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Abstract
This study analyzed the role of Caatinga vegetation structure in the accumulation, composition and distribution of litter 
along an elevation gradient in the Brazilian semi-arid region. Fifty sampling units were established for shrub-tree vegetation 
analysis, and 50 1-m2 plots for sampling litter. Sampled litter was screened in fractions of leaves, stems, reproductive structures, 
miscellaneous and animal remains and then weighed. Total accumulated litter weighed 72.3 kg and was composed mainly of 
stems (45.2%). A positive correlation was found between total litter and elevation, as well as between leaf fraction and richness 
and basal area, while the stem fraction was negatively associated with richness, abundance and basal area. The results reflect 
a joint effect of abiotic factors and community structure, which produces heterogeneous environments that favor variation 
in litter production and quality along the elevation gradient.
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1. INTRODUCTION AND OBJECTIVES

Litter represents one of the main components of forest 
ecosystems, being formed by a set of vegetal materials 
(leaves, branches, fruits, flowers and roots) and animal 
residues that accumulate on the soil (Salgado et al., 2015). 
This material decomposition is crucial to the continuity 
of biogeochemical cycles, the maintenance of soil fertility 
(Alonso et al., 2015; Ndagurwa et al., 2015; Vital et al., 
2004) and, consequently, the absorption of nutrients by 
plants with a direct influence on the plant community 
(Butenschoen et al., 2014; Fisher et al., 2013).

Litter production and decomposition rate vary among 
different ecosystems. These processes are mainly controlled 
by climate and necromass quality but are also influenced by 
edaphic factors and the decomposer biota (García-Palacios 
et al., 2015). Climate acts indirectly on vegetal material 
decomposition which, along with successional stage of 
the vegetation and litter quality, is essential to establish 
the decomposer community, either by the constitution 
of plant materials or by the constitution of microhabitats 
favorable for its development (Anaya et al., 2012; Brandt 

et al., 2010; Diedhiou et al., 2009; Wardle et al., 2004). 
Litter quality is essential for decomposition (Uselman et 
al., 2011; Veen et al., 2015), because the composition of 
different plant organs, whether from the same or different 
species, is a preponderant factor for the speed by which 
litter is decomposed (Lorenzo et al., 2013), and nutrients 
returned to the soil (Li et al., 2011).

In semi-arid ecosystems with low water availability, 
the greatest deposition of plant remains occurs during the 
drought period shortly after the fall of foliage, increasing the 
accumulated litter that will decompose when rainy season 
begins (Alves et al., 2006; Santana & Souto, 2011). Greater 
necromass accumulation in these ecosystems is also directly 
related to high temperatures, which, alongside low rainfall, 
intensifies soil dryness. This, in turn, reduces the period 
of adequate humidity for decomposition, which directly 
influences the microbial community whose activities occur 
only in favorable humidity and temperature conditions, 
usually during the rainy season (Couteaux, 1995; Davies et 
al., 2013; Schuster et al., 2005). Thus, in semi-arid ecosystems, 
photodegradation represents the main decomposing agent 
during the dry season (Austin & Vivanco, 2006).
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Mountainous areas are considered true refuges for 
biodiversity in the Brazilian semi-arid (Oliveira et al., 2009; 
Silva et al., 2014), being areas of relatively preserved native 
vegetation (Caatinga) with great richness and endemism of 
plant species (Lopes et al., 2017; Silva et al., 2014). Several 
environmental factors, including solar radiation, wind speed 
and humidity, together with topographic variables, change 
along elevation gradients, such as mountainous (Rezende 
et al., 2015). These changes directly affect vegetation 
composition and structure, which in turn influences the 
habitat and litter quality (Cornelissen et al., 2012), thus 
promoting variation in accumulation and decomposition 
of plant residues (Godinho et al., 2014).

Therefore, to understand the main determinants of litter 
accumulation in semi-arid mountainous areas, we analyzed 
how vegetation structure relates to the contribution to, and 
composition of, litter accumulated on the soil surface in a 
semi-arid mountain range in Brazil. The aim was to address 
two questions: does elevation play an important role in the 
contribution of litter to mountains in semi-arid environments? 
If so, how does variation in elevation affect the contribution 
to, and composition of, litter?

2. MATERIALS AND METHODS

2.1. Study area

The present study took place in Serra da Arara, municipality 
of São João do Cariri (07° 23’ 27” S, 36° 31’ 58” W), located in 
the Cariri Ocidental microregion in the Borborema mesoregion 
of the state of Paraíba, Brazil (Figure 1). The elevation of Serra 
da Arara ranges from 400 to 650 meters above sea level, and 
despite its narrow elevation range, the elevation gradients 
exhibit differences in plant community composition, structure, 
richness and diversity (Lopes et al., 2017; Silva et al., 2014). The 
predominant vegetation in the mountain range is characterized 
by arboreal shrub Caatinga, which is adapted to conditions of 
water deficit and composed of low trees and shrubs with spines, 
microphylls and other xerophytic characteristics (Prado, 2008).

Following the Köeppen-Geiger classification, the climate 
of the region is type Bswh’, hot semi-arid (Francisco et al., 
2016), with two defined seasons, the dry season and the rainy 
season (between March and July), with a mean annual rainfall 
of 300 mm. The predominant soils of the region are Vertisol 
and eutrophic Litolic (EMBRAPA, 2013).

Figure 1. Map of Serra da Arara, municipality of São João of Cariri, indicating its location in the state of Paraíba, Brazil and the sample 
design for data collection.

2.2. Data collection

Data on species composition and plant community 
structure were collected by Diniz (2016), who established two 
transects along the elevation gradient (from the base to the 
top of the mountain range) (Figure 1). Twenty-five 100-m² 
plots (10 × 10 m) were established along each transect for a 
total of 50 plots. All individual living plants with height ≥ 1 m 
and stem diameter at soil level (DAS) ≥ 3 cm in each plot 

were sampled, identified and marked. DAS measurement was 
made using a caliper and metric tape with direct reading for 
diameter and perimeter. For individuals with multiple stems 
(several shafts), the diameter of each stem was measured 
and the total diameter of the individual calculated. Plant 
height was measured by a 12-meter graduated collecting 
pruner. A total of 1654 individuals of 34 species belonging to 
13 families were sampled for a total basal area of 16.71 m²/
ha (Diniz, 2016).
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Litter collection was done at the end of the dry season 
of 2014. Necromass was gathered using a 1 m × 1 m (1 m2) 
cast frame made of PVC pipes placed randomly on the soil 
of each plot. Thus, a litter sample was collected from each of 
the 100 m² plots that had been established for the collection 
of vegetation data. All the material present was compiled and 
taken to the Laboratory of Ecology & Conservation of Dry 
Tropical Forest (EcoTropics) of the Universidade Estadual da 
Paraíba for screening, then separated into the following fractions: 
leaves (including leaflets and petioles), stems (including bark 
and other woody parts), reproductive structures (flowers, 
fruits and seeds), miscellaneous (unidentified material) and 
animal residues (Lopes et al., 2015). After separation, the 
material was dried in an air circulation oven at 65 °C for 24 
hours and weighed on a precision scale to obtain the weight 
of samples in grams.

Slope, rockiness and elevation were measured in each 
plot. Slope of the terrain was measured with a clinometer at 
three sites within each plot. Rocky cover (rocky outcrop or 
rockiness) was estimated by classifying the cover percentage 
into one of four categories: Class 1, 0 to 25% of outcrop; 
Class 2, 26 to 50%; Class 3, 51 to 75%; and Class 4, 76 to 
100% (Abreu et al., 2012).

2.3. Data analysis

The structural parameters – abundance, basal area and 
richness – of the community were calculated by the FITOPAC 
Shell version 2.1 program (Shepherd, 2010). The influence of 
elevation and community structural variables on litter fractions 
was first evaluated by constructing a correlogram, following 
the exploratory displays method for Spearman correlation 
matrices, to detect the most significant relationships. All 
possible combinations of elevation, structural variables 
(abundance, basal area and rarefied richness) and total litter and 
its fractions, were used in the graphic matrix. This study used 
species rarefied richness rather than species richness to correct 
for the positive noise of the effect of tree density on richness. 
Rarefied wealth was calculated using the EcoSim software 
version 7.71. Rarefaction is used to correct for the effect of 
density variation of individuals in a given area by performing 
1,000 permutations by randomly drawing a specific number of 
individuals to generate an average variation of species diversity. 
To calculate rarefied richness, we used a random sample of 
12 individuals since this was the minimum number found in 
most plots. Linear regressions were subsequently performed, 
and an analysis of residuals and outliers removal were also 
carried out. Scatter plots were ultimately constructed to better 
visualize the results. The analyses were performed using the 
PAST 2.17c program (Hammer et al., 2001).

3. RESULTS 

The necromass accumulated on the soil surface of the 50 
plots totaled 72.3 kg, for an estimated of 14,470 kg/ha (Table 1). 
Stem fraction was the most representative, being responsible for 
45.2% (32.74 kg) of the total accumulated litter. The miscellaneous 
fraction was next, followed by leaf fraction, which corresponded 
to 18.9% of the total litter weight (Table 1).

Table 1. Mean and standard deviation (n = 50) of litter fractions per 
sample in Serra da Arara, Paraíba, Brazil.

Composition 
of litter

Average 
(Kg/m2)

Standard 
deviation 

Total 
accumulated 

(kg) 
% 

Woody debris 0.654 0.501 32.7 45.2

Miscellaneous 0.326 0.269 16.3 22.5

Leaf 0.274 0.191 13.7 18.9

Animal 
residues 0.085 0.107 4.2 5.8

Reproductive 
materials 0.027 0.115 1.3 1.8

Total litter 1.447 0.698 72.35 100

The litter deposited on the soil was distributed along the 
mountain range in a manner that positively correlated with 
elevation (rs = 0.35; r2 = 0.12; F = 6.54; df = 1.46; p = 0.014) 
(Figure 2a). Thus, regions at higher elevations had a greater litter 
volume, which corresponds to the trend for greater vegetation 
species richness at higher elevations (rs = 0.36; r2 = 0.13; F = 4.92; 
df = 1.43; p = 0.013) (Figure 2b). Moreover, this area of the 
mountain range is also associated with greater slope (rs = 0.60; 
p < 0.001) (Figure 3a) and rockiness (rs = 0.53; p < 0.001). 

Figure 2. Linear regression between total litter and elevation (a), 
and rarefied richness and elevation (b).

No significant correlations were found between total 
accumulated litter and any vegetation parameter (p > 0.05). 
However, when analyzing the litter fractions, the accumulation 
of leaf fraction was found to positively correlated with rarefied 
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richness (rs = 0.39; p = 0.007) (Figure 3b) and total basal area 
(rs = 0.28; p = 0.03) (Figure 3c). In contrast, production and/
or decomposition of woody debris (stem) was negatively 
correlated with rarefied richness (rs  =  −0.32; p  =  0.02) 

(Figure 3d), abundance (rs = −0.28; p = 0.04) (Figure 3e), and 
basal area (rs = −0.33; p = 0.02) (Figure 3f), in such a way that 
an increase in these vegetation parameters meant a decrease 
in the presence (deposition) of this plant organ on the soil. 

Figure 3. Linear regression between total litter and slope (a); leaf × estimated richness (b); leaf × basal area (c); stem × estimated richness 
(d); stem × abundance (e); stem × basal area (f).

No significant (p > 0.05) correlations were found between 
any environmental or biological variable and other litter 
fractions (reproductive materials, animal residues). However, 
when analyzing the composition of animal residues, a 
predominance of feces and bones of grazing animals in the 
area surrounding the mountain (goats and donkey) was found 
in the most basal portions of the mountain range.

4. DISCUSSION

A high volume of accumulated litter (14,470 kg/ha) was 
found in the study area of this research, which is higher than 
that found by Lima et al. (2010), who reported 8,400 kg/
ha for a Caatinga area in the state of Piauí. Furthermore, 
although low litter production is usual for the Caatinga, when 
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compared to other vegetation formations (Lopes et al., 2010), 
the studied mountainous region had greater accumulated 
litter on the soil surface than that reported by the Atlantic 
Semideciduous Forests, for which values between 6.1 and 
9.4 thousand kg/ha have been reported (Borém & Ramos, 
2002; Caldeira et al., 2013). The litter accumulation found 
in the present study is also higher than the 10,291.20 kg/ha 
reported for a remnant of cerrado stricto sensu (Lima RP et 
al., 2015). The contribution evidenced in the present study 
comprises the results of years of accumulation; the analyzed 
necromass had likely been deposited gradually over the years 
and its decomposition has occurred slowly, denoted by the 
greater abundance of slow decomposition organs (stem), 
which require a longer period to decompose.

The high volume of litter observed in this study may 
also comprehend the collection period since, as evidenced 
by other studies in Caatinga areas, the greatest deposition of 
vegetal debris occurs during the dry season (Salgado et al., 
2015; Santana & Souto, 2011; Santos et al., 2011), a period 
of low rate of decomposition because of the slow action of 
decomposer microorganisms, for their sensitivity to high 
temperatures and low humidity (Couteaux et al., 1995; 
Holanda et al., 2015). Thus, the material is decomposed only 
in the subsequent rainy season when favorable conditions 
for the development of decomposer biota are reestablished 
(Davies et al., 2013).

This high contribution of necromass can also be attributed 
to the greater richness and species diversity found in semi-arid 
regions (Lopes et al., 2017; Silva et al., 2014). To Godinho et 
al. (2014), litter production is directly associated with species 
richness. This parameter directly influences necromass quality 
and is thus considered a preponderant factor in decomposition 
(García-Palacios et al., 2015). 

The analyzed mountain range shows spatial variability 
in the production and/or decomposition of litter, what 
may correspond to the structural characteristics of the 
vegetation, which, as shown here, are reflected in the quality 
and productivity of leaf and stem organs. This variation in 
litter quality may directly correlate with the characteristics 
of the mountain ecosystem itself, since higher elevation 
areas have decreased availability of nutrients in the soil 
because of leaching (Rodrigues et al., 2016), making plants 
in higher elevation and slope regions develop organs with a 
low concentration of nutrients and high content of phenolic 
compounds, which attenuate the necromass decomposition 
rate (Werner & Homeier, 2015).

Besides the influence of litter quality (Holanda et al., 2015), 
higher accumulation at higher elevations may arise from the 
reduced rates of decomposition in this mountain range area. 
Greater slope and rockiness play such an essential role in the 

decomposition of plant remains (Ndagurwa et al., 2015) that 
greater rock cover may negatively interfere in the contact 
between necromass and the invertebrates that act in vegetal 
material decomposition, thereby delaying the cycling process 
and promoting greater accumulation (Davies et al., 2013).

The stem fraction of the litter was the most representative 
(45.2% of all collected material), differing from that found by 
studies of dynamics carried out in Caatinga areas, which found 
a higher percentage of leaves (Lima NL et al., 2015; Lopes et 
al., 2015; Santana & Souto, 2011). In contrast to the present 
study, studies of dynamics analyze monthly productivity, 
disregarding the effects of decomposition in litter deposited on 
the ground. Thus, regarding accumulated necromass, which 
is subjected to the effects of decomposing agents, a greater 
presence of organs with a high predominance of recalcitrant 
compounds, such as lignin, waxes and phenolic compounds, 
which have low decomposition rates, is presumed (Freschet 
et al., 2012; Laiho & Prescott, 2004).

The low speed of wood decomposition, when compared to 
other vegetal debris, is mainly a result of the microstructure of 
the cell wall of the wood tissue; the higher lignin, polyphenols, 
cellulose, and dry matter (Cornelissen et al., 2012; Freschet 
et al., 2012) content, are responsible for making the stem 
more recalcitrant to decomposition. As a result of the slow 
decomposition rate and low nutrient content, mainly N and P, 
wood decomposition slowly returns nutrients to the soil 
(Laiho & Prescott, 2004; Laughlin et al., 2015). However, wood 
residues are of extreme importance, especially in semi-arid 
regions, since the layer formed by this debris retains moisture 
and promotes environmental conditions and suitable habitats 
for the decomposer biota, as well as retaining organic matter 
in the soil, favoring nutrient cycling and the decomposition 
of other vegetal debris (Laiho & Prescott, 2004).

Although productivity studies in Caatinga regions indicate 
leaf fraction as the most representative in litter (Lopes et al., 2010; 
Lopes et al., 2015; Santana & Souto, 2011), the lower percentage 
of leaves found in the present study may arise from the higher 
decomposition rate of this organ, which is spread abundantly and 
homogeneously on the soil surface contributing more quickly 
to the return of nutrients (Laughlin et al., 2015). 

On the other hand, greater leaf production and/or 
accumulation were positively correlated with species richness 
and basal area, increasing data from previous studies in 
Caatinga areas where only a relationship between litter 
productivity and abundance of individuals was found (Lopes 
et al., 2015). Regions with greater species richness have 
higher necromass production on the ground because of niche 
complementarity, a network composed of different species 
endowed with complementary functional characteristics, 
which allow for a better establishment and development of 
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vegetal biota (Poorter et al., 2015). Furthermore, an increase 
in richness directly interferes with soil respiration and 
reduction of available nutrients in the substrate, especially 
nitrogen, thus reducing the decomposition rate (Cardinale 
et al., 2012). Therefore, the close relationship between the 
greater contribution of leaves and greater species richness 
is possibly a result of high leaf yield and low decomposition 
rate in areas of high plant richness. 

Despite the absence of any correlations between animal 
residues and elevation, a higher concentration was observed at 
the foot of the mountain range, where the fraction is basically 
composed of feces and bones from goats and donkey grazing 
in the surroundings of the mountain range. These animals have 
been reported as a strong threat to the richness and diversity 
of Caatinga plants because of their intense foraging on native 
species (Alves et al., 2009; Santos et al., 2012). Grazing breeds 
in the regions surrounding Caatinga mountains may be a threat 
to the ecosystem heritage that has been recognized as a refuge 
for biodiversity (Lopes et al., 2017; Silva et al., 2014), and cause 
the loss of the few remnants of conserved Caatinga. 

5. CONCLUSIONS

As elevation increases in mountainous environments, an 
increase in the accumulation of necromass on the ground 
is found. The different environmental conditions present in 
Brazilian semi-arid ecosystems create various microhabitats, 
which have higher litter productivity as a result of vegetative 
attributes variation that favors range in necromass quality. This 
variation in quality, in turn, reflects different decomposition 
rates and, consequently, different litter accumulation rates. 
Regions at higher elevations possess greater species richness 
and basal area, thus, a higher concentration of leaves. The 
high proportion of stem in the accumulated litter (organs 
with a high content of recalcitrant compounds) results 
from reduced decomposition rates semi-arid environments, 
which usually require longer periods to reach complete 
decomposition; leaves, which decompose faster, represented 
a lesser proportion of the total accumulated litter.
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