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Abstract
The aim of this study was to quantify the aboveground biomass and organic carbon of Araucaria angustifolia (Bertol.) 
Kuntze in a Mixed Ombrophilous Montane Forest in the state of Paraná. The aboveground biomass determination 
was carried out according to the direct method, using 29 trees with Diameter at Breast Height (DBH) ≥ 40 cm. The 
trees were felled, cubed and weighed by compartments, which were sampled for determining moisture and carbon 
content. The average aerial biomass and carbon were 2,126.5 kg ind-1 and 935.8 kg ind-1, respectively. The moisture 
content resulted in a mean individual accumulation of 2,376.6 liters ind-1 of water. Age did not necessarily result in 
higher volume production but resulted in higher stem biomass production. Organic carbon accumulation by native 
A. angustifolia trees should support carbon credits as an incentive for the conservation of araucaria and Mixed 
Ombrophilous Forest fragments.
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1. INTRODUCTION AND OBJECTIVES

The relationship between the carbon dioxide (CO2) 
concentration in the atmosphere and the increase in the average 
temperature of the planet (Dlugokencky & Tans, [2017?]) raises 
concerns about the impacts of increasing concentrations of 
greenhouse gases (GHG) on the world climate, more recently 
and specifically in Brazil (PBMC, 2014a, 2014b). In parallel, 
there is growing interest in studies on the ability of forests 
to remove CO2 from the atmosphere and to store carbon in 
their biomass (Caldeira et al., 2015).

The biomass forest volume is the controlling factor of 
the global carbon stock and its quantification is necessary to 
understand the productivity, nutrient allocation and carbon 
cycles in individuals or ecosystems (Higuchi & Carvalho, 1994; 
Silveira et al., 2008), while also serving as a basis for future 

predictions of climate change. Watson (2009) corroborates 
that quantifying carbon in forest ecosystems and their changes 
from human activities is the first step to better represent 
forests in climate policy at regional, national and global scales.

According to Caldeira et al. (2015), determining the 
amount of carbon stored in tree individuals and consequently 
in forests or forest stands can be accomplished by quantifying 
the biomass and then determining the carbon concentration. 
Biomass can be quantified by the direct method or estimated by 
the indirect method. Quantification means actual measurement 
performed directly in the field or field-determined weight 
such as weighing some tree compartment with a scale or 
dynamometer (Higuchi & Carvalho, 1994). Estimating biomass 
and carbon by the indirect method consists in using easily 
obtainable variables, and thus not necessitating the felling 
of trees (Silveira et al., 2008). These same authors pointed 
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out that estimates can be made through quantitative and 
mathematical relationships such as biomass factors (expansion 
and reduction), allometric models that use data from forest 
inventories (DBH, height and volume), data from remote 
sensing (satellite images), and using a database in a geographic 
information system (GIS). Recent research has evaluated 
the use of Artificial Intelligence techniques for estimating 
biomass and carbon (Schoeninger et al., 2008; Sanquetta et 
al., 2013; Sanquetta et al., 2015). Indirect methods should 
not be used without the adjustment and prior calibration of 
the equations, therefore needing to be used in conjunction 
with direct methods (Balbinot et al., 2009).

According to Caldeira et al. (2004), the conservation of 
natural forests basically depends on the knowledge of their 
dynamics. However, information on the productive capacity 
of natural forests, specifically the Mixed Ombrophilous 
Forest, is difficult to monitor, and thus it is subsequently 
difficult to monitor the growth and regeneration dynamics 
of these ecosystems. The same authors also affirmed that this 
information is important to enable exploitation of natural 
forests in the form of sustained management, or also to 
subsidize actions for their conservation.

In the works performed in a Mixed Ombrophilous Forest, 
biomass quantification is usually done by the direct method 
(plot method). In this case, generally a few samples of limited 
size are evaluated, due to the inherent difficulties of the 
evaluation associated with the dimensions of A. angustifolia. 
Therefore, the number of native individuals of the sampled 
species is reduced. This is because the conditions of individuals 
established in forest stands differ from those corresponding 
to individuals established in native fragments, which impairs 
using such information as a comparative basis. In this sense, 
a deeper investigation of biomass and carbon values in native 
A. angustifolia individuals is necessary.

According to Socher et al. (2008), in order to conduct 
reliable biomass studies it is necessary (at least in the first 
approach) to perform a destructive sampling, in which the 
various components of the tree are analyzed, and there is 
separation and specification of these components varying 
according to the type of forest and the goals to be achieved.

Nevertheless, some biomass quantification studies have 
been carried out in the last decades, a large part of them, 
however, in tropical forests (Barni et al., 2016; Djomo & Chimi, 
2017; Henry et al., 2010; Ketterings et al., 2001; Lima et al., 
2012; Nogueira et al., 2008). In the Mixed Ombrophilous 
Forest, studies conducted by Caldeira et al. (2004), Socher 
et al. (2008), Balbinot et al. (2009), Watzlawick et al. (2009), 
Watzlawick et al., (2011) and Watzlawick et al. (2012) may 
be highlighted. In forest stands of the Araucaria angustifolia 
species, studies have been performed by Watzlawick et al. (2003), 

Dallagnol et al. (2011), Schumacher et al. (2011), Mognon et al.  
(2013), Sanquetta et al., (2014) and Caldeira et al. (2015).

Considering the aforementioned, the objective of the 
present study was to generate information on the aboveground 
biomass and individual organic carbon values in native 
Araucaria angustifolia trees, as well as to verify the relation of 
the total aboveground biomass and the different components 
with the variables of volume and age.

2. MATERIALS AND METHODS

This study was developed in a Montane Mixed Ombrophilous 
Forest fragment located in the sub-basin of the Imbituvão 
River, Assungui community of the Fernandes Pinheiro 
municipality, in the state of Paraná. This municipality is in 
the Mid-South region of the state (25° 27’ S and 50° 35’ W), 
at an altitude of 893 m (Wrege et al., 2012). It borders the 
municipalities of Imbituva, Teixeira Soares, São João do 
Triunfo, Rebouças, and Irati (IBGE, [2017?]).

The climate of the region is classified as Cfb (Köppen), 
Subtropical Humid Mesothermal. More specifically, it is 
characterized by fresh summers and winters with severe 
frosts, without a dry season. The average annual temperature 
is 19  °C, the average minimum monthly temperature is 
13.9 °C and the average maximum monthly temperature is 
26.1 °C. The annual precipitation varies between 1,400 and 
1,600 mm and the relative humidity of the average air is 74% 
(Wrege et al., 2012).

The determination of biomass in the field was performed 
according to the direct quantification method by sampling 
29 trees with DBH ≥ 40 cm (Table 1) randomly distributed 
in the fragment, aiming to cover the diametric variability.

Table 1. Volume, age and number of individuals sampled from the 
Araucaria angustifolia species.

DBH Class (cm) 40-50 50-60 60-70 Total

Sampled 
individuals

Males 3 7 3 13

Females 9 6 1 16

Total 12 13 4 29

Volume  
(m³.individual-1)

Minimum 1.37 2.34 3.89 1.37

Mean 1.99 3.31 4.64 2.94

Maximum 2.74 4.32 5.30 5.30

Age (years)

Minimum 80 87 99 80

Mean 99 101 126 104

Maximum 111 119 188 188
DBH: diameter at breast height.

Sampling individuals only in diameter classes equal to 
or greater than 40 cm relates to the origin of the data used 
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in this research, which comes from a sustainable forest 
management experiment for Araucaria forest in small farms. 
Such experiment implemented a methodology considering 
the application of different cutting intensities of Araucaria 
exclusively in the largest diameter classes.

The individuals were felled and the dendrometric variables 
were initially obtained: DBH, total height and commercial 
height (height corresponding to the first verticil). Relative 
volume measurement of the stem with bark was carried 
out by taking measures of diameter with bark at 0.1; 0.7;  
and 1.3 m, from there to 15, 25, up to 95% of the total height. 
The volume was calculated by the Smalian formula, with the 
last section being considered as a cone.

After measuring the tree bark volume, each tree had its 
components (leaves, branches, commercial stem with bark 
and non-commercial stem with bark) separated, weighed 
and sampled. The male reproductive structures were weighed 
along with the leaves. Female reproductive structures were 
disregarded from the analysis since few were found at the 
time of data collection.

Each component was weighed separately, obtaining 
the green biomass using a dynamometer with a capacity 
of 3,000 kg. The stem with bark was sectioned based on an 
optimized assortment of logs (which varied by 3, 4 or 5 m). 
Quantification of the total bark weight was calculated based 
on the percentage of the stem bark obtained by measuring 
the volume of the logs and the non-commercial stem.

For sampling purposes, the stem was divided into 
commercial stem (corresponding section from the base to 
the first verticil) and non-commercial stem (section between 
the first verticil and total height). To sample the wood with 
bark of the commercial stem, three discs of approximately 
5 cm thickness were removed from the base, middle and 
end of the section. For the non-commercial stem, a 50% 
sample of the crown length was withdrawn in such a way 
that it contemplated a verticil and a space between verticils.

It was possible to determine the age of the trees by 
counting the growth rings of the disc taken from the base of 

each individual. The ages were later related to the individual 
production of biomass and volume.

Sampling of the leaves was performed in the lower, 
middle and upper third of the crown. The same procedure 
was adopted for the branches component, with samples being 
taken at the end, middle and base of the branches.

The samples were taken to the laboratory and dried in 
an air circulation greenhouse at a temperature of 65 °C until 
reaching constant weight for further determining the moisture 
content and preparation for chemical analysis of the organic 
carbon content. To calculate the dry biomass of the commercial 
stem, the mass-weighted average moisture content of the lower 
and upper discs (samples) relative to that section was used.

In order to determine the carbon content, the samples were 
first fragmented using a planing saw, crushed in a Willey and 
Croton mill with a 20-mesh sieve and then analyzed by the direct 
combustion method using a C-144 LECO elemental analyzer. 
Through this method, the sample is placed in a pure oxygen 
environment with a temperature typically set at 1,350 °C and 
is then subjected to complete combustion, releasing the carbon 
as carbon dioxide, which is measured by infrared sensors.  
The instrument converts the result to a percentage using a 
predefined equation in the software that considers sample 
weight, calibration, and known moisture value (LECO, 2008).

The bark was separated from the wood to determine the 
individual carbon content for each fraction. The samples 
were grouped in a composite sample to determine the 
carbon content of the commercial stem. After determining 
the organic carbon content in each sampled fraction, it was 
then multiplied by the dry biomass, thereby obtaining the 
amount of organic carbon per compartment.

3. RESULTS AND DISCUSSION

The mean individual aboveground biomass production 
was 2,126.5 kg.ind-1, with 1,171.6 kg.ind-1 referring to the 
wood of the stem; 418.7 kg.ind-1 to the stem bark, 406.1 kg.
ind-1 to the branches; and 130.1 kg.ind-1 to the leaves (Table 2).

Table 2. Absolute and relative dry biomass values of Araucaria angustifolia per DBH class for each evaluated component and for the total.

DBH class 
(cm)  

Wood Bark Branches Leaves Total

(kg.ind-1) (%) (kg.ind-1) (%) (kg.ind-1) (%) (kg.ind-1) (%) (kg.ind-1)

40.0-49.9

Minimum 557.4 53.7 251.6 17.5 89.0 7.6 30.6 1.8 960.3

Mean 829.5 57.8 296.2 20.6 225.3 15.7 83.7 5.8 1,434.7

Maximum 1,149.7 65.5 405.6 26.2 416.5 25.2 188.6 10.4 1,865.9

50.0-59.9

Minimum 895.5 47.2 323.5 14.5 67.1 4.9 59.2 4.3 1,362.4

Mean 1,269.9 54.5 454.1 19.5 462.8 19.9 144.5 6.2 2,331.3

Maximum 1,599.1 65.7 608.7 25.0 712.5 26.8 227.1 8.0 2,882.8
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DBH class 
(cm)  

Wood Bark Branches Leaves Total

(kg.ind-1) (%) (kg.ind-1) (%) (kg.ind-1) (%) (kg.ind-1) (%) (kg.ind-1)

60.0-69.9 

Minimum 1,580.4 51.5 532.8 16.4 615.4 19.5 118.9 3.0 3,037.8

Mean 1,878.3 53.1 671.6 19.0 764.3 21.6 222.4 6.3 3,536.6

Maximum 2,158.0 54.3 803.8 20.2 895.6 24.3 259.8 8.6 3,976.2

Weighted mean 1,171.6 55.1 418.7 19.7 406.1 19.1 130.1 6.1 2,126.5
DBH: diameter at breast height.

found was 672.9 kg.ind-1, with 402.9 kg.ind-1 for the stem 
wood corresponding to 59.9% of the aboveground biomass,  
with 101.0 kg.ind-1 (15.0% – branches), 100.6 kg.ind-1 (14.9% –  
stem bark), and 68.4 kg.ind-1 (10.2% – leaves).

In evaluating aboveground biomass production in an  
A. angustifolia stand with ages ranging from 23 to 32 years 
old, in General Carneiro, PR, Caldeira et al. (2015) found an 
average biomass production of 369.5 kg.ind-1, 50.5% for stem 
wood, 24.3% for the stem bark, 16.5% for branches and 8.7% 
for leaves. In relation to the accumulated organic carbon, 
these authors found an average production of 156.8 kg.ind-1,  
with 52.4% for the stem wood, 23.0% for the stem bark, 16.3% 
for the branches and 8.3% for the leaves.

Regarding the total biomass of a 30-year-old A. angustifolia 
stand also in General Carneiro, Watzlawick et al. (2003) 
found 563.3 kg.ind-1, including 88.7 kg.ind-1 for the roots 
(15.7% of the total). In relation to aboveground biomass, 
48.3% corresponded to the stem wood, 28.3% to the stem 
bark, 15.2% to the branches and 8.2% to the leaves. The 
percentages of fixed carbon found were stem wood (50.0%), 
stem bark (26.6%), branches (15.0%) and leaves (8.4%) of a 
total of 245.4 kg.ind-1.

Table 2. Continued....

The highest relative values of dry wood biomass and stem 
bark were observed in the smallest diameter class (center of 
45 cm class) followed by the intermediate class (center 55 cm 
class), meaning that the relation between size (by the DBH 
class) and the dry biomass percentage of the wood and stem 
bark occurs inversely. The opposite result was observed for 
the dry biomass of the branches and leaves, where the highest 
and lowest relative values were observed in the largest and 
lowest diameter class, respectively. For the average of all the 
evaluated trees, 55.1% of the dry biomass came from the stem 
wood, 19.7% from the stem bark, 19.1% from the branches 
and 6.1% from the leaves.

An average of 935.8  kg.ind-1 accumulated organic 
carbon was found, with 514.7  kg.ind-1 corresponding to 
the stem wood; 185.4 kg.ind-1 in the stem bark; 178.6 kg.
ind-1 in the branches; and 57.1 kg.ind-1 in the leaves, as can 
be seen in Table 3.

In studying the total biomass production of a 27-year-old 
stand of A. angustifolia in Quedas do Iguaçu, PR, Schumacher 
et al. (2011) found an average individual yield of 778.6 kg.
ind-1, including 105.6 kg.ind-1 corresponding to root biomass 
(13.6% of the total). The individual aboveground biomass 

Table 3. Absolute and relative organic carbon values in Araucaria angustifolia per DBH class for each evaluated component and for the total.

DBH class 
(cm)  

Wood Bark Branches Leaves Total

(kg.ind-1) % (kg.ind-1) % (kg.ind-1) % (kg.ind-1) % (kg.ind-1)

40.0-49.9

Minimum 246.8 53.7 111.4 17.5 39.1 7.6 13.4 1.8 425.3

Mean 366.0 57.8 131.1 20.7 99.3 15.7 36.9 5.8 633.3

Maximum 510.1 65.4 179.7 26.2 183.3 25.1 82.0 10.3 827.8

50.0-59.9

Minimum 395.6 47.1 143.9 14.6 29.5 4.9 26.4 4.4 602.7

Mean 558.1 54.4 201.1 19.6 203.9 19.9 63.5 6.2 1,026.6

Maximum 701.6 65.6 268.9 25.1 313.0 26.8 100.1 8.0 1,273.6

60.0-69.9

Minimum 691.8 51.3 236.3 16.6 266.3 19.5 52.4 3.0 1,329.7

Mean 819.7 52.9 297.4 19.2 334.1 21.6 97.1 6.3 1,548.2

Maximum 941.7 54.0 356.7 20.4 394.8 24.2 113.3 8.5 1,745.6

Weighted mean 514.7 55.0 185.4 19.8 178.6 19.1 57.1 6.0 935.8
DBH: diameter at breast height.
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It is observed that the absolute mean values of aboveground 
biomass and organic carbon found in the present study are 
higher than the results obtained in studies carried out in 
stands of the same species (Caldeira et al., 2015; Schumacher 
et al., 2011; Watzlawick et al., 2003), mainly due to the age 
difference and consequently to the size of the individuals. 
According to Schumacher & Caldeira (2001), biomass 
production tends to increase with age, and age and spacing 
are generally the factors that most interfere in the biomass 
distribution among the different tree components.

However, in analyzing the components separately, the 
percentage distribution of aboveground biomass of the Araucaria 
followed the same order observed for the accumulation of organic 
carbon, which is stem wood > stem bark > branches > leaves, 
thus corroborating the results obtained by Sanquetta,  
Dalla Corte et al. (2003), Watzlawick et al. (2003),  
Schumacher et al. (2011) and Caldeira et al. (2015).

In comparing the results obtained with another conifer 
(Pinus taeda), Schumacher et al. (2013) estimated the stem 
wood at 69.1%, and the stem bark at 6.7% of the aboveground 
biomass in a 27-year-old stand in Cambará do Sul, RS.  
For the same species, Watzlawick et al. (2013) estimated 
wood and bark biomass at 65.6% and 12.3%, respectively, in 
a stand between 14 and 32 years of age in General Carneiro, 
PR. Thus, it is possible to affirm that A. angustifolia is a 
species that presents less relative biomass accumulation 
in the stem wood in comparison to P. taeda, which is 
partly related to the greater relative allocation in the bark.  
In the present study, there was 19.7% biomass accumulation 
in the stem bark. The results obtained by Sanquetta, 
Watzlawick et al. (2003) in P. taeda and A. angustifolia stands,  

Watzlawick et al. (2003) for A. angustifolia, as well as 
Watzlawick et al. (2013) for P. taeda also corroborate this 
allocation pattern for the two species.

The organic carbon percentage values were very close 
to those of aboveground biomass, which is explained by 
the small variation in the carbon content in the different 
components, presented together with the moisture contents 
for each evaluated component (Table 4).

It is possible to observe that the carbon content presented 
little variation among the different components, and the 
stem wood, branches and leaves presented the same average 
content (44.0%). The bark component of the stem had the 
highest organic carbon percentage, corresponding to 44.3% 
of the dry biomass. The carbon contents obtained in this 
study are similar to those of other studies, however they 
differ in the order of accumulation between some of the 
analyzed components, especially in the stem bark. Weber 
et al. (2003) found organic carbon content in the following 
order: stem wood (44.1%), leaves (44.0%), branches (41.7%) 
and stem bark (40.1%). Dallagnol et al. (2011) described 
the following percentages: stem wood and leaves (45.3%), 
branches (44.5%) and bark (43.1%). Watzlawick et al. (2011) 
found the following contents: stem wood (43.4%), branches 
(43.3%), leaves (42.5%), and stem bark (39.4%).

According to Gonçalves et al. (2004), greater differences 
in total nutrient requirements are more frequent among 
species than among genotype variations of the same species. 
However, Barros & Novais (1996) stated that plant nutrition 
and the consequent increase in biomass accumulation is best 
determined by the rainfall distribution that influences soil 
water availability as well as improved nutrient availability.

Table 4. Carbon and moisture content of Araucaria angustifolia per DBH class for each evaluated component.

DBH class 
(cm)

  Moisture content (%) Carbon content (%)

  Stem Branches Leaves Wood Bark Branches Leaves

40.0-49.9

Minimum 46.8 44.0 51.2 43.9 43.4 43.6 43.5

Mean 51.4 53.5 57.7 44.1 44.3 44.1 44.1

Maximum 54.8 57.8 66.7 44.4 44.5 44.5 44.5

50.0-59.9

Minimum 49.1 47.6 51.5 43.4 44.1 43.5 43.1

Mean 52.8 53.9 56.3 43.9 44.3 44.1 44.0

Maximum 55.2 56.5 62.5 44.6 44.5 44.7 44.7

60.0-69.9

Minimum 51.2 51.3 47.7 43.5 44.1 43.3 43.1

Mean 52.8 52.1 53.6 43.6 44.3 43.7 43.7

Maximum 53.8 52.9 61.5 43.8 44.4 44.1 44.1

Weighted mean 52.2 53.5 56.5 44.0 44.3 44.0 44.0
DBH: diameter at breast height.
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The average moisture contents for the stem bark, branches 
and leaves were 52.2%, 53.5% and 56.5%, respectively.  
This means that based on average aboveground biomass 
values (green and dry), the Araucaria trees with DBH ≥ 40 cm 
accumulate an average of 2376.6  liters.ind-1 of water in 
their structure (considering the water density equal to  
1  g/cm³), with 1,741.0  liters.ind-1 in the stem wood and 
bark, 472.3 liters.ind-1 in the branches and 163.3 liters.ind-1 
in the leaves. Similar moisture contents were described by 
Watzlawick et al. (2003) in a stand of this species located 
in General Carneiro, PR.

The relationship between the volume, age and biomass 
of each component can be visualized in Figure 1. Different 
from what occurs between volume and age in equine stands 
where an increase in age leads to an increase in individual 
volume (Figueiredo Filho et al., 2015), this relationship 
does not always occur in native fragments due to all the 
factors that influence tree growth, especially those related 
to competition with adjacent individuals, mainly for space, 
light, water and nutrients. For example, an individual volume 
of 3.7 and 1.4 m³.ind-1, respectively, was observed at the ages 
of 87 and 106 years.
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Figure 1. Age, volume, total individual biomass and by component of Araucaria angustifolia.
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Although indicating a positive relation with the volume, 
the biomasses related to the branches and leaves components 
presented many oscillations. In this sense, conditions that 
affect canopy growth have a greater influence on the total 
amount of biomass of these components in comparison to 
the production in volume.

For Lamprecht (1990), tree growth is defined by the 
species’ genetic composition and can be influenced by the 
characteristics of this species interacting with the environment. 
According to Husch et al. (1982), environmental influences 
include climatic factors (temperature, precipitation, wind 
and sun exposure), pedological factors (physical and 
chemical characteristics, moisture and microorganisms), 
geomorphological characteristics (inclination, exposure, 
elevation and shape) and competition (influence of other 
trees, the understory and animals).

It is observed that stem wood and stem bark biomass 
and volume have the same growth tendency, meaning that 
the increase in the volume entails in a greater amount of dry 
biomass of the stem. However, some trees with higher volume 
presented lower biomass of these components. In these cases, 
the age and density of wood mean that individuals with less 
or equal volume, although with greater age and consequently 
higher wood density (Brasil et al., 1980), present higher 
biomass for these components.

In studying the aboveground biomass production in the 
Montane Mixed Ombrophilous Forest in General Carneiro, 
PR, Caldeira et al. (2004) found a total of 210.4 t.ha-1. Of this 
total, A. angustifolia contributed 23.8% of the aboveground 
biomass. Based on the average biomass obtained in the present 
study, 99  ind.ha-1 and 24  ind.ha-1 of the species would be 
respectively required to accumulate the aboveground biomass 
equivalent to that of the referred phytophysiognomy and the 
relative percentage to the A. angustifolia species, respectively.

Forest fragments present great variation in both their 
structure and in their composition. In this sense, a great 
variation in the density of A. angustifolia species in different 
Mixed Ombrophilous Forest fragments is observed, being 
found from 42 ind.ha-1 (Figueiredo Filho et al., 2010), 57 ind.
ha-1 (Beckert et al., 2014), to 128 ind.ha-1 and 165 ind.ha-1 
(Sanquetta, Dalla Corte et al., 2003). Care should therefore 
be taken in using the results obtained for different forest 
types and the conditions of those that are being compared 
or even estimated. Therefore, prediction of biomass and 
carbon in fragments of Araucaria forest should separately 
consider the A. angustifolia species from the others, given 
the importance of this species in the composition of this 
phytogeographic unit. Regarding this idea, Koehler et al. 
(2005) commented that when evaluating different methods 
to determine biomass and carbon accumulation, it is ideal 

to apply a mathematical model for each forest type and for 
each site, and the use of mathematical models is only valid 
for the studied and considered conditions, since the results 
may vary between different types of vegetation, as well as 
other methods of determining the variables (biomass and 
organic carbon).

The large accumulation of biomass and carbon by native  
A. angustifolia trees presented in this research should subsidize 
carbon credits as an incentive for the conservation of the 
species and for Mixed Ombrophilous Forest fragments.

4. CONCLUSIONS

The native A. angustifolia individuals accumulated an 
average of 2,126.5 and 935.8 kg.ind-1 of aboveground biomass 
and organic carbon, respectively, with the highest allocation 
being observed in the stem woody component, followed by 
the stem bark, branches, and leaves components.

Regarding correlation of measurements, the age factor 
did not result in higher volume production or aboveground 
biomass and organic carbon in the evaluated trees. The 
increase in volume resulted in a greater amount of stem 
wood and bark dry biomass. Factors affecting crown growth 
have a greater influence on the total biomass of branches and 
leaves compared to volume and age. Moisture and organic 
carbon contents varied little between the DBH classes and 
the evaluated components.
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