ABSTRACT
This paper reports an investigation versed in identifying journalistic stances through the utilization of algorithmic models based on natural language processing. To this end, a comparative case study between Brazil and Portugal is presented, focusing on the identification and analysis of digital news portals regarding political issues associated with covid-19 vaccination campaigns in the years 2021 and 2022. Five journalistic outlets from each country are considered based on popularity criteria. The methodological approach is grounded in the use of computational tools for data extraction and analysis, particularly within the scope of natural language processing (NLP), in order to label the texts according to expressed stances (sentiment analysis). The results reveal an increase in negative sentiment in Brazilian newspapers and a scenario of balance in the debate outlined in Portuguese newspapers.
KEYWORDS
journalism; sentiment analysis; vaccination; covid-19
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Fonte: Autores
Fonte: adaptado de Google Trends, 2023
Fonte: adaptado de Google Trends, 2023
Fonte: Google, 2023.
Fonte: Metrópoles, 2023.
Fonte: dados de pesquisa.
Fonte: dados de pesquisa.
Fonte: dados de pesquisa.
Fonte: dados de pesquisa.
Fonte: dados de pesquisa
Fonte: dados de pesquisa
Fonte: dados de pesquisa
Fonte: dados de pesquisa