Accessibility / Report Error

Analysis of biomechanics in athletes with disabilities: a systematic and narrative review

Análise da biomecânica em atletas com deficiência: uma revisão sistemática e narrativa

Abstract

Introduction

Specifically in athletes with disabilities, investigations and biomechanical understanding seem to be even more relevant, as they provide data on how a certain type of disability limits sports practice and also describe parameters that allow the suggestion of relevant adaptations capable of guaranteeing a higher level comfort to practitioners.

Objective

To describe patterns of biomechanical behavior during exercise in athletes with disabilities, and to discuss possible relationships between the type of disability and the sport practiced.

Methods

This study performed a search in five electronic databases from the oldest records available until July 2020 using a search strategy that combined terms related to "athletes with disabilities" and "biomechanical analysis." Inclusion criteria: population (amateur or professional athletes with disabilities), intervention (sports practice), study design (observational), outcome (having evaluated biomechanics during sports practice). The biomechanical variables of interest included kinematic, kinetic, or electromyographic outcome measures.

Results

Tewnty-six articles met the inclusion criteria (n = 705 participants). Biomechanical analysis showed that there is a greater inclination in the angle of the head and an increase in the kinematic variables in blind athletes, which result in less distance, speed, and performance; compensatory body patterns, reduced mooring strength, speed, joint amplitude, and reduced final performance are observed in amputated limbs of amputees; and there was a strong correlation between the subject's functional classification and kinematic parameters in wheelchair athletes, with this being proportional to the level of impairment.

Conclusion

The outcomes demonstrated that the type of disability and the level of functional limitation are proportionally related to biomechanics in athletes with disabilities.

Athletic injury; Athletic performance; Disability sport; Disabled person; Physical therapy specialty

Resumo

Introdução

Em atletas com deficiência, as investigações e o entendimento biomecânico parecem ser ainda mais relevantes ao fornecer dados sobre de que modo determinado tipo de deficiência limita a prática esportiva e, ainda, descrever parâmetros que permitam sugestão de adaptações pertinentes capazes de garantir maior nível de conforto aos praticantes.

Objetivo

Descrever padrões de comportamento biomecânico durante o exercício em atletas com deficiência e discutir possíveis relações entre o tipo de deficiência e o esporte praticado.

Métodos

Este estudo realizou uma busca em cinco bases de dados eletrônicas a partir dos registros mais antigos disponíveis até julho de 2020, utilizando uma estratégia de busca que combinou termos relacionados a "atletas com deficiência" e "análise biomecânica". Critérios de inclusão: população (atletas amadores ou profissionais com deficiência), intervenção (prática esportiva), desenho do estudo (observacional), resultado (ter avaliado a biomecânica durante a prática esportiva). As variáveis biomecânicas de interesse incluíram medidas de desfecho cinemáticas, cinéticas ou eletromiográficas.

Resultados

Vinte e seis estudos atenderam aos critérios de inclusão (n = 705 participantes). Os resultados mostraram que há maior inclinação do ângulo da cabeça e aumento das variáveis cinemáticas em atletas cegos, resultando em menor distância, velocidade e desempenho; padrões corporais compensatórios, redução da força de amarração, velocidade, amplitude articular e desempenho final reduzido são observados em membros amputados de amputados; e parece haver relação entre a classificação funcional do sujeito e os parâmetros cinemáticos em atletas de cadeira de rodas, sendo esta proporcional ao grau de comprometimento.

Conclusão

Os resultados demonstraram que o tipo de deficiência e o nível de limitação funcional estão proporcionalmente relacionados à biomecâ-nica em atletas com deficiência.

Lesão atlética; Desempenho atlético; Esporte para deficiência; Pessoa com deficiência; Especialidade de fisioterapia

Introduction

Biomechanical analyses in sports sciences are important to improve performance and to prevent inappropriate movement patterns that increase the exposure to sports injuries.11. Vantorre J, Chollet D, Seifert L. Biomechanical analysis of the swim-start: a review. J Sports Sci Med. 2014;13(2):223-31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990873/
https://www.ncbi.nlm.nih.gov/pmc/article...
Specifically in athletes with disabilities, investigations and biomechanical understanding seem to be even more relevant by providing data impact of the type of disability on sports in general, in terms of performance, taking into account the physical demand/technical-tactical specification, and also to describe parameters that allow the suggestion of pertinent adaptations capable of guaranteeing a greater level of comfort to practitioners.22. Trowell D, Vicenzino B, Saunders N, Fox A, Bonacci J. Effect of strength training on biomechanical and neuromuscular variables in distance runners: a systematic review and meta-analysis. Sports Med. 2020;50(1):133-50. https://doi.org/10.1007/s40279-019-01184-9
https://doi.org/10.1007/s40279-019-01184...

Recent studies have focused on analyzing sports movements and describing biomechanical elements in athletes with disabilities.33. Keogh JWL. Paralympic sport: an emerging area for research and consultancy in sports biomechanics. Sports Biomech. 2011;10(3):234-53. https://doi.org/10.1080/14763141.2011.592341
https://doi.org/10.1080/14763141.2011.59...
While some outcomes showed similarities between conventional and adapted sports, other outcomes showed significant differences, which need to be clarified and studied to better support the practical performance of these athletes.2-5 As a result, athletes, coaches, and sports scientists benefit from the use of outcomes related to biomechanical understanding in adapted sports, even identifying possible patterns of disability that are more suitable for specific sports.

In this sense, previous review studies presented a general synthesis that shed a light on biomechanical aspects in Paralympic sports, covering all sports classified and their participants.33. Keogh JWL. Paralympic sport: an emerging area for research and consultancy in sports biomechanics. Sports Biomech. 2011;10(3):234-53. https://doi.org/10.1080/14763141.2011.592341
https://doi.org/10.1080/14763141.2011.59...
,44. Morriën F, Taylor MJD, Hettinga FJ. Biomechanics in paralympics: implications for performance. Int J Sports Physiol Perform. 2017;12(5):578-89. https://doi.org/10.1123/ijspp.2016-0199
https://doi.org/10.1123/ijspp.2016-0199...
However, these studies did not use a systematic methodology, which may have limited the retrieval of studies on the topic. Moreover, these studies only included Paralympic sports in their analysis, which may have limited the exploration of different sports, if they were already addressed in the literature.

Furthermore, the systematic review studies conducted have focused only on exploring biomechanics in sports practiced by individuals with specific disabilities, such as amputees,55. Bragaru M, Dekker R, Geertzen JHB, Dijkstra PU. Amputees and sports: a systematic review. Sports Med. 2011;41(9):721-40. https://doi.org/10.2165/11590420-000000000-00000
https://doi.org/10.2165/11590420-0000000...
or with cerebral palsy,66. Chappell A, Gibson N, Morris S, Williams G, Allison GT. Running in people with cerebral palsy: A systematic review. Physiother Theory Pract. 2019;35(1):15-30. https://doi.org/10.1080/09593985.2018.1434846
https://doi.org/10.1080/09593985.2018.14...
not synthesizing and comparing findings between different sports and types of disabilities. For this reason, comprehensive systematic reviews need to be conducted to fill these gaps by providing comprehensive data on biomechanics during the sports practice by athletes with disabilities. Furthermore, the limitations seen in athletes with visual impairments, amputees and wheelchairs are different from each other, which makes each of these sports practices particular, resulting in specific biomechanical patterns. The sport practiced by the visually impaired, for example, tends to be performed by slow movements, while for amputees the height of the movements is generally smaller, and for wheelchair users agility may be limited due to the presence of a wheelchair to perform the movement.22. Trowell D, Vicenzino B, Saunders N, Fox A, Bonacci J. Effect of strength training on biomechanical and neuromuscular variables in distance runners: a systematic review and meta-analysis. Sports Med. 2020;50(1):133-50. https://doi.org/10.1007/s40279-019-01184-9
https://doi.org/10.1007/s40279-019-01184...
,33. Keogh JWL. Paralympic sport: an emerging area for research and consultancy in sports biomechanics. Sports Biomech. 2011;10(3):234-53. https://doi.org/10.1080/14763141.2011.592341
https://doi.org/10.1080/14763141.2011.59...

Thus, research involving biomechanical analysis in the parasports is essential to ensure the management of strategies that enable technical optimization, sports performance, injury prevention, and obtaining of evi-dence for supporting the classification in sports based on the level of functionality identified.77. Kristianslund E, Krosshaug T, van den Bogert AJ. Artefacts in measuring joint moments may lead to incorrect clinical conclusions: the nexus between science (biomechanics) and sports injury prevention! Br J Sports Med. 2013;47(8):470-3. https://doi.org/10.1136/bjsports-2012-091199
https://doi.org/10.1136/bjsports-2012-09...
Hence, data that show a broad literature review on the biomechanical pattern in adapted sports can be useful and relevant for understanding the specific needs in parasports.

It is hypothesized that the lack of a limb and the use of a wheelchair, for example, would be responsible for generating extra compensatory patterns during sports practice, changing the verified biomechanical patterns. Therefore, this systematic review aimed to describe the patterns of behavior on biomechanical variables during exercise in athletes with disabilities and to discuss possible relationships between the type of disability and the sport practiced.

Methods

This systematic review study followed all the instructions presented in the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) to guarantee a high-quality methodological reproduction, and was duly registered in the International Prospective Register of Systematic Reviews (PROSPERO) under No. CRD42020212294 to guarantee transparency to the entire scientific community.88. Lopes JSS, Silva Neto JF, Gomes RL, Almeida AC, Michelleti JK, et al. Training with elastic and conventional devices on body composition: systematic review and meta-analysis. Fisioter Mov. 2020;33:e003322. https://doi.org/10.1590/1980-5918.033.AR02
https://doi.org/10.1590/1980-5918.033.AR...

Search strategy

The studies were searched in the following databases: PubMed/MEDLINE, EMBASE, SPORTDiscus, SciELO, and CENTRAL (Cochrane Central Register of Controlled Trials) from the oldest records until July 29, 2020. Moreover, a manual search was performed on the references of eligible studies to complement the electronic searches. For the elaboration of the search strategy used in the databases, the synonyms of the terms “disabled athletes,” “sport,” and “biomechanics” were crossed: 1. (disabled athletes) OR (disabled persons) OR (paralympic) OR (physical deficiency) OR (adapted sport) OR (para sport) OR (sports for persons with disabilities) OR (athlete amputee); 2. (sports) OR (sport medicine) OR (athlete) OR (athletes) OR (sport on wheels) OR (physical exercise); 3. (biomechanics) OR (sporting gesture) OR (motion assessment) OR (biomechanical evaluation) OR (mechanics of living organisms); 4. 1 AND 2 AND 3.

Eligibility criteria

The following inclusion criteria were considered: 1) population: amateur or professional athletes with disabilities; 2) intervention: sports practice; 3) study design: observational; 4) outcome: any biomechanical variable such as kinematics, speed, power, angle of inclination, among others. Case reports, case series, comments, editorials, book chapters, interviews, letters to the editor, and literature reviews were excluded.

No restrictions were applied as to the biomechanical evaluation method used, sex, age, year of publication, or language of the studies. All sports were considered eligible for inclusion, provided they were performed by athletes with disabilities.

Selection of studies, data extraction, and analysis

After completing the search in the selected data-bases, the titles found were grouped and saved in an electronic spreadsheet for identification and exclusion of duplicates. Thus, the studies were selected in stages (title, abstract, and full text) by peer review.

Then, the following relevant information about the studies was extracted: (1) general information (authors, year of publication, and study design), (2) characteristics of the population (sample size, distribution by sex, type of disability, age, and sport practiced), and (3) biomechanical evaluation methodology used and outcomes. When necessary, the authors of the studies were contacted to provide clarifications or access to raw data. This step was also conducted by two independent authors.

A narrative synthesis of the results was performed, instead of a meta-analysis, due to the methodological heterogeneity among the studies.

Quality evaluation

The included studies were evaluated for method-ological quality using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies9 adapted for characteristics of each type of study (details of the search strategy in Table 1).

Table 1
Quality appraisal of study methodology and reporting

The adapted tool comprised nine criteria, generating a final score for each study, classified as excellent (75 to 100%; very low risk of bias), good (50 to 74%; most methodological criteria met, low risk of bias), moderate (25 to 50%; some criteria met, possible risk), or poor (0 to 25%; few criteria were met, high risk of bias).

Results

The search resulted in 4,328 records after excluding duplicates. Following the exclusions in stages (title, abstract, and full text), 44 titles were considered eligible. Of these, 11 studies were excluded due to their design and 7 for not having performed analyses under exercise conditions. Thus, 26 studies (Tables 2 and 3) met the inclusion criteria and were analyzed. The exclusion process is described in details in Figure 1.

Table 2
Characteristics of the included studies (1987 - 2014)
Table 3
Characteristics of the included studies (2014 - 2019)

Figure 1
Flowchart for selecting studies.

Study and participant characteristics

The selected articles included 7 to 154 participants, which resulted in a total of 705 participants,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...

11. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...

12. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...

13. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...

14. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...

15. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...

16. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...

17. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...

18. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...

19. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...

20. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...

21. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...

22. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....

23. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...

24. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...

26. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...

27. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...

28. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...

29. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...

30. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...

31. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...

32. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...

33. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...

34. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
-3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
comprising 513 men and 171 women, aged between 16 and 48 years. Twelve studies (46.15%) included only men,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...
,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
,1414. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...
,1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...
,2323. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...

24. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...

26. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...
-2727. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...
,3131. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...
,3333. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...
,3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
two studies (7.69%) included only women,1111. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...
,1616. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...
ten studies included participants of both sexes (38.4%),1212. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
,1515. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...
,1717. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...
,1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
,2020. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...
,2121. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...
,2828. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...
,2929. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...
,3030. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...
,3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...
and two studies (7.69%) did not provide information on the sex of the participants.2222. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....
,3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...

The articles were published between 1987 and 2019. The studies were conducted in different countries such as Australia,2626. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...
Brazil,2323. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...
China,2020. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...
,3030. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...
Germany,1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
,2727. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...
Greece,1515. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...
Hungary,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
Italy,2525. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...
,3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...
Japan,3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
Netherlands,2828. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...
Portugal,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...
Spain,3333. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...
,3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
Sweden,1212. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
,1616. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...
United Kingdom,1111. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...
,2121. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...
,2222. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....
,2929. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...
and United States.1414. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...
,1717. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...
,1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...
,2424. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...
,3131. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...

Types of disability of included participants

The studies analyzed the participants with the following disabilities and functional limitations: motor disabilities,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...
limb amputation,1111. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...

12. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
-1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
,1616. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...

17. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...
-1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
,2323. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...
,3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...
,3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
spinal cord injury,1212. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
,2323. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...
,3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...
,3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
spina bifida,1212. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
clubfoot,1212. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
and blindness,1414. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...
,1515. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...
,3333. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...
and some studies reported disabilities associated with the use and practice of sports in wheelchairs.1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...
,2020. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...

21. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...

22. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....

23. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...

24. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...

26. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...

27. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...

28. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...

29. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...

30. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...
-3131. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...
,3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...

Sports practiced

The studies analyzed ten different sports modalities, which included swimming,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...
,1111. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...
canoeing,1212. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
fencing,2020. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...
rugby,2222. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....
,2323. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...
,2626. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...
shot put,2424. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...
tennis,2525. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...
,2929. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...
basketball,27 street running,3030. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...
,3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
athletics,1414. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...

15. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...

16. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...

17. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...

18. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
-1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...
,2121. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...
,2828. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...
,3131. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...
,3333. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...
,3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
and cross-country skiing.3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...

Biomechanical methods and results

The methods used to evaluate biomechanical variables included video cameras,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...

11. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...

12. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...

13. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...

14. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...

15. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...

16. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...
-1717. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...
,1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...

20. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...

21. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...

22. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....

23. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...

24. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...
-2626. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...
,3030. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...

31. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...

32. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...

33. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...

34. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
-3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
surface electromyography,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
digital force platform,1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
electron-ically locked and controlled roller device,2727. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...
computer-controlled ergometer,2828. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...
and clinical examination.2929. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...

The biomechanical variables evaluated, in turn, included the following kinetic and kinematic measures: speed,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...
,1414. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...

15. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...

16. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...

17. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...

18. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...

19. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...

20. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...

21. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...

22. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....

23. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...

24. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...

26. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...
-2727. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...
,2929. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...

30. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...

31. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...

32. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...

33. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...

34. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
-3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
frequency,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...
,1111. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...
,1717. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...
,1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...
,2929. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...
,3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...

33. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...
-3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
length,1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...
,1717. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...
,3333. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...
strength,1111. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...
,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
,2828. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...
,3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...
joint angulation,1111. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...

12. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...

13. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...

14. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...
-1515. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...
,2020. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...
,2121. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...
,2424. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...
-2626. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...
,3131. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...
,3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
,3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
power,1212. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
,1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
,2727. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...
performance,1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
,1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
,2121. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...
,2222. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....
center of gravity, 1414. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...
,1616. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...
,3333. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...
,3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
distance,1515. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...
,1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...
,2323. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...
,3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
jump,1515. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...
time,1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
,1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...
,3333. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...

34. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
-3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
and propulsion.1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...
,2828. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...

All studies performed analyses during the performance of sporting gestures in real or simulated scenarios. Some studies included a control group made up of athletes without disabilities, for comparison purposes,1111. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...

12. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...

13. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...

14. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...
-1515. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...
,1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
,2929. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...
,3030. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...
whereas other studies did not.1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...
,1616. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...
,1717. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...
,1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...

20. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...

21. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...

22. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....

23. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...

24. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...

26. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...

27. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...
-2828. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...
, 3131. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...

32. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...

33. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...

34. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
-3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...

The results of all included studies1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...

11. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...

12. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...

13. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...

14. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...

15. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...

16. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...

17. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...

18. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...

19. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...

20. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...

21. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...

22. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....

23. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...

24. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...

26. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...

27. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...

28. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...

29. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...

30. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...

31. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...

32. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...

33. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...

34. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
-3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
showed that biomechanical patterns were mainly justified by the type of disability. Furthermore, all studies directly attributed the level of sports performance to the level of functional impairment of the participants.

Biomechanical outcomes

Blind and visually impaired

Three studies included blind and visually impaired athletes who practiced athletics.1414. Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
https://doi.org/10.1123/apaq.4.3.192...
,1515. Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
http://dx.doi.org/10.4100/jhse.2013.8.Pr...
,3333. Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
https://scielo.isciii.es/scielo.php?scri...
These studies found a greater inclination in the head angle, which increased proportionally to the level of functional impairment and kinematic variables, which resulted in shorter distance, lower speed and, consequently, lower performance.

Amputee

Nine studies analyzed biomechanics in athletes with different levels of amputation.1010. Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
https://doi.org/10.6063/motricidade.1603...

11. Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
https://doi.org/10.1080/02640414.2014.91...

12. Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
https://doi.org/10.1123/jab.2017-0102...
-1313. Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
https://doi.org/10.1556/650.2019.31444...
,1616. Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
https://doi.org/10.1249/01.mss.000023021...

17. Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
https://doi.org/10.1242/jeb.133488...
-1818. Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
https://doi.org/10.1371/journal.pone.016...
,3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...
,3434. Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
Such analyses were performed in the following modalities: swimming, canoeing, athletics, and cross-country skiing.

The studies found the following biomechanical outcomes in the athlete profile: athletes used specific compensatory patterns to achieve higher speeds; there was a decrease in the mooring force; there was a decrease in speed, joint amplitude, and final performance were observed in amputated limbs when compared to healthy limbs; there was a decrease in center of mass height proportional to the level of the amputation; and there was a decrease in speed proportional to the distance of the jump. Kinematic parameters in healthy limbs did not appear to change significantly.

Whelchair

A total of 15 studies investigated athletes who play wheelchair sports.1919. Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
https://doi.org/10.1123/apaq.5.2.96...

20. Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
https://www.researchgate.net/publication...

21. Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
https://doi.org/10.1123/apaq.14.2.156...

22. Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
https://doi.org/10.1016/j.gaitpost.2018....

23. Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
https://ojs.ub.uni-konstanz.de/cpa/artic...

24. Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
https://doi.org/10.1080/026404100402386...

25. Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
https://doi.org/10.1111/sms.12182...

26. Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
https://doi.org/10.1123/ijspp.2016-0802...

27. Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
https://doi.org/10.1123/apaq.12.4.344...

28. van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
https://doi.org/10.1097/00002060-1998050...

29. Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
https://doi.org/10.1016/j.clinbiomech.20...

30. Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
https://web.p.ebscohost.com/abstract?dir...

31. Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
https://doi.org/10.1123/apaq.12.1.78...
-3232. Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
https://doi.org/10.1097/jsm.0b013e318242...
,3535. Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
https://www.eurjhm.com/index.php/eurjhm/...
They analyzed individual and collective sports including running, cross-country skiing, athletics, tennis, basketball, rugby, shot put, and fencing.

The three main findings observed in athletes in wheelchairs were as follows: 1) there seems to be a correlation between the athlete's functional classification with kinematic parameters, so that the values are proportional to the level of impairment; 2) shoulder problems seem to be common in these athletes, resulting in kinematic changes with a high variety in scapular movement, the causes and therapeutic needs of which must be checked individually; and 3) the reported changes in the shoulder joint complex resulted in impairments related to the speed, angulation, and impact of the ball.

Risk of bias assessment

The percentage score of the methodological quality of the studies varied between 44.4% and 88.8%, with the mean of 63.18%. Thus, five studies were classified as excellent (with low risk of bias), 17 studies as good (most of the methodological criteria met and low risk of bias), four studies as moderate (possible methodological risk present), and no study as poor (high risk of bias). All studies clearly reported the population included and the intended objectives. Information on the participants' rate higher than 50% was not reported clearly in any study whereas the blinding of the assessors was described by only one study (details of the methodological quality are shown in Table 1).

Discussion

This systematic review study aimed to describe specific biomechanical patterns during sports practice in athletes with disabilities. The main findings were as follows: 1) there is a greater inclination in the angle of the head and an increase in the kinematic variables in blind and visually impaired individuals, which resulted in lower distance and speed, and consequently, lower performance, which are all proportional to the level of impaired vision; 2) the main biomechanical changes in amputee athletes were the use of compensatory body patterns, decreased binding strength, decreased speed, decreased joint amplitude, and reduced final performance in amputated limbs when compared to healthy limbs; and decreased center of mass height proportional to the level of the amputation; and 3) the main findings in athletes who use wheelchairs demonstrated possible correlation between the functional classification and kinematic parameters, so that the values are proportional to the level of impairment found, and shoulder problems were common in these athletes, resulting in changes in scapular movement, which compromise the kinematics observed in this joint complex, during sports practice.

Some facts might explain the increase in kinematic variables and head tilt observed in athletes with visual impairments. So, first, in general, visually impaired subjects have adaptive weighting and greater care resources, since they basically depend on tactile feedback located on the plantar surface of the feet, for location in space3636. Kobayashi Y, Takashima T, Hayashi M, Fujimoto H. Gait analysis of people walking on tactile ground surface indicators. IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):53-9. https://doi.org/10.1109/tnsre.2004.841880
https://doi.org/10.1109/tnsre.2004.84188...
and also sound stimuli,3737. Bross M, Borenstein M. Temporal auditory acuity in blind and sighted subjects: a signal detection analysis. Percept Mot Skills. 1982;55(3 Pt 1):963-6. https://doi.org/10.2466/pms.1982.55.3.963
https://doi.org/10.2466/pms.1982.55.3.96...
which explains the slower movement patterns. In addition, data related to kinematic values close to normal in athletes with visual impairment3636. Kobayashi Y, Takashima T, Hayashi M, Fujimoto H. Gait analysis of people walking on tactile ground surface indicators. IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):53-9. https://doi.org/10.1109/tnsre.2004.841880
https://doi.org/10.1109/tnsre.2004.84188...
may be related to the feeling of security, guaranteed by athletic experience and knowledge of practice place over the years. Finally, the aspect of adaptation to situations considering tactile and sound stimuli helps in the safety process related to sporting tasks.3838. Hötting K, Röder B. Auditory and auditory-tactile processing in congenitally blind humans. Hear Res. 2009;258(1-2):165-74.https://doi.org/10.1016/j.heares.2009.07.012
https://doi.org/10.1016/j.heares.2009.07...

Another study on athletes who used wheelchairs also found that injuries in the upper limbs, especially the shoulder, are common since they use such joints repeatedly over the days to perform many types of activities, which generate mechanical stress in the region and are responsible for chronic musculoskeletal injury.3939. Churton E, Keogh JW. Constraints influencing sports wheelchair propulsion performance and injury risk. BMC Sports Sci Med Rehabil. 2013;5:3. https://doi.org/10.1186/2052-1847-5-3
https://doi.org/10.1186/2052-1847-5-3...
Moreover, in athletes in wheelchairs, the extensive variety of deficiencies associated with the different designs of the chairs, which generate individual adaptive biomechanical responses, should be analyzed. Thus, there is no single biomechanical pattern given the extensive variety of extrinsic and intrinsic factors that can be inferred in the movements observed.3939. Churton E, Keogh JW. Constraints influencing sports wheelchair propulsion performance and injury risk. BMC Sports Sci Med Rehabil. 2013;5:3. https://doi.org/10.1186/2052-1847-5-3
https://doi.org/10.1186/2052-1847-5-3...
Thus, the only common factor to athletes in wheelchairs is the excessive use of the upper limbs to perform functional activities of everyday life such as sports, leisure, social, and work activities, explaining the high incidence of injuries reported in the literature.

Moreover, athletes from different categories may also be exposed to different risk levels of injury. Reid et al.4040. Reid M, Elliott B, Alderson J. Shoulder joint kinetics of the elite wheelchair tennis serve. Br J Sports Med. 2007;41(11):739-44. https://doi.org/10.1136/bjsm.2007.036145
https://doi.org/10.1136/bjsm.2007.036145...
found that individuals with less trunk control use muscles of the upper limbs with greater intensity to ensure maximum performance during sports practice. This might explain a higher incidence of injuries to upper limbs in this profile. Furthermore, as described, extrinsic issues related to sports, environment, and wheelchair associated with intrinsic issues involving the type of disability and level of functional impairment, resulted in unique biomechanical patterns determined by the need for adaptation in each case.

There are important patterns and characteristics that must be analyzed in amputee athletes when considering biomechanical analysis in sports movement. A previous study reported an increase in hip work in the amputated limb, which is the main cause of making running in amputees feasible.4141. Buckley JG. Biomechanical adaptations of transtibial amputee sprinting in athletes using dedicated prostheses. Clin Biomech (Bristol, Avon). 2000;15(5):352-8. https://doi.org/10.1016/s0268-0033(99)00094-7
https://doi.org/10.1016/s0268-0033(99)00...
This may involve a compensatory mechanism such as greater activity in the knee joint complex as an important secondary compensatory mechanism during running. From this perspective, the study by Buckley4141. Buckley JG. Biomechanical adaptations of transtibial amputee sprinting in athletes using dedicated prostheses. Clin Biomech (Bristol, Avon). 2000;15(5):352-8. https://doi.org/10.1016/s0268-0033(99)00094-7
https://doi.org/10.1016/s0268-0033(99)00...
stands out, in which he reported an increase in hip work in the amputated limb compared to the non-amputated limb; this possibly characterizes the main cause of viability of running in amputees, possibly due to a compensatory neural mechanism.4141. Buckley JG. Biomechanical adaptations of transtibial amputee sprinting in athletes using dedicated prostheses. Clin Biomech (Bristol, Avon). 2000;15(5):352-8. https://doi.org/10.1016/s0268-0033(99)00094-7
https://doi.org/10.1016/s0268-0033(99)00...
Additionally, the same study found that greater work on the knee joint complex also indicates an important secondary compensatory mechanism during the specific task of running. Still, a limitation observed in athletes with lower limb amputation refers to the difficulty of perfect fit between the prosthesis and the stump, which can generate friction and laxity,4242. Rajťúková V, Michalíková M, Bednarčíková L, Balogová A, Živčák J. Biomechanics of lower limb prostheses. Procedia Eng. 2014;96:382-91. https://doi.org/10.1016/j.proeng.2014.12.107
https://doi.org/10.1016/j.proeng.2014.12...
compromising the execution of the sports movement to be performed.4343. Beck ON, Taboga P, Grabowski AM. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations? J R Soc Interface. 2017;14(131):20170230. https://doi.org/10.1098/rsif.2017.0230
https://doi.org/10.1098/rsif.2017.0230...
Also, similarly to the other types of categories described, the greater the functional impairment, the more evident are the compensatory mechanisms verified,4444. Beyaert C, Grumillier C, Martinet N, Paysant J, André JM. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees. Gait Posture. 2008;28(2):278-84. https://doi.org/10.1016/j.gaitpost.2007.12.073
https://doi.org/10.1016/j.gaitpost.2007....
which in turn tend to influence the subsequent performance.45 Still, it seems logical that specific types of disabilities are more suitable for the practice of certain sports, due to the subject's possible functionality.46 In relation to sex, it was found that many of the included studies were conducted in a sample combined by men and women, which made it impossible to extrapolate to which sex possible outcome trends were more applicable, and still made it difficult to compare results between men and woman in these cases. Thus, it is pertinent that future studies report data on men and women separately so that subgroup analyzes can be conducted and specific clinical recommendations can be formulated.

There are some limitations associated with this study that need to be presented so future studies can improve certain aspects. There was no standardization on the evaluation method and the presentation of the outcomes between the included studies. This fact restricts similar comparisons and in-depth discussions. Strengths are associated with the fact that there was no limitation regarding the language and year of publication, as well as the type of disability and sports, which allowed the inclusion of all the available data on the topic. Moreover, all items suggested for ensuring a high-quality methodological study were implemented.

Finally, the outcomes presented consist of basic initial support for the topic and require future research to substantiate consistent data. Despite this, given the considerable heterogeneity of the populations studied, methodologies and outcome variables within the included studies, caution is needed when interpreting or generalizing the results, especially as it is a relatively new area of research. It is important that future observational studies, as well as clinical trials, are carried out based on the observations and considerations presented to demonstrate quantitative evidence, increase the level of evidence on the topic, and support practical action.

Conclusion

This review provides readers with the first comprehensive systematic analytical synthesis on biomechanical analysis in athletes with disabilities, which comprised all sports and types of disabilities available in the literature. In addition, the results confirmed the initial hypothesis by demonstrating that the type of disability and functional limitation are directly related to the biomechanical pattern in athletes with disabilities. Such information is essential to support specific interventions based on the needs observed to optimize sports performance and reduce the incidence of sports injuries, ensuring safer levels for sports practice. Nevertheless, the findings of this study reiterate that balanced interpretations based on clinical reasoning are necessary for the applicability of current prospective evidence in a clinical environment.

References

  • 1
    Vantorre J, Chollet D, Seifert L. Biomechanical analysis of the swim-start: a review. J Sports Sci Med. 2014;13(2):223-31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990873/
    » https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990873/
  • 2
    Trowell D, Vicenzino B, Saunders N, Fox A, Bonacci J. Effect of strength training on biomechanical and neuromuscular variables in distance runners: a systematic review and meta-analysis. Sports Med. 2020;50(1):133-50. https://doi.org/10.1007/s40279-019-01184-9
    » https://doi.org/10.1007/s40279-019-01184-9
  • 3
    Keogh JWL. Paralympic sport: an emerging area for research and consultancy in sports biomechanics. Sports Biomech. 2011;10(3):234-53. https://doi.org/10.1080/14763141.2011.592341
    » https://doi.org/10.1080/14763141.2011.592341
  • 4
    Morriën F, Taylor MJD, Hettinga FJ. Biomechanics in paralympics: implications for performance. Int J Sports Physiol Perform. 2017;12(5):578-89. https://doi.org/10.1123/ijspp.2016-0199
    » https://doi.org/10.1123/ijspp.2016-0199
  • 5
    Bragaru M, Dekker R, Geertzen JHB, Dijkstra PU. Amputees and sports: a systematic review. Sports Med. 2011;41(9):721-40. https://doi.org/10.2165/11590420-000000000-00000
    » https://doi.org/10.2165/11590420-000000000-00000
  • 6
    Chappell A, Gibson N, Morris S, Williams G, Allison GT. Running in people with cerebral palsy: A systematic review. Physiother Theory Pract. 2019;35(1):15-30. https://doi.org/10.1080/09593985.2018.1434846
    » https://doi.org/10.1080/09593985.2018.1434846
  • 7
    Kristianslund E, Krosshaug T, van den Bogert AJ. Artefacts in measuring joint moments may lead to incorrect clinical conclusions: the nexus between science (biomechanics) and sports injury prevention! Br J Sports Med. 2013;47(8):470-3. https://doi.org/10.1136/bjsports-2012-091199
    » https://doi.org/10.1136/bjsports-2012-091199
  • 8
    Lopes JSS, Silva Neto JF, Gomes RL, Almeida AC, Michelleti JK, et al. Training with elastic and conventional devices on body composition: systematic review and meta-analysis. Fisioter Mov. 2020;33:e003322. https://doi.org/10.1590/1980-5918.033.AR02
    » https://doi.org/10.1590/1980-5918.033.AR02
  • 9
    Rice SM, Parker AG, Rosenbaum S, Bailey A, Mawren D, Purcell R. Sport-related concussion and mental health outcomes in elite athletes: a systematic review. Sports Med. 2018;48(2):447-65. https://doi.org/10.1007/s40279-017-0810-3
    » https://doi.org/10.1007/s40279-017-0810-3
  • 10
    Junior V, Medeiros A, Jesus K, Garrido ND, Corredeira R, Daly DJ, et al. Biomechanical characterization of swimmers with physical disabilities. Motricidade. 2018;14(4):103-12. https://doi.org/10.6063/motricidade.16033
    » https://doi.org/10.6063/motricidade.16033
  • 11
    Lee CJ, Sanders RH, Payton CJ. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim. J Sports Sci. 2014;32(18):1704-11. https://doi.org/10.1080/02640414.2014.915420
    » https://doi.org/10.1080/02640414.2014.915420
  • 12
    Bjerkefors A, Rosén JS, Tarassova O, Arndt A. Three-dimensional kinematics and power output in elite para-kayakers and elite able-bodied flat-water kayakers. J Appl Biomech. 2019;35(2):93-100. https://doi.org/10.1123/jab.2017-0102
    » https://doi.org/10.1123/jab.2017-0102
  • 13
    Kertészné Német B, Terebessy T, Bejek Z. Biomechanical and functional comparison of kayaking by abled-disabled athletes. Orv Hetil. 2019;160(52):2061-6. https://doi.org/10.1556/650.2019.31444
    » https://doi.org/10.1556/650.2019.31444
  • 14
    Gorton B, Gavron SJ. A biomechanical analysis of the running pattern of blind athletes in the 100-m dash. Adapt Phys Act Q. 1987;4(3): 192-203. https://doi.org/10.1123/apaq.4.3.192
    » https://doi.org/10.1123/apaq.4.3.192
  • 15
    Panoutsakopoulos V, Theodorou A, Kotzamanidou MC, Skordilis E, Kollias IA. Biomechanical analysis of the final strides of the approach and the take-off by visually impaired class F12 and F13 long jumpers. Perform Anal Workshop. 2013;8(Proc 3):S671-82. http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
    » http://dx.doi.org/10.4100/jhse.2013.8.Proc3.13
  • 16
    Nolan L, Patritti BL, Simpson KJ. A biomechanical analysis of the long-jump technique of elite female amputee athletes.Med Sci Sports Exerc. 2006;38(10):1829-35. https://doi.org/10.1249/01.mss.0000230211.60957.2e
    » https://doi.org/10.1249/01.mss.0000230211.60957.2e
  • 17
    Taboga P, Rodger K, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016;219(Pt 6):851-8. https://doi.org/10.1242/jeb.133488
    » https://doi.org/10.1242/jeb.133488
  • 18
    Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann JP, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11(11): e0166219. https://doi.org/10.1371/journal.pone.0166219
    » https://doi.org/10.1371/journal.pone.0166219
  • 19
    Ridgway M, Pope C, Wilkerson J. A kinematic analysis of 800-meter wheelchair-racing techniques. Adapt Phys Activ Q. 1988;5(2):96-107. https://doi.org/10.1123/apaq.5.2.96
    » https://doi.org/10.1123/apaq.5.2.96
  • 20
    Fung YK, Chow BC, Fong DTP, Chan KM. A kinematic analysis of trunk ability in wheelchair fencing: a pilot study. XXVIII International Conference on Biomechanics in Sports; 2010. https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
    » https://www.researchgate.net/publication/202174966_A_kinematic_analysis_of_trunk_ability_in_wheelchair_fencing_a_pilot_study
  • 21
    Goosey VL, Fowler NE, Campbell IG. A kinematic analysis of wheelchair propulsion techniques in senior male, senior female, and junior male athletes. Adapt Phys Activ Q. 1997;14(2):156-65. https://doi.org/10.1123/apaq.14.2.156
    » https://doi.org/10.1123/apaq.14.2.156
  • 22
    Mason BS, Vegter RJK, Paulson TAW, Morrissey D, van der Scheer JW, Goosey-Tolfrey VL. Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes. Gait Posture. 2018;65:151-6. https://doi.org/10.1016/j.gaitpost.2018.07.170
    » https://doi.org/10.1016/j.gaitpost.2018.07.170
  • 23
    Sarro KJ, Misuta MS, Malone L, Burkett B, Barros RML. Correlation between functional classification and kinematical variables in elite wheelchair rugby players. 28 International Conference on Biomechanics in Sports; 2010. https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
    » https://ojs.ub.uni-konstanz.de/cpa/article/view/4602
  • 24
    Chow JW, Chae WS, Crawford MJ. Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. J Sports Sci. 2000;18(5):321-30. https://doi.org/10.1080/026404100402386
    » https://doi.org/10.1080/026404100402386
  • 25
    Cavedon V, Zancanaro C, Milanese C. Kinematic analysis of the wheelchair tennis serve: Implications for classification. Scand J Med Sci Sports. 2014;24(5):e381-8. https://doi.org/10.1111/sms.12182
    » https://doi.org/10.1111/sms.12182
  • 26
    Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Overground-propulsion kinematics and acceleration in elite wheelchair rugby. Int J Sports Physiol Perform. 2018;13(2):156-62. https://doi.org/10.1123/ijspp.2016-0802
    » https://doi.org/10.1123/ijspp.2016-0802
  • 27
    Hutzler Y, Grunze M, Kaiser R. Physiological and dynamic responses to maximal velocity wheelchair ergometry. Adapt Phys Activ Q. 1995;12(4):344-61. https://doi.org/10.1123/apaq.12.4.344
    » https://doi.org/10.1123/apaq.12.4.344
  • 28
    van der Woude LH, Bakker WH, Elkhuizen JW, Veeger HEJ, Gwinn T. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis. Am J Phys Med Rehabil. 1998;77(3):222-34. https://doi.org/10.1097/00002060-199805000-00007
    » https://doi.org/10.1097/00002060-199805000-00007
  • 29
    Warner MB, Wilson D, Heller MO, Wood D, Worsley P, Mottram S, et al. Scapular kinematics in professional wheel-chair tennis players. Clin Biomech (Bristol, Avon). 2018;53:7-13. https://doi.org/10.1016/j.clinbiomech.2018.01.022
    » https://doi.org/10.1016/j.clinbiomech.2018.01.022
  • 30
    Chen S, Wang YT. The kinematic feature of Chinese wheelchair racers. Asian J Sports Med. 2010;7(1):13-8. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
    » https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19752938&AN=57233885&h=wdZ6Op253jkY5Ei9w8HfGZHxsWu4H%2fIDQ%2bLr7pHvv%2fJIt3Rte8MOv2FhXCnVO3Y4TBZkTE0pUUlrXcoA9Fr7pg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d19752938%26AN%3d57233885
  • 31
    Wang YT, Deutsch H, Morse M, Hedrick B, Millikan T. Three-dimensional kinematics of wheelchair propulsion across racing speeds. Adapt Phys Activ Q. 1995;12(1):78-89. https://doi.org/10.1123/apaq.12.1.78
    » https://doi.org/10.1123/apaq.12.1.78
  • 32
    Gastaldi L, Pastorelli S, Frassinelli S. A biomechanical approach to paralympic cross-country sit-ski racing. Clin J Sport Med. 2012;22(1):58-64. https://doi.org/10.1097/jsm.0b013e31824202d3
    » https://doi.org/10.1097/jsm.0b013e31824202d3
  • 33
    Torralba-Jordán MA, Padullés-Riu JM, Losada-López JL, López del Amo JL. Alternativa ecológica en la evaluación del salto de longitud de atletas paralímpicos. Cuad de Psicol del Deporte. 2016;16(1):69-76. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
    » https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1578-84232016000100006
  • 34
    Padullés JM, Torralba MA, López-del Amo JL, Braz M, Theodorou A, Padullés X, et al. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur J Hum Mov. 2019;43:115-30. https://www.eurjhm.com/index.php/eurjhm/article/view/511
    » https://www.eurjhm.com/index.php/eurjhm/article/view/511
  • 35
    Okawa H, Tajima F, Makino K, Kawazu T, Mizushima T, Monji K, et al. Kinetic factors determining wheelchair propulsión in maratón racers with tetraplejia. Spinal Cord. 1999;37(8):542-7. https://www.eurjhm.com/index.php/eurjhm/article/view/511
    » https://www.eurjhm.com/index.php/eurjhm/article/view/511
  • 36
    Kobayashi Y, Takashima T, Hayashi M, Fujimoto H. Gait analysis of people walking on tactile ground surface indicators. IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):53-9. https://doi.org/10.1109/tnsre.2004.841880
    » https://doi.org/10.1109/tnsre.2004.841880
  • 37
    Bross M, Borenstein M. Temporal auditory acuity in blind and sighted subjects: a signal detection analysis. Percept Mot Skills. 1982;55(3 Pt 1):963-6. https://doi.org/10.2466/pms.1982.55.3.963
    » https://doi.org/10.2466/pms.1982.55.3.963
  • 38
    Hötting K, Röder B. Auditory and auditory-tactile processing in congenitally blind humans. Hear Res. 2009;258(1-2):165-74.https://doi.org/10.1016/j.heares.2009.07.012
    » https://doi.org/10.1016/j.heares.2009.07.012
  • 39
    Churton E, Keogh JW. Constraints influencing sports wheelchair propulsion performance and injury risk. BMC Sports Sci Med Rehabil. 2013;5:3. https://doi.org/10.1186/2052-1847-5-3
    » https://doi.org/10.1186/2052-1847-5-3
  • 40
    Reid M, Elliott B, Alderson J. Shoulder joint kinetics of the elite wheelchair tennis serve. Br J Sports Med. 2007;41(11):739-44. https://doi.org/10.1136/bjsm.2007.036145
    » https://doi.org/10.1136/bjsm.2007.036145
  • 41
    Buckley JG. Biomechanical adaptations of transtibial amputee sprinting in athletes using dedicated prostheses. Clin Biomech (Bristol, Avon). 2000;15(5):352-8. https://doi.org/10.1016/s0268-0033(99)00094-7
    » https://doi.org/10.1016/s0268-0033(99)00094-7
  • 42
    Rajťúková V, Michalíková M, Bednarčíková L, Balogová A, Živčák J. Biomechanics of lower limb prostheses. Procedia Eng. 2014;96:382-91. https://doi.org/10.1016/j.proeng.2014.12.107
    » https://doi.org/10.1016/j.proeng.2014.12.107
  • 43
    Beck ON, Taboga P, Grabowski AM. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations? J R Soc Interface. 2017;14(131):20170230. https://doi.org/10.1098/rsif.2017.0230
    » https://doi.org/10.1098/rsif.2017.0230
  • 44
    Beyaert C, Grumillier C, Martinet N, Paysant J, André JM. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees. Gait Posture. 2008;28(2):278-84. https://doi.org/10.1016/j.gaitpost.2007.12.073
    » https://doi.org/10.1016/j.gaitpost.2007.12.073
  • 45
    Funken J, Heinrich K, Willwacher S, Müller R, Böcker J, Hobara H, et al. Leg amputation side determines performance in curve sprinting: a case study on a Paralympic medalist. Sports Biomech. 2019;18(1):75-87. https://doi.org/10.1080/14763141.2017.1384051
    » https://doi.org/10.1080/14763141.2017.1384051
  • 46
    Ambrosio F, Boninger ML, Souza AL, Fitzgerald SG, Koontz AM, Cooper RA. Biomechanics and strength of manual wheelchair users. J Spinal Cord Med. 2005;28(5):407-14. https://doi.org/10.1080/10790268.2005.11753840
    » https://doi.org/10.1080/10790268.2005.11753840

Publication Dates

  • Publication in this collection
    17 Mar 2023
  • Date of issue
    2023

History

  • Received
    2 Feb 2022
  • Reviewed
    17 Nov 2022
  • Accepted
    3 Feb 2023
Pontifícia Universidade Católica do Paraná Rua Imaculada Conceição, 1155 - Prado-Velho -, Curitiba - PR - CEP 80215-901, Telefone: (41) 3271-1608 - Curitiba - PR - Brazil
E-mail: revista.fisioterapia@pucpr.br