Accessibility / Report Error

Evaluación de la Enseñanza en programación matemática en alumnos y alumnas de 5ºde Educación Primaria en Centros Educativos Españoles

Avaliação do Ensino em programação matemática em alunos do 5º ano do Ensino Fundamental em Centros Educacionais espanhóis

Evaluation of Education in mathematical programming in students of 5th year of Primary Education in Spanish Educational Centers

Resumen

Con esta investigación se ha perseguido conocer los beneficios de trabajar la Educación en programación matemática según el sexo de los estudiantes por medio de la creación de dos grupos de escolares, experimental y control, para los 3.795 alumnos de 147 centros educativos participantes, y realizando dos mediciones tras la administración de la Batería de Evaluación de la Competencia Matemática (Becoma On), pretest o inicio del proyecto y post-test o final de proyecto de Educación en programación matemática. Los resultados mostraron diferencias estadísticamente significativas entre grupo experimental y control y entre hombres y mujeres. La integración de la tecnología en Educación es una realidad y la promoción de la igualdad entre sexos en disciplinas científicas y técnicas se convierte en una premisa clave de un sistema educativo plenamente inclusivo.

Palabras clave:
Tecnología Educativa; Coeducación; Matemáticas

Resumo

Esta pesquisa buscou conhecer os benefícios de trabalhar a educação em programação matemática de acordo com o sexo dos alunos por meio da criação de dois grupos escolares, experimental e controle, para os 3.795 alunos das 147 escolas participantes, e realizar duas medições após a aplicação da Bateria de Avaliação de Competências Matemáticas (Becoma On), pré-teste ou início do projeto e pós-teste ou término do projeto educacional em programação matemática. Os resultados mostraram diferenças estatisticamente significativas entre os grupos experimental e controle e entre homens e mulheres. A integração da tecnologia na Educação é uma realidade e a promoção da igualdade de gênero nas disciplinas científicas e técnicas, atualmente, é uma premissa fundamental de um sistema educacional totalmente inclusivo.

Palavras-chave:
Tecnologia Educacional; Co-Educação; Matemática

Abstract

The objective of this research project was to discover the benefits that students of each gender received through education in mathematical programming, for which two groups, experimental and control, for the 3,795 students from 147 participating schools, were created. Two measurements were carried out through the administration of the Battery for the Evaluation of Mathematical Competence (Becoma On), a pretest or initiation of the project and a posttest or finalization of the educational project in mathematical programming. The results showed statistically significant differences between the experimental and the control groups, and between boys and girls. The integration of technology in Education is a reality and the promotion of gender equality in scientific and technical disciplines is a key premise of a fully inclusive educational system.

Keywords:
Educational Technology; Co-Education; Math

1 Introducción

La tecnología educativa ofrece herramientas pedagógicas muy interesantes para el desarrollo de procesos de Enseñanza y aprendizaje. Su importancia radica en el grado de atractivo y motivación por parte de los estudiantes hacia su trabajo ( ELSTAD; CHRISTOPHERSEN, 2017ELSTAD, E.; CHRISTOPHERSEN, K- A. Perceptions of digital competency among student teachers: contributing to the development of student teachers’ instructional self-efficacy in technology-rich classrooms. Education Sciences, Basel, v. 7, n. 1, p. 1-15, fev. 2017. https://doi.org/10.3390/educsci7010027
https://doi.org/10.3390/educsci7010027...
), demandando al profesorado formación específica y cualificada en este campo ( ASLAN; ZHU, 2017ASLAN, A.; ZHU, C. Investigating variables predicting Turkish pre-service teachers’ integration of ICT into teaching practices. British Journal Educational Technology, [s. l.], v. 48, n. 2, p. 552-570, mar. 2017. https://doi.org/10.1111/bjet.12437
https://doi.org/10.1111/bjet.12437...
; GUDMUNDSDOTTIR; HATLEVIK, 2017GUDMUNDSDOTTIR, G. B.; HATLEVIK, O. E. Newly qualified teachers’ professional digital competence: Implications for teacher education. European Journal of Teacher Education, Oxon, v. 41, n. 2, p. 214-231, nov./dic. 2017. https://doi.org/10.1080/02619768.2017.1416085
https://doi.org/10.1080/02619768.2017.14...
. Entre estas herramientas, aparecen las relativas a programación, campo con décadas de investigación y experiencias de integración en Educación ( BERGE, 2017BERGE, O. Rethinking digital literacy in Nordic school curricula. Nordic Journal of Digital Literacy Nord, Oslo, v. 12, p. 5-7, Jun. 2017. https://doi.org/10.18261/issn.1891-943x-2017-01-02-01
https://doi.org/10.18261/issn.1891-943x-...
; BOCCONI; CHIOCCARIELLO; EARP, 2018BOCCONI, S.; CHIOCCARIELLO, A.; EARP, J. The Nordic approach to introducing computational thinking and programming in compulsory education. [S. l.]: Nordic@BETT2018 Steering Group, 2018. ; GARCÍA-PERALES; PALOMARES-RUIZ, 2020GARCÍA-PERALES, R.; PALOMARES-RUIZ, A. Education in programming and mathematical learning: Functionality of a programming language in educational processes. Sustainability, Basel, v. 12, n. 23, 10129, dic. 2020. https://doi.org/10.3390/su122310129
https://doi.org/10.3390/su122310129...
; SACKMAN, 1970SACKMAN, H. Man-computer problem solving: experimental evaluation of time-sharing and batch processing. London: Auerbach, 1970. ; WEINBERG, 1971WEINBERG, G. M. The psychology of computer programming. New York: Van Nostrand Reinhold, 1971. ; WING, 2017WING, J. M. Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, Genova, v. 25, n. 2, p. 7-14, ago. 2017. https://doi.org/10.17471/2499-4324/922
https://doi.org/10.17471/2499-4324/922...
), incluida la programación matemática ( BENTON et al. , 2017BENTON, L., et al. Building mathematical knowledge with programming: insights from the scratchmaths project. In: SIPITAKIAT, A.; TUTIYAPHUENGPRASERT, N. (eds.). Constructionism in Action 2016: Conference Proceedings, Bangkok: Sksapattana Foundation, 2017. p. 26-33. , 2018BENTON, L., et al. Designing for learning mathematics through programming: a case study of pupils engaging with place value. International Journal of Child-Computer Interaction, [s.l.], v. 16, p. 68-76, jun. 2018. https://doi.org/10.1016/j.ijcci.2017.12.004
https://doi.org/10.1016/j.ijcci.2017.12....
; MCCOY, 2014MCCOY, L. P. Computer based mathematics learning. Journal of Research on Computing in Education, [s. l.] v. 28, n. 4, p. 438-460, fev. 2014. https://doi.org/10.1080/08886504.1996.10782177
https://doi.org/10.1080/08886504.1996.10...
. Los beneficios del trabajo de la programación en las escuelas son numerosos y vienen a justificar su integración y aprendizaje en el momento histórico en el que nos encontramos ( COMISIÓN EUROPEA, 2018COMISIÓN EUROPEA. Comunicación de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de las Regiones sobre el Plan de Acción de Educación Digital. Bruselas, 2018. ; INSTEFJORD; MUNTHE, 2017INSTEFJORD, E. J.; MUNTHE, E. Educating digitally competent teachers: a study of integration of professional digital competence in teacher education. Teaching and Teacher Education, Oxford, v. 67, p. 37-45, out. 2017. https://doi.org/10.1016/j.tate.2017.05.016
https://doi.org/10.1016/j.tate.2017.05.0...
; RODRÍGUEZ MUÑIZ et al. , 2020RODRÍGUEZ-MUÑIZ, L, J., et al. Hacia una nueva educación en matemáticas e informática en la educación secundaria. Madrid: Real Sociedad Matemática Española (RSME) y Sociedad Científica Informática de España (SCIE), 2020. ; SENTANCE; CSIZMADIA, 2016SENTENCE, S.; CSIZMADIA, A. Computing in the curriculum: challenges and strategies from a teacher’s perspective. Education and Information Technologies, New York, v. 22, p. 469-495, Apr. 2016. https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1007/s10639-016-9482-...
). En esta investigación nos centramos en la programación aplicada al área de Matemáticas.

Esta área de aprendizaje tiene una notable importancia en los procesos de Enseñanza y aprendizaje. Dicho valor radica en su carácter instrumental para el logro de aprendizajes en otras áreas del currículum y por su transversalidad y generalización para desenvolverse con autonomía en los contextos que rodean al individuo. A la hora de definir qué se entiende por competencia matemática, tomamos la conceptualización realizada por el Programme for International Student Assessment (Pisa) 2018, última edición desarrollada y con resultados publicados, donde establece que su evaluación incluye la medición de:

La capacidad de los estudiantes para formular, utilizar e interpretar matemáticas en una amplia variedad de contextos. Estos incluyen tanto ambientes familiares a los estudiantes como ocupacionales, sociales y científicos. Para tener éxito en la prueba PISA, los estudiantes tienen que ser capaces de razonar matemáticamente y utilizar conceptos, procedimientos, hechos y herramientas para describir, explicar y predecir fenómenos en múltiples contextos y situaciones ( ESPAÑA, 2019ESPAÑA. Ministerio de Educación y Formación Profesional. PISA 2018: programa para la evaluación internacional de los estudiantes: informe español. Madrid: Ministerio de Educación y Formación Profesional, 2019. Disponible en: https://sede.educacion.gob.es/publiventa/d/23505/19/00
https://sede.educacion.gob.es/publiventa...
, p. 40).

En esta investigación se trabaja la competencia matemática con los estudiantes por medio de un lenguaje de programación denominado Scratch. Ambas, competencia matemática y programación educativa, aparecen estrechamente unidas en los procesos de Enseñanza y aprendizaje en la actualidad tal y como inciden numerosas investigaciones ( ANGAMARCA; ANDRADE, 2022ANGAMARCA, O.; ANDRADE, D. Enseñanza de programación a niños de edad escolar utilizando Scratch para mejora del razonamiento lógico. Pro Sciences: Revista de Producción, Ciencias e Investigación, Los Ríos, v. 6, n. 42, p. 111-121, mar. 2022. https://doi.org/10.29018/issn.2588-1000vol6iss42.2022pp111-121
https://doi.org/10.29018/issn.2588-1000v...
; CERÓN MOLINA, 2021CERÓN MOLINA, J. A. La programación para niños: perspectivas de abordaje desde el pensamiento lógico matemático. Revista Internacional de Pedagogía e Innovación Educativa, [s. l.], v. 2, n. 1, p. 101-122, 2021. https://doi.org/10.51660/ripie.v2i1.70
https://doi.org/10.51660/ripie.v2i1.70...
; GARCÍA-RODRÍGUEZ, 2022GARCÍA-RODRÍGUEZ, A. Enseñanza de la programación a través de Scratch para el desarrollo del pensamiento computacional en educación básica secundaria. Revista Academia y Virtualidad, [s. l.], v. 15, n. 1, 161-182, ene./jun. 2022. https://doi.org/10.18359/ravi.5883
https://doi.org/10.18359/ravi.5883...
; MORENO-LEÓN et al. , 2021MORENO-LEÓN, J., et al. Programar para aprender Matemáticas en 5º de Educación Primaria: implementación del proyecto ScratchMaths en España. RED - Revista de Educación a Distancia, [s. l.], v. 21, n. 68, p. 1-19, 2021. http://dx.doi.org/10.6018/red.485441 MUÑOZ, J. M.; MATO, M. D. Análisis de las actitudes respecto a las Matemáticas en alumnos de ESO. Revista de Investigación Educativa, Murcia, v. 26, n. 1, p. 209-226, ene. 2018.
http://dx.doi.org/10.6018/red.485441...
). Una premisa básica de la integración de la programación educativa es la búsqueda de la igualdad de oportunidades en Educación. Así, entre los Objetivos del Desarrollo Sostenible (ODS), aparece el Objetivo número 4 o desarrollo de una Educación de Calidad que favorezca la inclusión de todos y todas a partir de la adquisición de las habilidades necesarias para favorecer el acceso al mercado laboral y estimular el emprendimiento ( ORGANIZACIÓN DE LAS NACIONES UNIDAS [ONU], 2015ORGANIZACIÓN DE LAS NACIONES UNIDAS – ONU. Resolution adopted by the General Assembly on 25 September 2015: ransforming our world: the 2030 Agenda for Sustainable Development. New York: Organización de las Naciones Unidas, 2015. ), ocupando la tecnología educativa un papel relevante en tal finalidad ( CANO VÁSQUEZ, 2020CANO VÁSQUEZ, L. M. Concepciones docentes, usos de TIC en el aula y estilos de enseñanza. Medellín: Universidad Pontificia Bolivariana, 2020. ; SUÁREZ-ÁLVAREZ; VÁZQUEZ-BARRIO; TORRECILLAS, 2020SUÁREZ-ÁLVAREZ, R.; VÁZQUEZ-BARRIO, T.; TORRECILLAS, T. Metodología y formación docente: cuestiones claves para la integración de las TIC en la educación. Ámbitos. Revista Internacional de Comunicación, Sevilla, n. 49, p. 197-215, jun. 2020. https://doi.org/10.12795/Ambitos.2020.i49.12
https://doi.org/10.12795/Ambitos.2020.i4...
). Los centros educativos deberán incorporar actuaciones innovadoras para ajustar sus objetivos a las demandas de la sociedad, centradas en la transformación y el cambio permanente y en el desenvolvimiento autónomo y eficaz de toda la ciudadanía.

Para ello, un aspecto clave es fomentar la igualdad de oportunidades entre hombres y mujeres. Así, siguiendo los Objetivos del Desarrollo Sostenible ( ONU, 2015ORGANIZACIÓN DE LAS NACIONES UNIDAS – ONU. Resolution adopted by the General Assembly on 25 September 2015: ransforming our world: the 2030 Agenda for Sustainable Development. New York: Organización de las Naciones Unidas, 2015. ), el Objetivo número 5 o fomento de la Igualdad de Género, aboga por la erradicación de cualquier tipo de discriminación entre sexos, buscando la participación efectiva de todo ciudadano en todos los niveles y contextos. A pesar de ello, todavía queda camino por recorrer ante la existencia de desigualdades en Educación ( CALVO GARCÍA, 2018CALVO GARCÍA, G. Las identidades de género según las y los adolescentes: percepciones, desigualdades y necesidades educativas. Contextos Educativos, Logroño, n. 21, p. 169-284, fev.2018. https://doi.org/10.18172/con.3311
https://doi.org/10.18172/con.3311...
), como, por ejemplo, la existente en las disciplinas científicas y técnicas ( BOTELLA et al ., 2019BOTELLA, C., et al. Gender diversity in STEM disciplines: a multiple factor problema. Entropy, Basel, v. 21, n. 1, p. 1-17, jan. 2019. https://doi.org/10.3390/e21010030
https://doi.org/10.3390/e21010030...
; LEHMAN; SAX; ZIMMERMAN, 2017LEHMAN, K. J.; SAX, L. J.; ZIMMERMAN, H. B. Women planning to major in computer science: Who are they and what makes them unique? Computer Science Education, Oxon, v. 26, n. 4, p. 277-298, jan. 2017. https://doi.org/10.1080/08993408.2016.1271536
https://doi.org/10.1080/08993408.2016.12...
; MCCULLOUGH, 2020MCCULLOUGH, L. Proportions of Women in STEM leadership in the Academy in the USA. Education Sciences, Basel, v. 10, n. 1, p. 1-13, dic. 2020. https://doi.org/10.3390/educsci10010001
https://doi.org/10.3390/educsci10010001...
; ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA EDUCACIÓN, LA CIENCIA Y LA CULTURA [UNESCO], 2019ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA EDUCACIÓN, LA CIENCIA Y LA CULTURA – UNESCO. Descifrar el código: la educación de las niñas en ciencias, tecnología, ingeniería y matemáticas (STEM). París, 2019. ), incluido el campo de las matemáticas ( DEL RÍO; STASSER; SUSPERREGUY, 2016DEL RÍO, M. F.; STASSER, K.; SUSPERREGUY, M. I. ¿Son las habilidades matemáticas un asunto de género? Los estereotipos de género acerca de las matemáticas en niños y niñas de Kínder, sus familias y educadoras. Calidad en la Educación, Santiago, n. 45, p. 20-53, dic. 2016. https://doi.org/10.4067/S0718-45652016000200002
https://doi.org/10.4067/S0718-4565201600...
; FARFÁN MARQUES; SIMÓN RAMOS, 2017FARFÁN MARQUES, R. M.; SIMÓN RAMOS, G. Género y matemáticas: una investigación con niñas y niños talento. Acta Scientiae, Canoas, v. 19, n. 3, p. 427-446, maio/jun. 2017. ; FUENTES DE FRUTOS; RENOBELL SANTAREN, 2019FUENTES DE FRUTOS, S.; RENOBELL SANTAREN, V. La influencia del género en el aprendizaje matemático en España: EEvidencias desde PISA. RASE - Revista de Sociología de la Educación, Valencia, v. 13, n. 1, p. 63-80, nov./dic. 2019. https://doi.org/10.7203/RASE.13.1.16042
https://doi.org/10.7203/RASE.13.1.16042...
; MEFP, 2019; PALOMARES-RUIZ; GARCÍA-PERALES, 2020PALOMARES-RUIZ, A.; GARCÍA-PERALES, R. Math performance and sex: the predictive capacity of self-efficacy, interest and motivation for learning mathematics. Frontiers in Psychology, Lausanne, v. 11, e1879, aug. 2020. https://doi.org/10.3389/fpsyg.2020.01879
https://doi.org/10.3389/fpsyg.2020.01879...
) y el campo relativo al trabajo de la programación educativa ( ESPINO; GONZÁLEZ, 2016ESPINO, E. E.; GONZÁLEZ, C. Gender and computational thinking: review of the literature and applications. In: INTERACCIÓN ’16: INTERNATIONAL CONFERENCE ON HUMAN COMPUTER INTERACTION,17., 2016, Salamanca. New York: Association for Computing Machinery, 2016. ; PICADO-ARCE et al. , 2021PICADO-ARCE, K., et al. Facilitadores del desarrollo del pensamiento computacional en estudiantes costarricenses. Comunicar, Huelva, v. 29, n. 68, p. 85-96, jul. 2021. https://doi.org/10.3916/C68-2021-07
https://doi.org/10.3916/C68-2021-07...
). Pisa 2018 señala que:

El déficit de representación de chicas entre los estudiantes con mejor nivel de rendimiento en ciencias y matemáticas puede explicar, al menos en parte, la persistente brecha de género en las carreras de ciencia, tecnología, ingeniería y matemáticas (STEM) campos que figuran entre las ocupaciones mejor remuneradas ( ESPAÑA, 2019ESPAÑA. Ministerio de Educación y Formación Profesional. PISA 2018: programa para la evaluación internacional de los estudiantes: informe español. Madrid: Ministerio de Educación y Formación Profesional, 2019. Disponible en: https://sede.educacion.gob.es/publiventa/d/23505/19/00
https://sede.educacion.gob.es/publiventa...
, p. 85).

Desde edades tempranas, chicos y chicas reciben la misma Enseñanza matemática y las diferencias existentes entre sexos no se explican por diferencias innatas de capacidad ( ESPAÑA, 2019ESPAÑA. Ministerio de Educación y Formación Profesional. PISA 2018: programa para la evaluación internacional de los estudiantes: informe español. Madrid: Ministerio de Educación y Formación Profesional, 2019. Disponible en: https://sede.educacion.gob.es/publiventa/d/23505/19/00
https://sede.educacion.gob.es/publiventa...
). Debido a ello, se ha de profundizar en el porqué de estas diferencias entre sexos y en los motivos de las actitudes negativas y el rechazo que a veces esta asignatura genera entre el alumnado ( CUELI; GARCÍA; GONZÁLEZ-CASTRO, 2013CUELI, M.; GARCÍA, T.; GONZÁLEZ-CASTRO, P. Autorregulación y rendimiento académico en Matemáticas. Aula Abierta, Oviedo, v. 41, n. 1, p. 39-48, ene./abr. 2013. ; GONZÁLEZ JIMÉNEZ, 2019GONZÁLEZ JIMÉNEZ, R. M. Evaluación de estrategias formativas para mejorar las actitudes hacia las matemáticas en secundaria. Educación Matemática, Guadalajara, v. 31, n. 1, p. 176-203, abr. 2019. https://doi.org/10.24844/em3101.07
https://doi.org/10.24844/em3101.07...
; HUÉSCAR-HERNÁNDEZ et al. , 2020HUÉSCAR-HERNÁNDEZ, E., et al. Passion or perseverance? The effect of perceived autonomy support and grit on academic performance in college students. International Journal Environmental Research and Public Health, Basel, v. 17, n. 6, 2143, mar. 2020. https://doi.org/10.3390/ijerph17062143
https://doi.org/10.3390/ijerph17062143...
; MATO VÁZQUEZ; ESPIÑEIRA BELLÓN; CHAO FERNÁNDEZ, 2014MATO VÁZQUEZ, M. D.; ESPIÑEIRA BELLÓN, E.; CHAO FERNÁNDEZ, R. Dimensión afectiva hacia la matemática: resultados de un análisis en educación primaria. Revista de Investigación Educativa, Salamanca, v. 32, n. 1, p. 57-72, ene. 2014. https://doi.org/10.6018/rie.32.1.164921
https://doi.org/10.6018/rie.32.1.164921...
; PALACIOS PICOS; ARIAS; ARIAS, 2014PALACIOS PICOS, A.; ARIAS, V.; ARIAS, B. Attitudes towards mathematics: construction and validation of a measurement instrument. Revista de Psicodidáctica, Madrid, v. 19, n. 1, p. 67-91, set. 2014. https://doi.org/10.1387/RevPsicodidact.8961
https://doi.org/10.1387/RevPsicodidact.8...
; PALOMARES-RUIZ; GARCÍA-PERALES, 2020PALOMARES-RUIZ, A.; GARCÍA-PERALES, R. Math performance and sex: the predictive capacity of self-efficacy, interest and motivation for learning mathematics. Frontiers in Psychology, Lausanne, v. 11, e1879, aug. 2020. https://doi.org/10.3389/fpsyg.2020.01879
https://doi.org/10.3389/fpsyg.2020.01879...
), incluyendo la importancia del docente y su formación en la prevención de estas actitudes (MUÑOZ; MATO, 2008; NORTES; NORTES, 2020).

En esta investigación se buscó aunar los aspectos teóricos señalados anteriormente: Educación en programación, Matemáticas e igualdad de oportunidades entre sexos. Con el desarrollo de esta experiencia se pretendió ofrecer al alumnado estrategias para la resolución de problemas matemáticos mediante la tecnología bajo el título del proyecto “Aprende matemáticas (y otras cosas) con el nuevo Scratch 3” ( INSTITUTO NACIONAL DE TECNOLOGÍAS EDUCATIVAS Y DE FORMACIÓN DEL PROFESORADO [INTEF], 2019INSTITUTO NACIONAL DE TECNOLOGÍAS EDUCATIVAS Y DE FORMACIÓN DEL PROFESORADO – INTEF. La escuela de pensamiento computacional y su impacto en el aprendizaje: curso escolar 2018-2019. Madrid: Ministerio de Educación y Formación Profesional e Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado, 2019. ). En este artículo se muestran los resultados de la comparativa entre sexos tras la administración de la Batería de Evaluación de Competencias Matemáticas (Becoma On) a dos grupos de estudiantes, grupo experimental y grupo control, en dos momentos de investigación diferentes, pretest y post-test. Entre ambos momentos, los alumnos y alumnas del grupo experimental realizaron actividades de programación con Scratch 3, los del grupo control, no. En definitiva, como objetivo se pretendió medir el impacto de las actividades de programación realizadas a partir del análisis de los resultados de acuerdo con el sexo de los estudiantes.

2 Material y Métodos

La metodología de la investigación fue cuantitativa, descriptiva y ex post facto, centrada en un diseño cuasiexperimental. A continuación, se señalan los aspectos claves a nivel metodológico para este estudio.

2.1 Participantes

La muestra inicial de la investigación fue de 3.795 alumnos y alumnas españoles de 5º de Educación Primaria, 10-11 años de edad aproximadamente, seleccionados de forma aleatoria de 16 Comunidades Autónomas y 2 Ciudades Autónomas que mostraron su disposición a participar. Esta iniciativa planificada y ejecutada por el Intef (2019)INSTITUTO NACIONAL DE TECNOLOGÍAS EDUCATIVAS Y DE FORMACIÓN DEL PROFESORADO – INTEF. La escuela de pensamiento computacional y su impacto en el aprendizaje: curso escolar 2018-2019. Madrid: Ministerio de Educación y Formación Profesional e Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado, 2019. , contó con la participación de 147 colegios españoles seleccionados por las administraciones educativas de cada región o Ciudad Autónoma. De estos centros, 142 colegios se ubicaron en el grupo experimental, grupo que desarrolló actividades de programación con Scratch 3 integradas en el currículum ordinario de Matemáticas ( MORENO-LEÓN et al. , 2021MORENO-LEÓN, J., et al. Programar para aprender Matemáticas en 5º de Educación Primaria: implementación del proyecto ScratchMaths en España. RED - Revista de Educación a Distancia, [s. l.], v. 21, n. 68, p. 1-19, 2021. http://dx.doi.org/10.6018/red.485441 MUÑOZ, J. M.; MATO, M. D. Análisis de las actitudes respecto a las Matemáticas en alumnos de ESO. Revista de Investigación Educativa, Murcia, v. 26, n. 1, p. 209-226, ene. 2018.
http://dx.doi.org/10.6018/red.485441...
), y 5 colegios en el grupo de control, grupo que no trabajó ninguna actividad de programación matemática y cuya selección fue tomando en consideración el contar con características similares a las del grupo experimental ( INTEF, 2019INSTITUTO NACIONAL DE TECNOLOGÍAS EDUCATIVAS Y DE FORMACIÓN DEL PROFESORADO – INTEF. La escuela de pensamiento computacional y su impacto en el aprendizaje: curso escolar 2018-2019. Madrid: Ministerio de Educación y Formación Profesional e Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado, 2019. ). A ambos grupos se les aplicó la Batería de Evaluación de la Competencia Matemática en su versión online (Becoma On) en dos momentos, pretest y post-test, para observar el impacto de la intervención del proyecto de Educación en programación matemática desarrollado con el alumnado. Para las dos mediciones y los dos grupos conformados, el reparto de la muestra fue el siguiente ( Tabla 1 ).

Tabla 1
Muestra participante para cada grupo y momento de la investigación

De acuerdo con la Tabla 1 , la diferencia de tamaño muestral entre momentos de la investigación vino derivada de la asunción de dos condiciones mutuamente incluyentes: a) aplicación completa del instrumento en el pretest y en el post-test, y b) transcurrir al menos 60 días entre la aplicación del test entre momentos de investigación.

2.2 Instrumentos

En la medición de la competencia matemática en ambos momentos de la investigación y para el grupo experimental y el grupo de control, se utilizó la Becoma On, instrumento de evaluación online construido mediante la aplicación de software Google Docs. Se trata de una batería conformada por 30 ítems con una ponderación de 0 (respuesta incorrecta), 1 (respuesta parcialmente correcta) y 2 (respuesta correcta), oscilando las puntuaciones entre 0 y 60 puntos. La batería está estructurada por 4 bloques de contenidos tomando en consideración el currículum oficial del área de Matemáticas: Aritmética -A- (14 ítems: números 6-11 y 14-21), Geometría -G- (5 ítems: números 12, 13 y 28-30), Magnitudes y Proporcionalidad -MP- (6 ítems: números 22-27) y Estadística y Probabilidad -EP- (5 ítems: números 1-5). En cuanto a su validación estadística, el índice de fiabilidad Alpha de Cronbach fue de 0.83 y los índices de validez de contenido tras realizar un juicio de expertos y de constructo una vez puesto en relación este instrumento con la prueba psicopedagógica BADyG-E3, oscilaron entre 0.78 y 0.86.

Por otro lado, el programa Scratch Maths es un proyecto creado en 2015 con la finalidad de apoyar el aprendizaje en el área de Matemáticas mediante materiales de programación matemática ( BENTON et al. , 2018BENTON, L., et al. Designing for learning mathematics through programming: a case study of pupils engaging with place value. International Journal of Child-Computer Interaction, [s.l.], v. 16, p. 68-76, jun. 2018. https://doi.org/10.1016/j.ijcci.2017.12.004
https://doi.org/10.1016/j.ijcci.2017.12....
). Las tareas están basadas en la creación de historias y animaciones interactivas mediante la puesta en acción de dos contenidos fundamentales: el algoritmo y el concepto de rotación de 360°. En esta investigación se utilizó la última versión de este software , Scratch 3, con el grupo experimental, compaginando lo delimitado en el currículum, principalmente para el bloque de contenidos de Geometría, con actividades de programación matemática. Ambos grupos recibieron las mismas horas lectivas del área de Matemáticas. Para más información, puede consultarse el informe La escuela de pensamiento computacional y su impacto en el aprendizaje. Curso escolar 2018-2019 ( INTEF, 2019INSTITUTO NACIONAL DE TECNOLOGÍAS EDUCATIVAS Y DE FORMACIÓN DEL PROFESORADO – INTEF. La escuela de pensamiento computacional y su impacto en el aprendizaje: curso escolar 2018-2019. Madrid: Ministerio de Educación y Formación Profesional e Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado, 2019. ).

2.3 Procedimiento

Antes de desarrollar la investigación, el profesorado de los alumnos y alumnas participantes recibieron 30 horas de formación específica para el manejo de Scratch 3 y la conceptualización y aplicación de la Becoma On, periodo formativo desarrollado entre diciembre de 2018 y febrero de 2019. Tras esta actividad formativa, se realizó la primera aplicación de la Becoma On, febrero de 2019, y después durante los meses de marzo a mayo de 2019 se realizó la implementación de Scratch con un total de 40 horas. En junio de 2019 se aplicó por segunda vez la Becoma On para medir el impacto de la intervención desarrollada. En todo momento, se contó con las autorizaciones pertinentes para el desarrollo de la investigación y el anonimato y la confidencialidad de los resultados fue garantizada.

2.4 Análisis de los datos

Para el análisis de los resultados obtenidos, se realizó una valoración de la consistencia interna de las mediciones mediante el estadístico Alfa de Cronbach. Para indagar en la incidencia del sexo en ambos momentos de la investigación y para los dos grupos conformados, se calcularon estadísticos descriptivos como la media y la desviación típica y se realizaron pruebas t de comparación de medias para observar la posible existencia de diferencias estadísticamente significativas en ambos momentos de la investigación y para los dos grupos de escolares. En el tratamiento estadístico de los resultados se utilizó el paquete estadístico SPSS en su versión 24.0.

3 Resultados

En las administraciones de la Becoma en el pretest y en el post-test, se obtuvieron índices de fiabilidad Alfa de Cronbach elevados, valores de 0.81 y 0.84, respectivamente. La media de las puntuaciones en el pretest fue de 36.08 (DT = 9.27) y para el post-test de 38.79 (DT = 9.59). Tras realizar un análisis de covarianza para medir el impacto del proyecto de Educación en programación matemática, apareció un valor F = 17.76, significación estadística de p < 0.001. Por tanto, el proyecto tuvo un impacto positivo en la competencia matemática del grupo experimental en comparación al grupo de control.

Con el fin de observar posibles diferencias entre los estudiantes en función de su sexo, se realizó un análisis estadístico tomando en consideración cada momento de la investigación y la pertenencia a un grupo u otro de la investigación. En primer lugar, el reparto de la muestra según su sexo, grupo y momento de la investigación fue el siguiente ( Tabla 2 ).

Tabla 2
Muestra de la investigación según su sexo

Las diferencias entre la muestra participante en los dos momentos de la investigación vinieron derivadas de la propia exigencia que una investigación como la presente demandaba, donde todos los estudiantes tuvieron que cumplir dos condiciones: completar la aplicación de todos los ítems del instrumento a lo largo del pretest y el post-test y un tiempo entre administraciones de al menos 60 días. Así, atendiendo al sexo de los estudiantes, la media y la desviación típica de cada grupo en ambos momentos de la investigación tras la aplicación de la Becoma fue la siguiente ( Tabla 3 ).

Tabla 3
Media y desviación típica según el sexo en el conjunto de la investigación

Ambos sexos pertenecientes al grupo experimental obtuvieron medias más altas en el post-test, siendo la diferencia de medias entre ambos momentos de 4.13 para los hombres y 3.58 para las mujeres. El grupo de control obtuvo medias inferiores a las alcanzadas por los estudiantes del grupo experimental, con una diferencia entre medias de 1.44 para los hombres y de 1.76 para las mujeres. Con la finalidad de profundizar en estos resultados, a continuación, se señalan los resultados según los ítems y dimensiones del instrumento para cada sexo en el pretest y el post-test. De esta forma, en un primer momento se señala la prueba t de comparación de medias entre sexos en el pretest ( Tabla 4 ).

Tabla 4
Prueba t de comparación de medias según el sexo en el pretest

La Tabla 4 refleja la existencia de diferencias estadísticamente significativas entre sexos en varios ítems en el pretest. Los hombres obtuvieron puntuaciones más altas y estadísticamente significativas en los ítems 9 (p < 0.05), 15 (p < 0.001), 16 (p < 0.001), 17 (p < 0.001), 18 (p < 0.001), 19 (p < 0.001), 20 (p < 0.050), 22 (p < 0.001), 25 (p < 0.050), 26 (p < 0.050), 27 (p < 0.001) y en la puntuación total (p < 0.050); a favor de las mujeres en los ítems 7 (p < 0.001), 8 (p < 0.010), 12 (p < 0.050), 13 (p < 0.050), 23 (p < 0.010) y 30 (p < 0.001). En tres de los cuatro bloques las diferencias alcanzaron la significación estadística (p < 0.001): Aritmética y Magnitudes y Proporcionalidad a favor de los hombres, Geometría a favor de las mujeres. Los índices de tamaño del efecto en el pretest oscilaron entre 0.00 (ítems 2 y 4) y .27 (ítem 15).

Tras señalar los resultados para cada sexo en el pretest, a continuación, en la Tabla 5 , se señalan para el post-test, una vez que se desarrolló el periodo de trabajo de programación matemática con Scratch ( Tabla 5 ).

Tabla 5
Prueba t de comparación de medias de acuerdo con el sexo en el post-test

En la Tabla 5 se puede observar la existencia de diferencias estadísticamente significativas entre sexos en varios ítems en el post-test. El sexo masculino obtuvo puntuaciones más altas en los ítems 9 (p < 0.050), 15 (p < 0.001), 16 (p < 0.001), 17 (p < 0.001), 18 (p < 0.001), 19 (p < 0.001), 22 (p < 0.010), 24 (p < 0.050), 25 (p < 0.05), 26 (p < 0.010), 27 (p < 0.050) y en la puntuación total (p < 0.010); el sexo femenino en los ítems 3 (p < 0.050), 7 (p < 0.010), 8 (p < 0.050), 13 (p < 0.010), 29 (p < 0.010) y 30 (p < 0.001). En los mismos tres bloques que en el pretest apareció significación estadística y con la misma tendencia: a favor de los hombres en Aritmética y Magnitudes y Proporcionalidad, a favor de las mujeres en Geometría. Los índices de tamaño del efecto oscilaron entre 0.00 (ítems 14 y 23) y 0.38 (ítem 16). Las diferencias existentes se mantuvieron prácticamente en los mismos ítems y bloques, aunque con valores medios mayores y significatividad superior.

Si se compara la puntuación total en el instrumento para ambos sexos en cada momento de la investigación, los hombres tuvieron una puntuación media más alta (pretest M = 35.18, DT = 10.08; post-test M = 39.20, DT = 10.22) que las mujeres (pretest M = 34.44, DT = 9.22; post-test M = 37.93, DT = 9.00), existiendo diferencias estadísticamente significativas (pretest p < 0.05; post-test p < 0.01). Los índices de tamaño del efecto fueron de 0.08 en el pretest a 0.13 en el post-test.

Para seguir profundizando en estas diferencias entre sexos, la Tabla 6 muestra la diferencia en las puntuaciones medias entre hombres y mujeres para los dos momentos de la investigación.

Tabla 6
Diferencia de medias entre sexos para los dos momentos de la investigación

Las diferencias entre las medias según el sexo en los dos momentos de la investigación fueron mayores para los hombres respecto a las mujeres, aunque ambos sexos alcanzaron puntuaciones más elevadas en el post-test con respecto al pretest. Los ítems en los que aparecieron mayores diferencias entre post-test y pretest en los hombres fueron el 10 (+0.26), el 12 (+0.27) y el 16 (+0.22); en el caso de las mujeres, en los ítems 10 (+0.23), 11 (+0.24) y el 29 (+0.24). Por bloques, el relativo a Aritmética obtuvo una diferencia mayor tanto en hombres (+2.03) como en mujeres (+1.67) entre momentos de investigación. Respecto a la puntuación total, la diferencia entre periodos fue de 4.02 para el sexo masculino y de 3.49 para el sexo femenino.

Por otro lado, las diferencias en el tamaño del efecto para ambos sexos y momentos de la investigación fue la siguiente ( Tabla 7 ).

Tabla 7
Diferencia de tamaño del efecto entre sexos para los dos momentos de la investigación

Los tamaños del efecto con mayores diferencias entre sexos fueron en los ítems 16 (0.15), 17 (0.12), 18 (0.09) y 19 (0.09). Por bloques, en Aritmética la diferencia fue la más alta, valor de 0.07. Respecto al total del instrumento, apareció un valor de 0.05. Con vistas a profundizar en estas diferencias y atendiendo a la consideración de pertenencia al grupo experimental o al grupo de control en función del sexo y para el momento temporal de la investigación del post-test, se realizó un análisis multivariante con vistas a analizar el efecto del programa desarrollado tanto para alumnos como para alumnas. Los resultados obtenidos mostraron diferenciación estadística para todos los ítems y el total del instrumento, p < 0.001. A modo de ejemplo, para el total del instrumento, se obtuvo un valor F = 947.20, p < 0.001.

4 Discusión

La existencia de innovación genera cambios en la forma de asimilar los patrones culturales de una sociedad. En estos momentos, la tecnología está derivando en cambios permanentes en las estructuras sociales, culturales, económicas y educativas. El aprendizaje está evolucionando de forma imparable, generando una amplia variedad de oportunidades para aprender ( TAPIA CORTES, 2020TAPIA CORTES, C. Tipologías de uso educativo de las Tecnologías de la Información y Comunicación: una revisión sistemática de la literatura. Edutec. Revista Electrónica de Tecnología Educativa, Palma de Mallorca, n. 71, p. 16-34, ene./mar. 2020. https://doi.org/10.21556/edutec.2020.71.1489
https://doi.org/10.21556/edutec.2020.71....
), siendo clave el componente motivacional en el rendimiento académico ( RODRÍGUEZ RODRÍGUEZ; GUZMÁN ROSQUETE, 2018RODRÍGUEZ RODRÍGUEZ, D.; GUZMÁN ROSQUETE, R. Relación entre perfil motivacional y rendimiento académico en educación secundaria obligatoria. Estudios sobre Educación, Pamplona, v. 34, p. 199-217, mar. 2018. https://doi.org/10.15581/004.34.199-217
https://doi.org/10.15581/004.34.199-217...
). Entre estas oportunidades, aparece la Educación en programación integrada en todas las áreas del currículum ( BASOGAIN; OLMEDO, 2020BASOGAIN, X.; OLMEDO, M. E. Integración de pensamiento computacional en educación básica. dos experiencias pedagógicas de aprendizaje colaborativo online. RED - Revista de Educación a Distancia, Murcia, v. 20, n. 63, p. 1-21, maio 2020. https://doi.org/10.6018/red.409481
https://doi.org/10.6018/red.409481...
; CHEN et al. , 2017CHEN, G., et al. Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, Oxford, v. 109, p. 162-175, jun. 2017. https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1016/j.compedu.2017.0...
; GROVER; PEA, 2018GROVER, S.; PEA, R. Computational thinking: a competency whose time has come. In: SENTENCE, S.; BARENDSEN, E.; CARSTEN, S. (Eds.). Computer science education: perspectives on teaching and learning in school. London: Bloomsbury, 2018. p. 19-38. ).

La Enseñanza y el aprendizaje de la Educación en programación en las aulas está estrechamente relacionado con el área de Matemáticas ( ALDON et al. , 2017ALDON, G., et al. Mathematics and technology. Gewerbestrasse: Springer, 2017. https://doi.org/10.1007/978-3-319-51380-5
https://doi.org/10.1007/978-3-319-51380-...
; GARCÍA-PERALES; ALMEIDA, 2019GARCÍA-PERALES, R.; ALMEIDA, L. S. Programa de enriquecimiento para alumnado con alta capacidad: efectos positivos para el currículum. Comunicar, Huelva, v. 27, n. 6, p. 39-48, jul. 2019. https://doi.org/10.3916/C60-2019-04
https://doi.org/10.3916/C60-2019-04...
). La tecnología facilita y media en el desarrollo de los procesos educativos, siendo clave en la aplicación y generación de conocimiento ( ANDERSON, 2016ANDERSON, T. Theories for learning with emerging technologies. In: VELETSIANOS, G. (org.). Emergence and innovation in digital learning: foundations and applications. Edmonton: Athabasca University Press, 2016. p. 35-50. ). Esta cuestión deberá ser tenida en cuenta por las administraciones educativas ( PRENDES ESPINOSA, 2018PRENDES ESPINOSA, M. P. La tecnología educativa en la pedagogía del siglo XXI: una visión en 3D. Revista Interuniversitaria de Investigación en Tecnología Educativa, Murcia, n. 4, p. 6-16, jun. 2018. https://doi.org/10.6018/riite/2018/335131
https://doi.org/10.6018/riite/2018/33513...
), tomando en consideración la importancia de la igualdad de oportunidades entre sexos a lo largo de la trayectoria académica y profesional de cada estudiante ( GARCÍA-PERALES; JIMÉNEZ-FERNÁNDEZ; PALOMARES-RUIZ, 2021GARCÍA-PERALES, R.; JIMÉNEZ-FERNÁNDEZ, C.; PALOMARES-RUIZ, A. Elecciones académicas e interés vocacional en alumnado con alta capacidad matemática. Ensaio: Avaliação e Políticas Públicas em Educação, Río de Janeiro, v. 29, n. 110, p. 160-182, ene../mar. 2021. https://doi.org/10.1590/S0104-40362020002802539
https://doi.org/10.1590/S0104-4036202000...
), aspectos claves para la prevención de situaciones de discriminación ( GALLARDO-LÓPEZ; LÓPEZ-NOGUERO; GALLARDO-VÁZQUEZ, 2020GALLARDO-LÓPEZ, J. A.; LÓPEZ-NOGUERO, F.; GALLARDO-VÁZQUEZ, P. Pensamiento y convivencia entre géneros: coeducación para prevenir la violencia. Géneros. Multidisciplinary Journal of Gender Studies, Barcelona, v. 9, n. 3, out. 2020. https://doi.org/10.17583/generos.2020.5477
https://doi.org/10.17583/generos.2020.54...
). Se ha de tener presente que la escolaridad obligatoria es un momento clave para hacer partícipe a toda la población escolar del aprendizaje en todas sus dimensiones.

Esta investigación persiguió como objetivo valorar la funcionalidad de la Educación en programación matemática atendiendo al sexo de los estudiantes. La fiabilidad de las mediciones realizadas en ambos periodos temporales, pretest y post-test, fue elevada, .81 y .84, respectivamente.

Los resultados mostraron que hombres y mujeres pertenecientes al grupo experimental obtuvieron medias más altas en el post-test (hombres M = 39.24, DT = 10.19; mujeres M = 38.94, DT = 9.04) con respecto al pretest (hombres M = 35.11, DT = 10.05; mujeres M = 34.46, DT = 9.26). Aunque en el pretest las diferencias entre grupo experimental y grupo control fueron más reducidas, esta tendencia no fue observada en el post-test, con resultados más elevados y significativos para el grupo experimental. Por otro lado, destacar que los hombres alcanzaron puntuaciones estadísticamente significativas en un mayor número de ítems y bloques en comparación con las mujeres tanto en el pretest como en el post-test, resultados similares a los alcanzados en otras investigaciones ( ESPINO; GONZÁLEZ, 2016ESPINO, E. E.; GONZÁLEZ, C. Gender and computational thinking: review of the literature and applications. In: INTERACCIÓN ’16: INTERNATIONAL CONFERENCE ON HUMAN COMPUTER INTERACTION,17., 2016, Salamanca. New York: Association for Computing Machinery, 2016. ; PICADO-ARCE et al. , 2021PICADO-ARCE, K., et al. Facilitadores del desarrollo del pensamiento computacional en estudiantes costarricenses. Comunicar, Huelva, v. 29, n. 68, p. 85-96, jul. 2021. https://doi.org/10.3916/C68-2021-07
https://doi.org/10.3916/C68-2021-07...
), aunque los tamaños del efecto obtenidos fueron, mayormente, bajos ( COHEN, 1988COHEN, J. Statistical power analysis for the behavioral sciences. 2. ed. Mahwah: Lawrence Erlbaum, 1988. ). A pesar de ello, se puede concluir que el proyecto de programación matemática con Scratch tuvo un impacto positivo (F = 17.76, significación estadística de p < 0.001), incluyendo la toma en consideración de la variable sexo (F = 947.20, p < 0.001).

Esta investigación contó con una limitación, la escasa muestra que formó parte del grupo de control en comparación con la del grupo experimental. En una futura investigación se realizará una replicación de los resultados teniendo presente esta consideración, la búsqueda de un mayor equilibrio entre el número de estudiantes para ambos grupos de investigación. También se podrán incluir otras variables para analizar los resultados como rendimiento académico en el área de Matemáticas, interés y motivación del estudiante hacia el área de Matemáticas, percepción de autoeficacia en la cumplimentación de test matemáticos, autoconcepto académico y/o alta capacidad detectada.

En definitiva, se ha observado que el trabajo de las disciplinas STEM, esta investigación se centró en el manejo y la posibilidad de complementariedad entre dos de ellas, las disciplinas de Tecnología y Matemáticas, podrían colaborar al fomento de la igualdad de oportunidades entre sexos en el aula, aspecto observado en otras investigaciones ( CRESPO-GARCÍA, 2019CRESPO-GARCÍA, R. Género y STEM: un falso antagonismo. Universidad Verdad, Cuenca, v. 1, n. 75, p. 61-70, nov. 2019. https://doi.org/10.33324/uv.v1i75.215
https://doi.org/10.33324/uv.v1i75.215...
; LEHMAN; SAX; ZIMMERMAN, 2017LEHMAN, K. J.; SAX, L. J.; ZIMMERMAN, H. B. Women planning to major in computer science: Who are they and what makes them unique? Computer Science Education, Oxon, v. 26, n. 4, p. 277-298, jan. 2017. https://doi.org/10.1080/08993408.2016.1271536
https://doi.org/10.1080/08993408.2016.12...
; MCCULLOUGH, 2020MCCULLOUGH, L. Proportions of Women in STEM leadership in the Academy in the USA. Education Sciences, Basel, v. 10, n. 1, p. 1-13, dic. 2020. https://doi.org/10.3390/educsci10010001
https://doi.org/10.3390/educsci10010001...
). Esto resulta esencial desde etapas iniciales de escolarización hasta Enseñanzas universitarias. Para contribuir a este fin, el docente deberá ser capaz de transmitir el valor y funcionalidad de estas disciplinas a sus estudiantes, incentivando actitudes de disfrute hacia su aprendizaje, desempeño y generalización. En definitiva, en unos procesos educativos de calidad no deberían existir barreras para el éxito académico en cualquier disciplina académica.

Referencias

  • ALDON, G., et al. Mathematics and technology. Gewerbestrasse: Springer, 2017. https://doi.org/10.1007/978-3-319-51380-5
    » https://doi.org/10.1007/978-3-319-51380-5
  • ANDERSON, T. Theories for learning with emerging technologies. In: VELETSIANOS, G. (org.). Emergence and innovation in digital learning: foundations and applications. Edmonton: Athabasca University Press, 2016. p. 35-50.
  • ANGAMARCA, O.; ANDRADE, D. Enseñanza de programación a niños de edad escolar utilizando Scratch para mejora del razonamiento lógico. Pro Sciences: Revista de Producción, Ciencias e Investigación, Los Ríos, v. 6, n. 42, p. 111-121, mar. 2022. https://doi.org/10.29018/issn.2588-1000vol6iss42.2022pp111-121
    » https://doi.org/10.29018/issn.2588-1000vol6iss42.2022pp111-121
  • ASLAN, A.; ZHU, C. Investigating variables predicting Turkish pre-service teachers’ integration of ICT into teaching practices. British Journal Educational Technology, [s. l.], v. 48, n. 2, p. 552-570, mar. 2017. https://doi.org/10.1111/bjet.12437
    » https://doi.org/10.1111/bjet.12437
  • BASOGAIN, X.; OLMEDO, M. E. Integración de pensamiento computacional en educación básica. dos experiencias pedagógicas de aprendizaje colaborativo online. RED - Revista de Educación a Distancia, Murcia, v. 20, n. 63, p. 1-21, maio 2020. https://doi.org/10.6018/red.409481
    » https://doi.org/10.6018/red.409481
  • BENTON, L., et al. Building mathematical knowledge with programming: insights from the scratchmaths project. In: SIPITAKIAT, A.; TUTIYAPHUENGPRASERT, N. (eds.). Constructionism in Action 2016: Conference Proceedings, Bangkok: Sksapattana Foundation, 2017. p. 26-33.
  • BENTON, L., et al. Designing for learning mathematics through programming: a case study of pupils engaging with place value. International Journal of Child-Computer Interaction, [s.l.], v. 16, p. 68-76, jun. 2018. https://doi.org/10.1016/j.ijcci.2017.12.004
    » https://doi.org/10.1016/j.ijcci.2017.12.004
  • BERGE, O. Rethinking digital literacy in Nordic school curricula. Nordic Journal of Digital Literacy Nord, Oslo, v. 12, p. 5-7, Jun. 2017. https://doi.org/10.18261/issn.1891-943x-2017-01-02-01
    » https://doi.org/10.18261/issn.1891-943x-2017-01-02-01
  • BOCCONI, S.; CHIOCCARIELLO, A.; EARP, J. The Nordic approach to introducing computational thinking and programming in compulsory education. [S. l.]: Nordic@BETT2018 Steering Group, 2018.
  • BOTELLA, C., et al. Gender diversity in STEM disciplines: a multiple factor problema. Entropy, Basel, v. 21, n. 1, p. 1-17, jan. 2019. https://doi.org/10.3390/e21010030
    » https://doi.org/10.3390/e21010030
  • CALVO GARCÍA, G. Las identidades de género según las y los adolescentes: percepciones, desigualdades y necesidades educativas. Contextos Educativos, Logroño, n. 21, p. 169-284, fev.2018. https://doi.org/10.18172/con.3311
    » https://doi.org/10.18172/con.3311
  • CANO VÁSQUEZ, L. M. Concepciones docentes, usos de TIC en el aula y estilos de enseñanza. Medellín: Universidad Pontificia Bolivariana, 2020.
  • CERÓN MOLINA, J. A. La programación para niños: perspectivas de abordaje desde el pensamiento lógico matemático. Revista Internacional de Pedagogía e Innovación Educativa, [s. l.], v. 2, n. 1, p. 101-122, 2021. https://doi.org/10.51660/ripie.v2i1.70
    » https://doi.org/10.51660/ripie.v2i1.70
  • CHEN, G., et al. Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, Oxford, v. 109, p. 162-175, jun. 2017. https://doi.org/10.1016/j.compedu.2017.03.001
    » https://doi.org/10.1016/j.compedu.2017.03.001
  • COHEN, J. Statistical power analysis for the behavioral sciences. 2. ed. Mahwah: Lawrence Erlbaum, 1988.
  • COMISIÓN EUROPEA. Comunicación de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de las Regiones sobre el Plan de Acción de Educación Digital. Bruselas, 2018.
  • CRESPO-GARCÍA, R. Género y STEM: un falso antagonismo. Universidad Verdad, Cuenca, v. 1, n. 75, p. 61-70, nov. 2019. https://doi.org/10.33324/uv.v1i75.215
    » https://doi.org/10.33324/uv.v1i75.215
  • CUELI, M.; GARCÍA, T.; GONZÁLEZ-CASTRO, P. Autorregulación y rendimiento académico en Matemáticas. Aula Abierta, Oviedo, v. 41, n. 1, p. 39-48, ene./abr. 2013.
  • DEL RÍO, M. F.; STASSER, K.; SUSPERREGUY, M. I. ¿Son las habilidades matemáticas un asunto de género? Los estereotipos de género acerca de las matemáticas en niños y niñas de Kínder, sus familias y educadoras. Calidad en la Educación, Santiago, n. 45, p. 20-53, dic. 2016. https://doi.org/10.4067/S0718-45652016000200002
    » https://doi.org/10.4067/S0718-45652016000200002
  • ELSTAD, E.; CHRISTOPHERSEN, K- A. Perceptions of digital competency among student teachers: contributing to the development of student teachers’ instructional self-efficacy in technology-rich classrooms. Education Sciences, Basel, v. 7, n. 1, p. 1-15, fev. 2017. https://doi.org/10.3390/educsci7010027
    » https://doi.org/10.3390/educsci7010027
  • ESPAÑA. Ministerio de Educación y Formación Profesional. PISA 2018: programa para la evaluación internacional de los estudiantes: informe español. Madrid: Ministerio de Educación y Formación Profesional, 2019. Disponible en: https://sede.educacion.gob.es/publiventa/d/23505/19/00
    » https://sede.educacion.gob.es/publiventa/d/23505/19/00
  • ESPINO, E. E.; GONZÁLEZ, C. Gender and computational thinking: review of the literature and applications. In: INTERACCIÓN ’16: INTERNATIONAL CONFERENCE ON HUMAN COMPUTER INTERACTION,17., 2016, Salamanca. New York: Association for Computing Machinery, 2016.
  • FARFÁN MARQUES, R. M.; SIMÓN RAMOS, G. Género y matemáticas: una investigación con niñas y niños talento. Acta Scientiae, Canoas, v. 19, n. 3, p. 427-446, maio/jun. 2017.
  • FUENTES DE FRUTOS, S.; RENOBELL SANTAREN, V. La influencia del género en el aprendizaje matemático en España: EEvidencias desde PISA. RASE - Revista de Sociología de la Educación, Valencia, v. 13, n. 1, p. 63-80, nov./dic. 2019. https://doi.org/10.7203/RASE.13.1.16042
    » https://doi.org/10.7203/RASE.13.1.16042
  • GALLARDO-LÓPEZ, J. A.; LÓPEZ-NOGUERO, F.; GALLARDO-VÁZQUEZ, P. Pensamiento y convivencia entre géneros: coeducación para prevenir la violencia. Géneros. Multidisciplinary Journal of Gender Studies, Barcelona, v. 9, n. 3, out. 2020. https://doi.org/10.17583/generos.2020.5477
    » https://doi.org/10.17583/generos.2020.5477
  • GARCÍA-PERALES, R.; JIMÉNEZ-FERNÁNDEZ, C.; PALOMARES-RUIZ, A. Elecciones académicas e interés vocacional en alumnado con alta capacidad matemática. Ensaio: Avaliação e Políticas Públicas em Educação, Río de Janeiro, v. 29, n. 110, p. 160-182, ene../mar. 2021. https://doi.org/10.1590/S0104-40362020002802539
    » https://doi.org/10.1590/S0104-40362020002802539
  • GARCÍA-PERALES, R.; ALMEIDA, L. S. Programa de enriquecimiento para alumnado con alta capacidad: efectos positivos para el currículum. Comunicar, Huelva, v. 27, n. 6, p. 39-48, jul. 2019. https://doi.org/10.3916/C60-2019-04
    » https://doi.org/10.3916/C60-2019-04
  • GARCÍA-PERALES, R.; PALOMARES-RUIZ, A. Education in programming and mathematical learning: Functionality of a programming language in educational processes. Sustainability, Basel, v. 12, n. 23, 10129, dic. 2020. https://doi.org/10.3390/su122310129
    » https://doi.org/10.3390/su122310129
  • GARCÍA-RODRÍGUEZ, A. Enseñanza de la programación a través de Scratch para el desarrollo del pensamiento computacional en educación básica secundaria. Revista Academia y Virtualidad, [s. l.], v. 15, n. 1, 161-182, ene./jun. 2022. https://doi.org/10.18359/ravi.5883
    » https://doi.org/10.18359/ravi.5883
  • GONZÁLEZ JIMÉNEZ, R. M. Evaluación de estrategias formativas para mejorar las actitudes hacia las matemáticas en secundaria. Educación Matemática, Guadalajara, v. 31, n. 1, p. 176-203, abr. 2019. https://doi.org/10.24844/em3101.07
    » https://doi.org/10.24844/em3101.07
  • GROVER, S.; PEA, R. Computational thinking: a competency whose time has come. In: SENTENCE, S.; BARENDSEN, E.; CARSTEN, S. (Eds.). Computer science education: perspectives on teaching and learning in school. London: Bloomsbury, 2018. p. 19-38.
  • GUDMUNDSDOTTIR, G. B.; HATLEVIK, O. E. Newly qualified teachers’ professional digital competence: Implications for teacher education. European Journal of Teacher Education, Oxon, v. 41, n. 2, p. 214-231, nov./dic. 2017. https://doi.org/10.1080/02619768.2017.1416085
    » https://doi.org/10.1080/02619768.2017.1416085
  • HUÉSCAR-HERNÁNDEZ, E., et al. Passion or perseverance? The effect of perceived autonomy support and grit on academic performance in college students. International Journal Environmental Research and Public Health, Basel, v. 17, n. 6, 2143, mar. 2020. https://doi.org/10.3390/ijerph17062143
    » https://doi.org/10.3390/ijerph17062143
  • INSTEFJORD, E. J.; MUNTHE, E. Educating digitally competent teachers: a study of integration of professional digital competence in teacher education. Teaching and Teacher Education, Oxford, v. 67, p. 37-45, out. 2017. https://doi.org/10.1016/j.tate.2017.05.016
    » https://doi.org/10.1016/j.tate.2017.05.016
  • INSTITUTO NACIONAL DE TECNOLOGÍAS EDUCATIVAS Y DE FORMACIÓN DEL PROFESORADO – INTEF. La escuela de pensamiento computacional y su impacto en el aprendizaje: curso escolar 2018-2019. Madrid: Ministerio de Educación y Formación Profesional e Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado, 2019.
  • LEHMAN, K. J.; SAX, L. J.; ZIMMERMAN, H. B. Women planning to major in computer science: Who are they and what makes them unique? Computer Science Education, Oxon, v. 26, n. 4, p. 277-298, jan. 2017. https://doi.org/10.1080/08993408.2016.1271536
    » https://doi.org/10.1080/08993408.2016.1271536
  • MATO VÁZQUEZ, M. D.; ESPIÑEIRA BELLÓN, E.; CHAO FERNÁNDEZ, R. Dimensión afectiva hacia la matemática: resultados de un análisis en educación primaria. Revista de Investigación Educativa, Salamanca, v. 32, n. 1, p. 57-72, ene. 2014. https://doi.org/10.6018/rie.32.1.164921
    » https://doi.org/10.6018/rie.32.1.164921
  • MCCOY, L. P. Computer based mathematics learning. Journal of Research on Computing in Education, [s. l.] v. 28, n. 4, p. 438-460, fev. 2014. https://doi.org/10.1080/08886504.1996.10782177
    » https://doi.org/10.1080/08886504.1996.10782177
  • MCCULLOUGH, L. Proportions of Women in STEM leadership in the Academy in the USA. Education Sciences, Basel, v. 10, n. 1, p. 1-13, dic. 2020. https://doi.org/10.3390/educsci10010001
    » https://doi.org/10.3390/educsci10010001
  • MORENO-LEÓN, J., et al. Programar para aprender Matemáticas en 5º de Educación Primaria: implementación del proyecto ScratchMaths en España. RED - Revista de Educación a Distancia, [s. l.], v. 21, n. 68, p. 1-19, 2021. http://dx.doi.org/10.6018/red.485441 MUÑOZ, J. M.; MATO, M. D. Análisis de las actitudes respecto a las Matemáticas en alumnos de ESO. Revista de Investigación Educativa, Murcia, v. 26, n. 1, p. 209-226, ene. 2018.
    » http://dx.doi.org/10.6018/red.485441
  • ORGANIZACIÓN DE LAS NACIONES UNIDAS – ONU. Resolution adopted by the General Assembly on 25 September 2015: ransforming our world: the 2030 Agenda for Sustainable Development. New York: Organización de las Naciones Unidas, 2015.
  • PALACIOS PICOS, A.; ARIAS, V.; ARIAS, B. Attitudes towards mathematics: construction and validation of a measurement instrument. Revista de Psicodidáctica, Madrid, v. 19, n. 1, p. 67-91, set. 2014. https://doi.org/10.1387/RevPsicodidact.8961
    » https://doi.org/10.1387/RevPsicodidact.8961
  • PALOMARES-RUIZ, A.; GARCÍA-PERALES, R. Math performance and sex: the predictive capacity of self-efficacy, interest and motivation for learning mathematics. Frontiers in Psychology, Lausanne, v. 11, e1879, aug. 2020. https://doi.org/10.3389/fpsyg.2020.01879
    » https://doi.org/10.3389/fpsyg.2020.01879
  • PICADO-ARCE, K., et al. Facilitadores del desarrollo del pensamiento computacional en estudiantes costarricenses. Comunicar, Huelva, v. 29, n. 68, p. 85-96, jul. 2021. https://doi.org/10.3916/C68-2021-07
    » https://doi.org/10.3916/C68-2021-07
  • PRENDES ESPINOSA, M. P. La tecnología educativa en la pedagogía del siglo XXI: una visión en 3D. Revista Interuniversitaria de Investigación en Tecnología Educativa, Murcia, n. 4, p. 6-16, jun. 2018. https://doi.org/10.6018/riite/2018/335131
    » https://doi.org/10.6018/riite/2018/335131
  • RODRÍGUEZ RODRÍGUEZ, D.; GUZMÁN ROSQUETE, R. Relación entre perfil motivacional y rendimiento académico en educación secundaria obligatoria. Estudios sobre Educación, Pamplona, v. 34, p. 199-217, mar. 2018. https://doi.org/10.15581/004.34.199-217
    » https://doi.org/10.15581/004.34.199-217
  • RODRÍGUEZ-MUÑIZ, L, J., et al. Hacia una nueva educación en matemáticas e informática en la educación secundaria. Madrid: Real Sociedad Matemática Española (RSME) y Sociedad Científica Informática de España (SCIE), 2020.
  • SACKMAN, H. Man-computer problem solving: experimental evaluation of time-sharing and batch processing. London: Auerbach, 1970.
  • SENTENCE, S.; CSIZMADIA, A. Computing in the curriculum: challenges and strategies from a teacher’s perspective. Education and Information Technologies, New York, v. 22, p. 469-495, Apr. 2016. https://doi.org/10.1007/s10639-016-9482-0
    » https://doi.org/10.1007/s10639-016-9482-0
  • SUÁREZ-ÁLVAREZ, R.; VÁZQUEZ-BARRIO, T.; TORRECILLAS, T. Metodología y formación docente: cuestiones claves para la integración de las TIC en la educación. Ámbitos. Revista Internacional de Comunicación, Sevilla, n. 49, p. 197-215, jun. 2020. https://doi.org/10.12795/Ambitos.2020.i49.12
    » https://doi.org/10.12795/Ambitos.2020.i49.12
  • TAPIA CORTES, C. Tipologías de uso educativo de las Tecnologías de la Información y Comunicación: una revisión sistemática de la literatura. Edutec. Revista Electrónica de Tecnología Educativa, Palma de Mallorca, n. 71, p. 16-34, ene./mar. 2020. https://doi.org/10.21556/edutec.2020.71.1489
    » https://doi.org/10.21556/edutec.2020.71.1489
  • ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA EDUCACIÓN, LA CIENCIA Y LA CULTURA – UNESCO. Descifrar el código: la educación de las niñas en ciencias, tecnología, ingeniería y matemáticas (STEM). París, 2019.
  • WEINBERG, G. M. The psychology of computer programming. New York: Van Nostrand Reinhold, 1971.
  • WING, J. M. Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, Genova, v. 25, n. 2, p. 7-14, ago. 2017. https://doi.org/10.17471/2499-4324/922
    » https://doi.org/10.17471/2499-4324/922
  • Datos: Todo el conjunto de datos que respalda los resultados de este estudio se publicó en el artículo mismo.
  • Financiación: Ministerio de Educación y Formación Profesional, Instituto Nacional de Tecnologías Educativas y de Formación del profesorado (Intef), Universidad Nacional de Educación a Distancia de Madrid (UNED) y Universidad de Castilla-La Mancha (UCLM).

Disponibilidad de datos

Datos: Todo el conjunto de datos que respalda los resultados de este estudio se publicó en el artículo mismo.

Fechas de Publicación

  • Publicación en esta colección
    03 Jul 2023
  • Fecha del número
    2023

Histórico

  • Recibido
    26 Nov 2021
  • Acepto
    14 Feb 2023
Fundação CESGRANRIO Revista Ensaio, Rua Santa Alexandrina 1011, Rio Comprido, 20261-903 , Rio de Janeiro - RJ - Brasil, Tel.: + 55 21 2103 9600 - Rio de Janeiro - RJ - Brazil
E-mail: ensaio@cesgranrio.org.br