Accessibility / Report Error

¿Puede la inteligencia artificial apoyar acciones contra la deserción escolar universitaria?

Resumen

La deserción escolar es una preocupación global por sus consecuencias negativas para la sociedad en su conjunto, y es necesario investigarla para comprenderla y actuar con anticipación, mitigando su riesgo de ocurrencia. Este trabajo propone el uso de técnicas de Minería de Datos Educativos con técnicas de Aprendizaje de Máquina para identificar las variables que son importantes para caracterizar el perfil del estudiante en riesgo de deserción. . Las técnicas de Support Vector Machine, Gradient Boosting Machine, Random Forest y Machine Committee se aplicaron a 1.429 registros de estudiantes de cursos de educación superior en uno de los campus de IFMG, entre 2013 y 2019. Los resultados obtenidos sugieren un desempeño superior del comité de máquinas, a través del cual se obtuvo la importancia de las variables sobre el fenómeno en estudio, lo que permitió trazar el perfil del alumno desertor, por período. Estos resultados permitieron proponer un proceso de detección y seguimiento de estos estudiantes.

Deserción; Aprendizaje de Máquina; Estudiantes Universitarios

Fundação CESGRANRIO Revista Ensaio, Rua Santa Alexandrina 1011, Rio Comprido, 20261-903 , Rio de Janeiro - RJ - Brasil, Tel.: + 55 21 2103 9600 - Rio de Janeiro - RJ - Brazil
E-mail: ensaio@cesgranrio.org.br