statistically significant categories are shown. 

Regions in red represent clusters with a high concentration 

of the attribute under analysis. Locations in dark blue show 

the spatial associations with a low concentration of the 

attribute under analysis. Units highlighted in lighter blue 

and lighter red represent the atypical associations, that is, 

low-high and high-low, respectively. 

The cluster map of total water availability as a 

function of soil density (Figure 5a) shows that 3.3% of the 

area (red dots), concentrated in the southern region, had 

similar results, that is, a high-high autocorrelation. A high-

high clustering means that the spatial units present high 

values for the variable of interest, being surrounded by 

spatial units that also have high values. 

The cluster map of the distribution of similar results 

of the high-high type between apparent wilt point and field 

capacity (Figure 5b) can be mostly observed in the northern 

portion of the area, with 3.3% of the observations. The 

indication of these regions shows the similarities of higher 

values of soil wilt point and higher incidences of field 

capacities in the north of the experimental area. 

The observation of these cluster maps together with 

field observations can contribute to finding the reasons for 

the occurrence of productivity variability of some crops of 

interest cultivated in the area. This identification allows the 

correction of possible failures, allowing minimizing 

problems in the next growing season. 

The cluster map of free porosity as a function of total 

water availability (Figure 5g) shows that 4.4% of the area 

(blue dots) are concentrated in the southern portion and 

presented similar results, with a low-low autocorrelation. A 

low-low clustering refers to spatial units with low values 

surrounded by spatial units that also have low values. 

Thus, the farmer can take advantage of the historical 

information of the area from mappings to make the necessary 

decisions to guide the correct crop management, identifying 

regions with a higher or lower need for intervention either in 

the soil or in the plant (Oliveira et al., 2018). This study can 

be a basis for irrigation management, soil management 

(fertility) at various rates, genetic improvement, or the use of 

drones in agriculture, aiming at higher productivity and 

increased income for the farmer. 
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CONCLUSIONS 

Total porosity showed a high positive correlation 

with permanent wilt point. Soil water availability showed a 

high positive correlation with soil density and a high 

negative correlation with free porosity. In turn, free porosity 

showed a high negative correlation with soil density. 

In general, all attributes showed spatial dependence, 

standing out soil density and permanent wilt point, which 

were the best evaluators of strong spatial dependence. 
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