Acessibilidade / Reportar erro

Effect of magnesium addition on the vacancy-Mg binding free enthalpy in Al-Cr alloys

Efeito da adição de magnésio na entalpia livre de ligação vacância-Mg em ligas de Al-Cr

Abstracts

The Mg-vacancy binding free enthalpy of Al-Cr solid solution alloys with Mg addition was calculated by electrical resistivity measurements. The obtained value is lower than that obtained for dilute Al-Mg alloys with almost the same Mg content and may be attributed to the diffusion of Mg.

Electrical properties; resistivity; vacancy; binding free enthalpy


A entalpia livre de ligação vacância-Mg, em ligas com solução sólida de Al-Cr contendo adição de Mg, foi calculada por medidas de resisitivadade elétrica. O valor obtido foi menor do que aquele obtido para ligas diluídas de Al-Mg com aproximadamente a mesma concentração de Mg e pode ser atribuído à difusão do Mg.

propriedades elétricas; resisitividade; vacância; entalpia livre de ligação


EFFECT OF MAGNESIUM ADDITION ON THE VACANCY-Mg BINDING FREE ENTHALPY IN Al-Cr ALLOYS

Carlos Roberto Sobreira BEATRICE** Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil. Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil.

Waldir GARLIPP** Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil. Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil.

Mário CILENSE** Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil. Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil.

Antonio Tallarico ADORNO** Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil. Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil.

ABSTRACT: The Mg-vacancy binding free enthalpy of Al-Cr solid solution alloys with Mg addition was calculated by electrical resistivity measurements. The obtained value is lower than that obtained for dilute Al-Mg alloys with almost the same Mg content and may be attributed to the diffusion of Mg.

KEYWORDS: Electrical properties; resistivity; vacancy; binding free enthalpy.

Introduction

Previous works show that there is a considerable variation on the magnitude of the experimental values of the vacancy-impurity binding enthalpy in binary alloys, obtained with the application of different techniques (specific heat, positron annihilation, comparing the length change and lattice parameter change, residual resistivity, solvent enhancement of diffusion at equilibrium temperature) and specifically of the vacancy-magnesium binding enthalpy g in the dilute Al-Mg alloy18,12,5,10,19,8.

Theoretical estimations, based on the screening potential method9, on thepseudopotential method16, on the second-order perturbation theory17, on the cohesive energies of pure Al and pure Mg and the heat of solution of the solution atoms7, are generally in fairly poor agreement with experimental data.

From the harmonic model11,

where R is the electrical resistance of the metal, T is the absolute temperature and qB is the Debye temperature. From thermodynamics14 one gets

where a(T) is the volumetric thermal dilatation coefficient of the metal and g(T) is the Grüneisen parameter. It is experimentally verified that the linear relationship of equation (2) has no physical meaning for determined values of a(T) and g(T), because of their substantial anharmonic contributions12.

The measurement of the equilibrium impurity-vacancy binding enthalpy in metals from electrical resistivity, by its great sensibility, is one of the best, despite the weak theoretical justification of the criterion for low-to-high temperature extrapolation of the lattice resistivity. This was overcome by an empirical method based on the fact that the plot of experimental ln(R/T) data versus T, figure 1, is linear up from a specific to a high enough temperature to allow extrapolation of the lattice resistivity3,1. The slight upward deviation of the curve, in that figure, is attributed to the increasing thermal equilibrium vacancy formation.


The electrical resistivities r and r0, Fig.1, are respectively proportional to

and to

where nA, nB are, respectively, the number of lattice positions of A and B atoms and nV is the total number of vacancies, and k is the coefficient of proportionality (W × cm). For

results

The statistical analysis for the determination of thermal equilibrium vacancy concentration in a diluted binary A-B alloy, being A the metal solvent and B the dilute or impure metal, with arbitrary concentration15,20, considers the existence of a positive binding free enthalpy between vacancies and impurity atoms. According to Dorn-Mitchell6, the equilibrium concentration of a substitutional regular solid solution of A and B atoms is given by

where ni is the number of vacancies coordinated with i atoms B and (z-i) atoms A, 0 £ i £ z, ns = nA+nB+nV is the total number of lattice positions, nv is the total number of vacancies and nA and nB are the numbers of A and B atoms in the alloy, XA and XB are the solvent and solute atomic fractions and gi the free enthalpy of formation between a vacancy and i solute atoms, which depends only on the atoms coordinated with a vacancy.

For i = 0 the right hand term of expression (7) for (XA)12 @1 becomes exp (-g0/kT), indicating the absence of a vacancy-B atoms binding free enthalpy.The normalization of the Dorn-Mitchell's expression with exp(-g0/kT) becomes equivalent to nV/ nS=Dr /r0 .

According to the Matthiessen's rule,

where ri is the impurity (solute) electrical resistivity, which is nearly independent of the temperature, r0 is the electrical resistivity given by the matrix lattice vibration, which depends on the temperature and r is the electrical resistivity change caused by the thermal equilibrium vacancies, which concentration grows exponentially with the temperature.

Taking equation (6), where r and r0 are obtained, respectively, from the anti-ln(r /T) and anti-ln(r0/T) of the ascendant part and at the extended rectilinear part of the curve, at the same temperatures (Fig. 1), it is possible to measure the concentration of thermal vacancies on heating2-1.

Because the lack of a expression for a ternary alloy, as did Dorn-Mitchell for binary alloys, we just experimentally investigated the r /r0 behavior with Mg composition of the Al-Cr-Mg alloy.

Experimental Procedure

The studied alloys were prepared by ALCAN-CANADA, with compositions showed on Table I.

Wires of the alloys, with 0.05 cm diameter, were obtained by cold-rolling. The specimen were screw-shaped, fixed on a ceramic holder and annealed in argon atmosphere. The potentiometer contacts were made by wires of the same alloy. A K-3 Leeds & Northrup potentiometer, a Cambridge galvanometer with 50 ohm internal resistance and a tubular furnace with controlled temperature were used for equilibrium temperature electrical resistivity measurements in controlled atmosphere. A constant electrical current of 200 mA was controlled by using a standard resistance at constant temperature.

Results and Discussion

Figure 2 shows the plot of residual electrical resistivity Dr/r0, designated by DrN, vs. Mg composition, obtained according to the method presented in Fig.1, where the Al-Mg19 and the Al-Cr-Mg curves are normalized to their respective extended rectilinear parts of the curve at 855 K, from the experimental range 400K-860K.


From Fig. 2 it is possible to see that the thermal vacancies contribution is lower than that obtained for Al-Mg alloys with same Mg content4,13.

Conclusions

The thermal equilibrium method here adopted shows an increase of DrN with the Mg concentration and that thermal vacancies contribution must be modified by the Mg addition.

When we compare the DrN of the Al-Mg and of the Al-Cr-Mg alloys behavior, the dilute element Cr seems to low significantly the total number of vacancies linked with different numbers of Mg atoms.

Because the low concentration of Cr in the Al-Cr-Mg, alloy the influence on the DrN values by the residual resistance, caused by the maximum scattering of the Fermi electrons9 at the experimental range 400K-860K, is small.

Acknowledgements

Financial support from FAPESP and CNPq-Brasil is gratefully acknowledged.

BEATRICE, C. R. S., GARLIPP, W., CILENSE, M., ADORNO, A. T. Efeito da adição de magnésio na entalpia livre de ligação vacância-Mg em ligas de Al-Cr. Ecl. Quím. (São Paulo), v.27, p. , 2002.

RESUMO: A entalpia livre de ligação vacância-Mg, em ligas com solução sólida de Al-Cr contendo adição de Mg, foi calculada por medidas de resisitivadade elétrica. O valor obtido foi menor do que aquele obtido para ligas diluídas de Al-Mg com aproximadamente a mesma concentração de Mg e pode ser atribuído à difusão do Mg.

PAVRAS-CHAVE: propriedades elétricas; resisitividade; vacância; entalpia livre de ligação.

Recebido em 09.01.2002.

Aceito em 22.03.2002.

  • References 1 ASCOLI, A.; BERGAMINI, P.; QUEIROLO, G.T. Impurity-vacancy binding energy obtained from equilibrium resistivity of Cu-dopped Au. Scripta. Metall, v.6, p. 641-646, 1972.
  • 2 ASCOLI, A.; GERMAGNO, E.; GUARINI, G. Equilibrium resistivity of latice vacancies in pure Ag. Acta Metall, v.14, p. 1002-1005, 1966.
  • 3 ASCOLI, A.; GUARINI, G.; QUEIROLO, G.T. Equilibrium vacancy resistivity in pure noble metals. Crystal Lattice Defects, v.1, p. 159-163, 1970.
  • 4 BEATRICE, C.R.S.; GARLIPP, W.; CILENSE, M.; ADORNO, A.T. Vacancy-Mg atom binding energy im Al-Mg alloys. Scripta. Metall. Mater, v.32, p.23-26,1995.
  • 5 CORDIER, H.; DUMONT, C.; GRUHL W.; GRZEMBRE, B. The influence of Cr, Mn and Cu of the tensile properties and stress-corrosion cracking of the weldable AlZn5Mg1.7 alloy. Metall., v.36, p.33-40, 1982.
  • 6 DORN, J.E.; MITCHELL, .J.B. Vacancy in binary alloys. Acta Metall., v.14, p.70-73, 1966.
  • 7 DOYAMA, M. Vacancy-solute in metals. J. Nuclear Mat, v.69/70, p.350-361, 1978.
  • 8 FAUPEL, F.; HEHENKAMP, T. Calculation o the free enthalpy of impurity-vacancy binding from measurementes of solvente diffusion. Scripta. Metall., v.18, p.597-599, 1984.
  • 9 FRIEDEL J. The distributions of electrons round impurities in monovalent metals. Philosophical Magazine, v 43, p.153-189, 1952.
  • 10 HEHENKAMP, T. Point defects and defect interaction in metals Tokyo: University of Tokyo Press, 1982. 465p.
  • 11 HEHENKAMP, T.; FAUPEL, F. Solvente diffusion in alpha-silver-tin alloys Acta Metall, v.31, p.691-697, 1983.
  • 12 HEHENKAMP,T.; SANDER, L. Gleichgewichtsfehlstellen in kupfer-germanium-legierungen. Z. Metallkde, v.70, p.202-208, 1979.
  • 13 MOSIG, K.; WOLFF, J.; HEHENKAMP, T. Determination of absolute vacancy concentration and vacancy-impurity interaction energies in dilute silver and copper alloys. Defect Diffusion Forum, v.143, p.455-460, 1997.
  • 14 MOTT, N.F.; JONES, H. The theory of the properties of metals and alloys. New York: Dover, 1936. 326p.
  • 15 SCHAPINK, F.W. Vacancy concentration in dilute binary alloys. Acta Metall, v.14, p.1130-1131, 1966.
  • 16 TAKAI, O.; FUKUSAKO, T.; YAMAMOTO, R.; DOYAMA, M. Relationships between impurity-vacancy binding-energy and core radius, Debye temperatureand melting temperature in aluminum. Phys. Letters, v.44A, p.269-270, 1973.
  • 17 TAKAI, O.; YAMAMOTO, R.; DOYAMA, P.; HISAMATS, Y. Vacancy-vacancy, vacancy-impurity, and impurity-impurity interactions in aluminum. Phys. Rev B, v.10, p.3113-3125, 1974.
  • 18 TAKAMURA, J.; KOIKE, M.; FURUKAWA, K. The vacancy-solute interation in aluminium. J. Nuclear Mat, v.69/70, p.738-740, 1978.
  • 19 YOSHIDA, H.; BABA, Y. The role of zirconium to improve strength and stress-corrosiun resistence of Al-Zn-Mg-Cu alloys. Trans. Japan. Inst. Met., v.23, p.620-630, 1982.
  • 20 WARBURTON, W.K. Statical thermodinamic calculation of the equilibrium concentrations of an arbitrary set point defects. J. Phys. Chem. Solids, v.34, p.451-464, 1973.
  • * Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil.
    Departamento de Físico-Química - Instituto de Química - UNESP - 14801-970 - Araraquara - SP- Brasil.
  • Publication Dates

    • Publication in this collection
      02 Sept 2002
    • Date of issue
      2002

    History

    • Accepted
      22 Mar 2002
    • Received
      09 Jan 2002
    Fundação Editora da Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP Instituto de Química / UNESP, 14801-970 Araraquara SP Brazil, Tel.: +55 16 3301-9636/3301-9631 - São Paulo - SP - Brazil
    E-mail: ecletica@iq.unesp.br