Acessibilidade / Reportar erro

Clinical methods of dynamic and quantitative evaluation of the shoulder and scapula complex: a scoping review

ABSTRACT

The shoulder joint has the greatest range of motion and is the most susceptible to dysfunction. Dynamic and quantitative evaluations of this region provide better information for the clinic but the choice of the method depends on its measurement properties. This study aimed to identify the existing methods of quantitative dynamic evaluation of the shoulder and scapula complex, in a clinical context for the general population, identifying the measurement properties and outcomes of each method. The scoping review included in vivo studies, with samples without a specific clinical condition and involving applicable methods in a clinical context. We identified evaluated outcome, measurement method, and its measurement properties. We selected 29 studies that investigated 12 measurement methods, and evaluated their validity and reliability for 17 different outcomes. Most studies (n=21) addressed the position of the shoulder and the scapula and the derivative outcomes, using mainly the units of inertial measurement (n=5) and inertial magnetic measurement (n=6) as evaluation methods. The outcomes with valid and reliable methods were: shoulder joint range; scapula and shoulder motion range; muscle activity; shoulder joint center; humerus length; torque-time curve; functional performance; scapular dyskinesia; external shoulder rotators force; shoulder joint functionality and range; initial scapular movement; scapula and shoulder position; and shoulder angular velocity.

Keywords
Reproducibility of Results; Range of Motion, Articular; Evaluation Studies as Topic

RESUMO

A articulação do ombro possui a maior amplitude de movimento e está mais suscetível a disfunções. Avaliações dinâmicas e quantitativas dessa região fornecem melhores informações para a clínica, mas a escolha do método a ser utilizado depende de suas propriedades de medição. O objetivo deste estudo foi identificar os métodos existentes de avaliação dinâmica quantitativa do complexo ombro e escápula em um contexto clínico para a população em geral, identificando as propriedades de medição e os desfechos avaliados para cada método. A revisão de escopo incluiu estudos in vivo, com amostras sem uma condição clínica específica e envolvendo métodos aplicáveis em um contexto clínico. Foram identificados: desfecho avaliado, método de medição e suas propriedades de medição. Foram selecionados 29 estudos que investigaram 12 métodos de medição, sendo avaliadas sua validade e confiabilidade para 17 desfechos diferentes. A posição do ombro e da escápula e os desfechos derivados foram abordados pelo maior número de estudos (n=21), sendo seus principais métodos de avaliação as unidades de medição inercial (n=5) e unidades de medição magnética inercial (n=6). Os desfechos que apresentaram métodos válidos e confiáveis foram: amplitude articular de ombro; amplitude de movimento da escápula e do ombro; atividade muscular; centro articular do ombro; comprimento do úmero; curva torque-tempo; desempenho funcional; discinesia escapular; força de rotadores externos do ombro; funcionalidade e amplitude articular; movimento escapular inicial; posição da escápula e do ombro; e velocidade angular do ombro.

Descritores
Reprodutibilidade dos Testes; Amplitude de Movimento Articular; Estudos de Avaliação como Assunto

RESUMEN

La articulación del hombro tiene la mayor amplitud de movimiento y es más susceptible a disfunciones. Las evaluaciones dinámicas y cuantitativas de esta región proporcionan mejores informaciones para la clínica, pero la elección del método a utilizar depende de sus propiedades de medición. El objetivo de este estudio fue identificar los métodos existentes de evaluación dinámica cuantitativa del complejo del hombro y escápula en un contexto clínico para la población general, identificando las propiedades de medición y los resultados evaluados para cada método. La revisión de alcance incluyó estudios in vivo, con muestras sin una condición clínica específica y con métodos aplicables en un contexto clínico. Se identificaron el resultado evaluado, el método de medición y sus propiedades de medición. Se seleccionaron 29 estudios que investigaron 12 métodos de medición, y se evaluó su validez y confiabilidad para 17 resultados diferentes. La posición del hombro y de la escápula, y los resultados derivados fueron abordados por el mayor número de estudios (n=21), y sus principales métodos de evaluación fueron las unidades de medición inercial (n=5) y las unidades de medición magnética inercial (n=6). Los resultados que presentaron métodos válidos y confiables fueron: amplitud articular del hombro; amplitud de movimiento de la escápula y del hombro; actividad muscular; centro articular del hombro; longitud del húmero; curva torque-tiempo; desempeño funcional; discinesia escapular; fuerza de los rotadores externos del hombro; funcionalidad y amplitud articular; movimiento escapular inicial; posición de la escápula y del hombro; y velocidad angular del hombro.

Palabras clave
Reproductibilidad de los Resultados; Rango del Movimiento Articular; Estudios de Evaluación como Asunto

INTRODUCTION

The scapulothoracic and sternoclavicular synovial, acromioclavicular and glenohumeral physiological joints form the shoulder and scapula complex11. Kapandji AI. The physiology of the joints: the lower limb. 6th ed. Edinburgh: Churchill Livingstone; 2010.. This complex has the greatest range of motion in the body, in which kinematics changes are related to musculoskeletal dysfunctions22. Lange T, Struyf F, Schmitt J, Lützner J, Kopkow C. The reliability of physical examination tests for the clinical assessment of scapular dyskinesis in subjects with shoulder complaints: a systematic review. Phys Ther Sport. 2017;26:64-89. doi: 10.1016/j.ptsp.2016.10.006.
https://doi.org/10.1016/j.ptsp.2016.10.0...

3. Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31(7):489-95. doi: 10.3109/09593985.2015.1027070.
https://doi.org/10.3109/09593985.2015.10...
-44. Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
https://doi.org/10.2519/jospt.2014.4705...
.

Static evaluations are limited regarding the evaluation of complex movements such as sports and labor gestures as well as daily living activities22. Lange T, Struyf F, Schmitt J, Lützner J, Kopkow C. The reliability of physical examination tests for the clinical assessment of scapular dyskinesis in subjects with shoulder complaints: a systematic review. Phys Ther Sport. 2017;26:64-89. doi: 10.1016/j.ptsp.2016.10.006.
https://doi.org/10.1016/j.ptsp.2016.10.0...
. Dynamic quantitative evaluation allows for the characterization of 3D kinematics and the measurement of outcomes regarding movement33. Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31(7):489-95. doi: 10.3109/09593985.2015.1027070.
https://doi.org/10.3109/09593985.2015.10...
,55. Fortenbaugh D, Fleisig GS, Andrews JR. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health. 2009;1(4):314-20. doi: 10.1177/1941738109338546.
https://doi.org/10.1177/1941738109338546...
,66. Pain LAM, Baker R, Sohail QZ, Richardson D, Zabjek K, Mogk JPM, et al. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test-retest reliability and within-subject repeatability of the palpation and digitization approach. Disabil Rehabil. 2019;41(15):1826-34. doi: 10.1080/09638288.2018.1451924.
https://doi.org/10.1080/09638288.2018.14...
. This evaluation overcomes the subjectivity of qualitative evaluations such as clinical tests or evaluation scales. However, a clinical evaluation is only adequate if its measurement properties indicate valid and reliable results for the context77. Sereno HRS, Sheremetieff A Jr. Guia para elaboração de um plano de manutenção da confiabilidade metrológica de instrumentos de medição - Escolha de instrumentos. Proceedings of the 5th Congresso Latino-Americano de Metrologia; 2007; Curitiba. Curitiba: [publisher unknown]; 2007..

This scoping review aimed to identify the methods of quantitative dynamic evaluation of the shoulder and scapula complex in a clinical and generalizable context for the population. Therefore, we established the following study questions: (1) What are the existing clinical methods to perform the dynamic evaluation of shoulder and scapula complex quantitatively? (2) What measurement properties are evaluated in these methods? (3) What outcomes do these methods evaluate?

METHODOLOGY

This is a scoping review, following the guidelines of the evidence synthesis manual of the Joanna Briggs Institute (JBI) (88. Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: scoping reviews. In: Aromataris E, Munn Z, editors. JBI manual for evidence synthesis. Adelaide: JBI; 2020. p. 406-51. and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) (99. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73. doi: 10.7326/M18-0850.
https://doi.org/10.7326/M18-0850...
, without public protocol. Regarding population, were established: in vivo studies of populations without a specific clinical condition. For concept: quantitative dynamic evaluation of shoulder and scapula complex. For context: clinical evaluations. As eligibility criteria: publications in peer-reviewed journals of studies that evaluated measurement properties of existing methods. No date or language restrictions have been established. Studies involving laboratory methods and dedicated to unrestricted outcomes to the shoulder and scapula complex were excluded.

The studies were conducted at PubMed, Embase, and Scopus databases in January 2022. Figure 1 shows the descriptors used in PubMed. The search in the other databases used the same descriptors with some adaptations.

Figure 1
Keywords used in PubMed database

#1 AND #2 AND #3 AND #4 AND #5


The studies were imported into the Rayyan platform, excluding duplicates. Two evaluators blindly selected the studies, initially considering titles and abstracts and then the full articles. Discordant evaluations were resolved in a meeting, seeking a consensus.

Data were extracted via a form prepared by the research team. Information was extracted regarding: authorship, year of publication, method, measured outcome, and the measurement properties evaluated. The measurement properties were analyzed according to the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) (1010. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.
https://doi.org/10.1016/j.jclinepi.2010....
,1111. Mokkink LB, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, de Vet HCW, et al. COSMIN study design checklist for patient-reported outcome measurement instruments. Amsterdam: COSMIN; 2019.. We did not establish a priori criteria to determine the contemplation of each measurement property, accepting what each study indicated.

RESULTS

We identified 373 studies in PubMed, 149 in Embase and 130 in Scopus. After removing duplicates and selecting studies, we included 29 in this scoping review (Figure 2). We identified 12 different evaluation methods for 17 outcomes related to shoulder and scapula complex.

Figure 2
Flowchart of the selection process of this scoping review studies, following the PRISMA-ScR recommendations

Table 1 shows the extracted data. The most common outcomes were those assessing the position of the scapula44. Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
https://doi.org/10.2519/jospt.2014.4705...
,1212. Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
https://doi.org/10.1016/j.medengphy.2021...
,1313. van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
https://doi.org/10.1007/s11517-014-1186-...
or shoulder1212. Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
https://doi.org/10.1016/j.medengphy.2021...
,1414. Morrow MB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227-32. doi: 10.1123/jab.2016-0120.
https://doi.org/10.1123/jab.2016-0120...

15. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...

16. Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
https://doi.org/10.1123/jab.2016-0011...

17. Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
https://doi.org/10.1016/j.math.2015.09.0...

18. Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010.
https://doi.org/10.1016/j.medengphy.2006...
-1919. Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
https://doi.org/10.1123/jsr.20.4.393...
, as well as derivative measures from the scapula and shoulder: motion range2020. Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med. 2005;13(3):181-98. doi: 10.1080/15438620500222489.
https://doi.org/10.1080/1543862050022248...

21. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....

22. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...

23. Xu X, Robertson M, Chen KB, Lin JH, McGorry RW. Using the Microsoft KinectTM to assess 3-D shoulder kinematics during computer use. Appl Ergon. 2017;65:418-23. doi: 10.1016/j.apergo.2017.04.004.
https://doi.org/10.1016/j.apergo.2017.04...

24. Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39(4):382-8. doi: 10.1093/rheumatology/39.4.382.
https://doi.org/10.1093/rheumatology/39....
-2525. Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
https://doi.org/10.1038/s41598-019-50759...
resulting from the difference of two positions; joint amplitude2626. Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80-5. doi: 10.1016/j.gaitpost.2016.04.004.
https://doi.org/10.1016/j.gaitpost.2016....
,2727. Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park HW, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10(6):e0129398. doi: 10.1371/journal.pone.0129398.
https://doi.org/10.1371/journal.pone.012...
regarding extreme positions of a movement; and angular velocity measures1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
,1919. Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
https://doi.org/10.1123/jsr.20.4.393...
,2828. Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a smartphone compared with an inertial sensor to measure shoulder mobility: cross-sectional study. JMIR Mhealth Uhealth. 2019;7(9):e13640. doi: 10.2196/13640.
https://doi.org/10.2196/13640...
. Among the 29 included studies, 18 (62%) evaluated these outcomes. Accelerometers and gyroscopes were the most commonly used devices (56%, n=10), both by inertial measurement units (IMU) (1414. Morrow MB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227-32. doi: 10.1123/jab.2016-0120.
https://doi.org/10.1123/jab.2016-0120...
,1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
,1717. Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
https://doi.org/10.1016/j.math.2015.09.0...
,2828. Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a smartphone compared with an inertial sensor to measure shoulder mobility: cross-sectional study. JMIR Mhealth Uhealth. 2019;7(9):e13640. doi: 10.2196/13640.
https://doi.org/10.2196/13640...
and inertial and magnetic measurement units (IMMU) (1212. Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
https://doi.org/10.1016/j.medengphy.2021...
,1313. van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
https://doi.org/10.1007/s11517-014-1186-...
,1818. Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010.
https://doi.org/10.1016/j.medengphy.2006...
,2121. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....
,2222. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...
,2525. Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
https://doi.org/10.1038/s41598-019-50759...
, when combined with magnetometers. These measurement units were also used to evaluate shoulder joint center2929. Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
https://doi.org/10.1186/s12938-017-0324-...
, humerus length3030. Crabolu M, Pani D, Raffo L, Conti M, Cereatti A. Functional estimation of bony segment lengths using magneto-inertial sensing: application to the humerus. PLoS One. 2018;13(9):e0203861. doi: 10.1371/journal.pone.0203861.
https://doi.org/10.1371/journal.pone.020...
, torque-time curve1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
, and functional performance3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
.

Table 1
Data extracted from the studies included in the review

Among the measurement properties, 21 studies addressed reliability and 20 validity. Also, 12 (41%) studies conducted a associated analysis of validity and reliability. Concurrent validity was verified in 18 studies1414. Morrow MB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227-32. doi: 10.1123/jab.2016-0120.
https://doi.org/10.1123/jab.2016-0120...

15. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...

16. Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
https://doi.org/10.1123/jab.2016-0011...

17. Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
https://doi.org/10.1016/j.math.2015.09.0...
-1818. Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010.
https://doi.org/10.1016/j.medengphy.2006...
,2222. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...
,2323. Xu X, Robertson M, Chen KB, Lin JH, McGorry RW. Using the Microsoft KinectTM to assess 3-D shoulder kinematics during computer use. Appl Ergon. 2017;65:418-23. doi: 10.1016/j.apergo.2017.04.004.
https://doi.org/10.1016/j.apergo.2017.04...
,2525. Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
https://doi.org/10.1038/s41598-019-50759...

26. Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80-5. doi: 10.1016/j.gaitpost.2016.04.004.
https://doi.org/10.1016/j.gaitpost.2016....

27. Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park HW, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10(6):e0129398. doi: 10.1371/journal.pone.0129398.
https://doi.org/10.1371/journal.pone.012...

28. Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a smartphone compared with an inertial sensor to measure shoulder mobility: cross-sectional study. JMIR Mhealth Uhealth. 2019;7(9):e13640. doi: 10.2196/13640.
https://doi.org/10.2196/13640...

29. Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
https://doi.org/10.1186/s12938-017-0324-...

30. Crabolu M, Pani D, Raffo L, Conti M, Cereatti A. Functional estimation of bony segment lengths using magneto-inertial sensing: application to the humerus. PLoS One. 2018;13(9):e0203861. doi: 10.1371/journal.pone.0203861.
https://doi.org/10.1371/journal.pone.020...
-3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3333. Hackett L, Reed D, Halaki M, Ginn KA. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior. J Electromyogr Kinesiol. 2014;24(2):221-7. doi: 10.1016/j.jelekin.2014.01.007.
https://doi.org/10.1016/j.jelekin.2014.0...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
,3636. Popchak A, Poploski K, Patterson-Lynch B, Nigolian J, Lin A. Reliability and validity of a return to sports testing battery for the shoulder. Phys Ther Sport. 2021;48:1-11. doi: 10.1016/j.ptsp.2020.12.003.
https://doi.org/10.1016/j.ptsp.2020.12.0...
, the hypotheses-testing in four1919. Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
https://doi.org/10.1123/jsr.20.4.393...
,3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
,3535. Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):202-9. doi: 10.1007/s00167-020-05916-7.
https://doi.org/10.1007/s00167-020-05916...
and two3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
studies verified both. Reliability had a more heterogeneous analysis profile. Intra-rater reproducibility was investigated by 10 studies44. Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
https://doi.org/10.2519/jospt.2014.4705...
,1313. van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
https://doi.org/10.1007/s11517-014-1186-...
,1616. Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
https://doi.org/10.1123/jab.2016-0011...
,2020. Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med. 2005;13(3):181-98. doi: 10.1080/15438620500222489.
https://doi.org/10.1080/1543862050022248...
,2121. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....
,2424. Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39(4):382-8. doi: 10.1093/rheumatology/39.4.382.
https://doi.org/10.1093/rheumatology/39....
,3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3232. Seitz AL, Uhl TL. Reliability and minimal detectable change in scapulothoracic neuromuscular activity. J Electromyogr Kinesiol. 2012;22(6):968-74. doi: 10.1016/j.jelekin.2012.05.003.
https://doi.org/10.1016/j.jelekin.2012.0...
,3636. Popchak A, Poploski K, Patterson-Lynch B, Nigolian J, Lin A. Reliability and validity of a return to sports testing battery for the shoulder. Phys Ther Sport. 2021;48:1-11. doi: 10.1016/j.ptsp.2020.12.003.
https://doi.org/10.1016/j.ptsp.2020.12.0...
,3838. Pearl ML, van de Bunt F, Pearl M, Lightdale-Miric N, Rethlefsen S, Loiselle J. Assessing shoulder motion in children: age limitations to Mallet and ABC loops. Clin Orthop Relat Res. 2014;472(2):740-8. doi: 10.1007/s11999-013-3324-9.
https://doi.org/10.1007/s11999-013-3324-...
, repeatability by 1044. Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
https://doi.org/10.2519/jospt.2014.4705...
,1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
,1717. Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
https://doi.org/10.1016/j.math.2015.09.0...
,1919. Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
https://doi.org/10.1123/jsr.20.4.393...
,2020. Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med. 2005;13(3):181-98. doi: 10.1080/15438620500222489.
https://doi.org/10.1080/1543862050022248...
,2222. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...
,2626. Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80-5. doi: 10.1016/j.gaitpost.2016.04.004.
https://doi.org/10.1016/j.gaitpost.2016....
,2929. Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
https://doi.org/10.1186/s12938-017-0324-...
,3232. Seitz AL, Uhl TL. Reliability and minimal detectable change in scapulothoracic neuromuscular activity. J Electromyogr Kinesiol. 2012;22(6):968-74. doi: 10.1016/j.jelekin.2012.05.003.
https://doi.org/10.1016/j.jelekin.2012.0...
,3535. Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):202-9. doi: 10.1007/s00167-020-05916-7.
https://doi.org/10.1007/s00167-020-05916...
and inter-rater reproducibility by seven1313. van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
https://doi.org/10.1007/s11517-014-1186-...
,1616. Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
https://doi.org/10.1123/jab.2016-0011...
,2121. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....
,2424. Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39(4):382-8. doi: 10.1093/rheumatology/39.4.382.
https://doi.org/10.1093/rheumatology/39....
,3737. Johansson FR, Skillgate E, Lapauw ML, Clijmans D, Deneulin VP, Palmans T, et al. Measuring eccentric strength of the shoulder external rotators using a handheld dynamometer: reliability and validity. J Athl Train. 2015;50(7):719-25. doi: 10.4085/1062-6050-49.3.72.
https://doi.org/10.4085/1062-6050-49.3.7...

38. Pearl ML, van de Bunt F, Pearl M, Lightdale-Miric N, Rethlefsen S, Loiselle J. Assessing shoulder motion in children: age limitations to Mallet and ABC loops. Clin Orthop Relat Res. 2014;472(2):740-8. doi: 10.1007/s11999-013-3324-9.
https://doi.org/10.1007/s11999-013-3324-...
-3939. Larsen CM, Søgaard K, Eshoj H, Ingwersen K, Juul-Kristensen B. Clinical assessment methods for scapular position and function. An inter-rater reliability study. Physiother Theory Pract. 2020;36(12):1399-420. doi: 10.1080/09593985.2019.1579284.
https://doi.org/10.1080/09593985.2019.15...
. No study verified the three reliability properties simultaneously and one3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
evaluated reliability by an unidentified property. Furthermore, a study1212. Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
https://doi.org/10.1016/j.medengphy.2021...
evaluated another reliability property: reproducibility for different sensor positioning.

DISCUSSION

Concurrent validity requires the agreement of the tested method with a valid reference. Some studies used static2929. Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
https://doi.org/10.1186/s12938-017-0324-...
or semi-dynamic2727. Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park HW, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10(6):e0129398. doi: 10.1371/journal.pone.0129398.
https://doi.org/10.1371/journal.pone.012...
evaluation methods, which is contradictory when evaluating dynamic methods. The results of dynamic and static evaluations4040. d'Entremont AG, Nordmeyer-Massner JA, Bos C, Wilson DR, Pruessmann KP. Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magn Reson Med. 2013;69(6):1634-44. doi: 10.1002/mrm.24425.
https://doi.org/10.1002/mrm.24425...
are different, indicating a limitation of studies that use this procedure. Similar limitation occurs among studies dedicated to functional performance that established as reference subjective and/or nonspecific evaluations for the shoulder such as Disabilities of the Arm, Shoulder and Hand (DASH) (3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
), (3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
. Since the evaluated methods propose an advance compared with the references33. Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31(7):489-95. doi: 10.3109/09593985.2015.1027070.
https://doi.org/10.3109/09593985.2015.10...
), (55. Fortenbaugh D, Fleisig GS, Andrews JR. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health. 2009;1(4):314-20. doi: 10.1177/1941738109338546.
https://doi.org/10.1177/1941738109338546...
), (66. Pain LAM, Baker R, Sohail QZ, Richardson D, Zabjek K, Mogk JPM, et al. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test-retest reliability and within-subject repeatability of the palpation and digitization approach. Disabil Rehabil. 2019;41(15):1826-34. doi: 10.1080/09638288.2018.1451924.
https://doi.org/10.1080/09638288.2018.14...
, agreement may indicate that this did not occur.

We believe that exploring new validation methods can overcome such limitations. Metrology and psychometrics advanced in their processes based on the incorporation of concepts of the philosophy of measurement-such as the model-based approach and the epistemology of measurement4141. Tal E. Measurement in science. In: Zalta EN, editor. The Stanford Encyclopedia of Philosophy [Internet]. Stanford: Stanford University; 2020 [cited 2021 Mar 30]. Available from: Available from: https://plato.stanford.edu/archives/fall2020/entries/measurement-science/ .
https://plato.stanford.edu/archives/fall...
. The dialogue between philosophy and health sciences may offer new possibilities of validation, or even assist in the adaptation of procedures used in other areas, such as convergent and discriminant validity, commonly used in psychometrics4242. American Educational Research Association; American Psychological Association; National Council on Measurement in Education. The standards for educational and psychological testing. Washington, DC: American Educational Research Association; 2014. and present in some studies included in this review3131. Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
https://doi.org/10.1016/j.jse.2011.05.02...
,3434. MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
https://doi.org/10.1186/1471-2474-8-42...
,3535. Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):202-9. doi: 10.1007/s00167-020-05916-7.
https://doi.org/10.1007/s00167-020-05916...
.

Each study had a difficulty in identifying the property of the analyzed measurement. Some studies used different methods to analyze a property under the same term. Others applied similar methodologies, however with different terminologies. Among 29 studies, only four1515. Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
https://doi.org/10.1682/jrrd.2014.06.014...
,2121. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
https://doi.org/10.1016/j.gaitpost.2011....
,2222. Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
https://doi.org/10.1007/s11517-013-1121-...
,2525. Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
https://doi.org/10.1038/s41598-019-50759...
indicated objective criteria for the acceptance of a measurement property. The need for definitions of terms, methodologies, and criteria is a challenge among health measurement and generates methodological guides for researchers1010. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.
https://doi.org/10.1016/j.jclinepi.2010....
,1111. Mokkink LB, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, de Vet HCW, et al. COSMIN study design checklist for patient-reported outcome measurement instruments. Amsterdam: COSMIN; 2019.,4242. American Educational Research Association; American Psychological Association; National Council on Measurement in Education. The standards for educational and psychological testing. Washington, DC: American Educational Research Association; 2014.. However, the studies in this scoping review did not use these guides. Therefore, a gap may exist regarding the terms, methodologies, and criteria that should evaluate the methods of measuring clinical phenomena based on physical phenomena, such as the methods present in this study.

CONCLUSION

We identified 12 methods that assess shoulder and scapula outcomes: ABC loops; video analysis; kinect; manual dynamometer; surface electromyography; Mallet scale; FIT-HaNSA; inclinometer; repetition until failure; electromagnetic sensors; IMU; and IMMU. In these methods, the measurement properties evaluated varied in: concurrent validity, hypotheses-testing, repeatability, inter-rater reproducibility, intra-rater reproducibility, and reproducibility for different sensor positions. This study presented a compilation of all existing methods to date and their measurement properties. Based on these data, the health professional can be aware of the adequacy of each method to promote a quantitative dynamic evaluation of the shoulder and scapula complex in a clinical context supporting their choice.

REFERÊNCIAS

  • 1
    Kapandji AI. The physiology of the joints: the lower limb. 6th ed. Edinburgh: Churchill Livingstone; 2010.
  • 2
    Lange T, Struyf F, Schmitt J, Lützner J, Kopkow C. The reliability of physical examination tests for the clinical assessment of scapular dyskinesis in subjects with shoulder complaints: a systematic review. Phys Ther Sport. 2017;26:64-89. doi: 10.1016/j.ptsp.2016.10.006.
    » https://doi.org/10.1016/j.ptsp.2016.10.006
  • 3
    Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31(7):489-95. doi: 10.3109/09593985.2015.1027070.
    » https://doi.org/10.3109/09593985.2015.1027070
  • 4
    Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and minimal detectable change of 3-dimensional scapular orientation in individuals with and without shoulder impingement. J Orthop Sports Phys Ther. 2014;44(5):341-9. doi: 10.2519/jospt.2014.4705.
    » https://doi.org/10.2519/jospt.2014.4705
  • 5
    Fortenbaugh D, Fleisig GS, Andrews JR. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health. 2009;1(4):314-20. doi: 10.1177/1941738109338546.
    » https://doi.org/10.1177/1941738109338546
  • 6
    Pain LAM, Baker R, Sohail QZ, Richardson D, Zabjek K, Mogk JPM, et al. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test-retest reliability and within-subject repeatability of the palpation and digitization approach. Disabil Rehabil. 2019;41(15):1826-34. doi: 10.1080/09638288.2018.1451924.
    » https://doi.org/10.1080/09638288.2018.1451924
  • 7
    Sereno HRS, Sheremetieff A Jr. Guia para elaboração de um plano de manutenção da confiabilidade metrológica de instrumentos de medição - Escolha de instrumentos. Proceedings of the 5th Congresso Latino-Americano de Metrologia; 2007; Curitiba. Curitiba: [publisher unknown]; 2007.
  • 8
    Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: scoping reviews. In: Aromataris E, Munn Z, editors. JBI manual for evidence synthesis. Adelaide: JBI; 2020. p. 406-51.
  • 9
    Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73. doi: 10.7326/M18-0850.
    » https://doi.org/10.7326/M18-0850
  • 10
    Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.
    » https://doi.org/10.1016/j.jclinepi.2010.02.006
  • 11
    Mokkink LB, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, de Vet HCW, et al. COSMIN study design checklist for patient-reported outcome measurement instruments. Amsterdam: COSMIN; 2019.
  • 12
    Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021;92:1-9. doi: 10.1016/j.medengphy.2021.03.010.
    » https://doi.org/10.1016/j.medengphy.2021.03.010
  • 13
    van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921-31. doi: 10.1007/s11517-014-1186-2.
    » https://doi.org/10.1007/s11517-014-1186-2
  • 14
    Morrow MB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227-32. doi: 10.1123/jab.2016-0120.
    » https://doi.org/10.1123/jab.2016-0120
  • 15
    Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52(2):171-80. doi: 10.1682/jrrd.2014.06.0146.
    » https://doi.org/10.1682/jrrd.2014.06.0146
  • 16
    Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):64-8. doi: 10.1123/jab.2016-0011.
    » https://doi.org/10.1123/jab.2016-0011
  • 17
    Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - a validity study. Man Ther. 2016;21:241-9. doi: 10.1016/j.math.2015.09.004.
    » https://doi.org/10.1016/j.math.2015.09.004
  • 18
    Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010.
    » https://doi.org/10.1016/j.medengphy.2006.11.010
  • 19
    Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J Sport Rehabil. 2011;20(4):393-405. doi: 10.1123/jsr.20.4.393.
    » https://doi.org/10.1123/jsr.20.4.393
  • 20
    Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med. 2005;13(3):181-98. doi: 10.1080/15438620500222489.
    » https://doi.org/10.1080/15438620500222489
  • 21
    Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015.
    » https://doi.org/10.1016/j.gaitpost.2011.12.015
  • 22
    Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52(3):271-82. doi: 10.1007/s11517-013-1121-y.
    » https://doi.org/10.1007/s11517-013-1121-y
  • 23
    Xu X, Robertson M, Chen KB, Lin JH, McGorry RW. Using the Microsoft KinectTM to assess 3-D shoulder kinematics during computer use. Appl Ergon. 2017;65:418-23. doi: 10.1016/j.apergo.2017.04.004.
    » https://doi.org/10.1016/j.apergo.2017.04.004
  • 24
    Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39(4):382-8. doi: 10.1093/rheumatology/39.4.382.
    » https://doi.org/10.1093/rheumatology/39.4.382
  • 25
    Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D, et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z.
    » https://doi.org/10.1038/s41598-019-50759-z
  • 26
    Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80-5. doi: 10.1016/j.gaitpost.2016.04.004.
    » https://doi.org/10.1016/j.gaitpost.2016.04.004
  • 27
    Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park HW, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10(6):e0129398. doi: 10.1371/journal.pone.0129398.
    » https://doi.org/10.1371/journal.pone.0129398
  • 28
    Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a smartphone compared with an inertial sensor to measure shoulder mobility: cross-sectional study. JMIR Mhealth Uhealth. 2019;7(9):e13640. doi: 10.2196/13640.
    » https://doi.org/10.2196/13640
  • 29
    Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34. doi: 10.1186/s12938-017-0324-0.
    » https://doi.org/10.1186/s12938-017-0324-0
  • 30
    Crabolu M, Pani D, Raffo L, Conti M, Cereatti A. Functional estimation of bony segment lengths using magneto-inertial sensing: application to the humerus. PLoS One. 2018;13(9):e0203861. doi: 10.1371/journal.pone.0203861.
    » https://doi.org/10.1371/journal.pone.0203861
  • 31
    Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20(7):1074-81. doi: 10.1016/j.jse.2011.05.026.
    » https://doi.org/10.1016/j.jse.2011.05.026
  • 32
    Seitz AL, Uhl TL. Reliability and minimal detectable change in scapulothoracic neuromuscular activity. J Electromyogr Kinesiol. 2012;22(6):968-74. doi: 10.1016/j.jelekin.2012.05.003.
    » https://doi.org/10.1016/j.jelekin.2012.05.003
  • 33
    Hackett L, Reed D, Halaki M, Ginn KA. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior. J Electromyogr Kinesiol. 2014;24(2):221-7. doi: 10.1016/j.jelekin.2014.01.007.
    » https://doi.org/10.1016/j.jelekin.2014.01.007
  • 34
    MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D, et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8:42. doi: 10.1186/1471-2474-8-42.
    » https://doi.org/10.1186/1471-2474-8-42
  • 35
    Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):202-9. doi: 10.1007/s00167-020-05916-7.
    » https://doi.org/10.1007/s00167-020-05916-7
  • 36
    Popchak A, Poploski K, Patterson-Lynch B, Nigolian J, Lin A. Reliability and validity of a return to sports testing battery for the shoulder. Phys Ther Sport. 2021;48:1-11. doi: 10.1016/j.ptsp.2020.12.003.
    » https://doi.org/10.1016/j.ptsp.2020.12.003
  • 37
    Johansson FR, Skillgate E, Lapauw ML, Clijmans D, Deneulin VP, Palmans T, et al. Measuring eccentric strength of the shoulder external rotators using a handheld dynamometer: reliability and validity. J Athl Train. 2015;50(7):719-25. doi: 10.4085/1062-6050-49.3.72.
    » https://doi.org/10.4085/1062-6050-49.3.72
  • 38
    Pearl ML, van de Bunt F, Pearl M, Lightdale-Miric N, Rethlefsen S, Loiselle J. Assessing shoulder motion in children: age limitations to Mallet and ABC loops. Clin Orthop Relat Res. 2014;472(2):740-8. doi: 10.1007/s11999-013-3324-9.
    » https://doi.org/10.1007/s11999-013-3324-9
  • 39
    Larsen CM, Søgaard K, Eshoj H, Ingwersen K, Juul-Kristensen B. Clinical assessment methods for scapular position and function. An inter-rater reliability study. Physiother Theory Pract. 2020;36(12):1399-420. doi: 10.1080/09593985.2019.1579284.
    » https://doi.org/10.1080/09593985.2019.1579284
  • 40
    d'Entremont AG, Nordmeyer-Massner JA, Bos C, Wilson DR, Pruessmann KP. Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magn Reson Med. 2013;69(6):1634-44. doi: 10.1002/mrm.24425.
    » https://doi.org/10.1002/mrm.24425
  • 41
    Tal E. Measurement in science. In: Zalta EN, editor. The Stanford Encyclopedia of Philosophy [Internet]. Stanford: Stanford University; 2020 [cited 2021 Mar 30]. Available from: Available from: https://plato.stanford.edu/archives/fall2020/entries/measurement-science/
    » https://plato.stanford.edu/archives/fall2020/entries/measurement-science/
  • 42
    American Educational Research Association; American Psychological Association; National Council on Measurement in Education. The standards for educational and psychological testing. Washington, DC: American Educational Research Association; 2014.
  • 3
    Financing source: nothing to declare

Publication Dates

  • Publication in this collection
    05 Dec 2022
  • Date of issue
    Jul-Sep 2022

History

  • Received
    24 Mar 2022
  • Accepted
    30 Aug 2022
Universidade de São Paulo Rua Ovídio Pires de Campos, 225 2° andar. , 05403-010 São Paulo SP / Brasil, Tel: 55 11 2661-7703, Fax 55 11 3743-7462 - São Paulo - SP - Brazil
E-mail: revfisio@usp.br