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Abstract

The utility of microsatellites (SSRs) in reconstructing phylogenies is largely confined to studies below the genus
level, due to the potential of homoplasy resulting from allele size range constraints and poor SSR transferability
among divergent taxa. The eucalypt genus Corymbia has been shown to be monophyletic using morphological char-
acters, however, analyses of intergenic spacer sequences have resulted in contradictory hypotheses- showing the
genus as either equivocal or paraphyletic. To assess SSR utility in higher order phylogeny in the family Myrtaceae,
phylogenetic relationships of the bloodwood eucalypts Corymbia and related genera were investigated using eight
polymorphic SSRs. Repeat size variation using the average square and Nei’s distance were congruent and showed
Corymbia to be a monophyletic group, supporting morphological characters and a recent combination of the internal
and external transcribed spacers dataset. SSRs are selectively neutral and provide data at multiple genomic regions,
thus may explain why SSRs retained informative phylogenetic signals despite deep divergences. We show that
where the problems of size-range constraints, high mutation rates and size homoplasy are addressed, SSRs might
resolve problematic phylogenies of taxa that have diverged for as long as three million generations or 30 million
years.
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Introduction

Phylogenies inferred from independent data parti-

tions may differ from one another in topology despite the

fact that they are drawn from the same set of organisms

(Rodrigo et al., 1993; McCracken and Sorenson, 2005). In-

congruence due to statistical, sampling or computational

errors can be addressed by expanded and judicious sam-

pling, addition of phylogenetic characters or by modifying

analysis and tree reconstruction models (e.g., Udovicic et

al., 1995; Steane et al., 1999, 2002; Udovicic and Ladiges,

2000). However, if topological incongruence between mor-

phological and molecular data have their origin in genea-

logical discordance, the conflict is not easily resolved by

modifying the model used in phylogenetic reconstruction,

correcting for sampling error, combining data or by other

manipulations. Such topological incongruence may arise as

a result of hybridization (Dumolin-Lapegue et al., 1997;

McKinnon et al., 1999; Avise, 2000), paralogy and lineage

sorting (Avise et al., 1990; Maddison, 1997; Avise, 2000;

Lu, 2001; Takahashi et al., 2001; Ochieng et al., 2007), or

homoplasy (McCracken and Sorenson, 2005). Eucalypts

are the dominant forest and woodland trees of Australia,

with several species being of major economic importance

in Australia and other countries around the world. Phylo-

genetic relationships within the eucalypts present a case of

conflicting datasets, particularly the phylogenetic status of

Corymbia in relation to Angophora.

The plant family Myrtaceae includes two large

groups in the Australian region: the ‘eucalypts’ and the

‘melaleuca’ group (Johnson and Briggs, 1984). The

eucalypt group (broad sense) includes seven genera, three

of which are closely related (Eucalyptus L’Hér., Corymbia

K. D.Hill and L.A.S. Johnson and Angophora Cav.). The

other smaller members are the monotypic genera

Arillastrum Pancher ex Baill., Stockwellia D.J. Carr, D.J.

Carr and B. Hyland and Allosyncarpia S.T. Blake, and
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Eucalyptopsis C.T. White, which includes two species (La-

diges et al., 2003). Previously, Pryor and Johnson (1971)

proposed the division of the genus Eucalyptus into seven

subgenera: Blakella, Corymbia, Eudesmia, Gaubaea,

Idiogenes, Monocalyptus, and Symphyomyrtus, based on

morphological and ecological characters, and on the lack of

crossability among the subgenera. In a major taxonomic re-

vision of the bloodwoods, two of these subgenera,

Corymbia and Blakearia, were included in a new genus

Corymbia, classified into seven sections (Fundoria,

Rufaria, Apteria, Ochraria, Politaria, Cadagaria,

Blakearia; Hill and Johnson 1995). However, Brooker

(2000) presented an alternative view regarding the mono-

phyly and hence generic recognition of Corymbia (but see

Ladiges and Udovicic, 2000). Phylogenetic analysis by Hill

and Johnson (1995) based largely on morphological char-

acters, showed Corymbia to be a monophyletic taxon, sister

to Angophora. However, molecular DNA data from chloro-

plast (trnL, trnH, psbA) (Udovicic and Ladiges, 2000) and

ITS (Steane et al., 1999, 2002) suggested that Angophora is

nested within Corymbia, making the latter paraphyletic. In-

creased taxon sampling for the ITS region by Steane et al.

(2002) did not resolve the question of paraphyly. Very re-

cently, analyses of the external transcribed spacers (ETS;

Parra-O et al., 2006) showed Corymbia to be monophy-

letic, however, ITS alone by the same group supported ear-

lier ITS analyses.

The ITS locus has recently been reported to exist in

paralogs within eucalypt genomes (Ochieng et al., 2007;

Bayly et al., 2007). It is possible that paralogous sequences

confound phylogenetic resolution at this locus in eucalypts.

We are currently cloning and sequencing the nrITS to in-

vestigate if gene duplication was the cause of tree incongru-

ence in the eucalypts. So far, three ITS riboforms, two of

them widespread, have been recovered within some ge-

nomes. Compelling evidence suggested that one of the di-

vergent riboforms was a pseudogene. Phylogenies from the

apparently functional riboform retained Corymbia in an ap-

parent paraphyly, whereas the putative pseudogene recov-

ered a phylogeny showing Corymbia as a monophyletic

genus (Ochieng et al., 2007). We explained that phylogen-

etic signals are obscured when functional constraints in

nrITS necessitate compensatory mutations in the secondary

structure helices involved in RNA transcription, whereas

pseudogenes mutate under neutrality. However, other ex-

planations such as hybridization and computational prob-

lems cannot be ruled out.

If functional constraints on nrITS were the cause of

apparent paraphyly for the genus Corymbia, then a neutral

molecular locus with adequate phylogenetic signals should

support the genus as a clade (monophyletic). One limitation

with phylogenetic reconstructions using single gene region

is the potential to get a biased hypothesis when genomic re-

gions differ in their history. We revisited the unresolved

phylogenetic relationships among the eucalypt genera with

neutrally evolving microsatellites, which may fairly repre-

sent different genomic regions in a single dataset.

Microsatellites, also referred to as simple sequence repeats

(SSRs), are segments of DNA with tandem repeat of short

sequence motifs, each generally less than 5 bp in length

(Bruford and Wayne, 1993). SSRs have many advantages

over DNA sequencing, including a greater representation

of different genomic regions and faster evolution that may

lead to more informative characters. However, the utility of

SSRs in reconstructing phylogenetic relationships, espe-

cially among divergent taxa, is a matter of current debate.

Apart from the technical difficulty in amplifying SSRs

across taxa, they are believed to possess three interrelated

attributes that may limit their use in reconstructing phylo-

genies of divergent taxa: (1) a constraint on allele size range

(Goldstein and Pollock, 1997), (2) high mutation rates, and

(3) size homoplasy (Bruford and Wyne, 1993). Another

limitation in SSR analyses is that confident assessment of

orthology for each allele pair would involve sequencing of

each of the alleles, a very expensive exercise, particularly

for multilocus genotyping. As such, orthology is presumed

when fragments are the same/similar length. These reasons

partly explain why many phylogenetic studies utilizing

microsatellites have been restricted to infra-specific rela-

tionships (e.g., Goldstein et al., 1999), or to the use of the

SSR flanking sequence in higher order phylogenies (e.g.,

Streelman et al., 1998; Zhu et al., 2000). However, some

notable cases exist for the use of repeat sequence variations

in highly divergent taxa: (1) Richard and Thorpe (2001)

used SSR size variation to analyse the phylogenetic rela-

tionships among the western canary island lizards, a group

that diverged five million years ago (MYA). This diver-

gence time corresponds to five million generations given

their short generation time of one year (Richard and

Thorpe, 2001). (2) Ritz et al. (2000) applied repeat size

variation at SSR loci to resolve the relationships among

four genera (Bos, Bison, Bubalus and Syncerus) in the

sub-family Bovini. To overcome issues of homoplasy, the

authors used the average square (δμ)2 genetic distance mea-

sure (Goldstein et al., 1995). The authors found the mea-

sure to be robust despite fluctuations in population size, and

retained linearity with increasing time. The tree topology

was retained when data were reanalysed with Cavalli-Sfor-

za and Edwards’ (1967) chord distance (DC) that is, inter-

estingly, based on the infinite allele model. (3) Micro-

satellite length variation has been used in reconstructing the

phylogeny of Darwin’s finches (Petren et al., 1999). Al-

though considered to be congeneric, these birds are be-

lieved to have radiated at least three MYA (Petren et al.,

1999, and references therein). With their short generation

time of four months to one year (Zink, 2002), they have

evolved for over five million generations.

Although these examples are mainly from animals,

the rarity of SSR use in phylogenies of plant taxa may be

due mainly to low levels of transferability (e.g., Peakall et
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al., 1998) and a low level of SSR conservation among many

plant taxa (e.g., Whitton et al., 1997), rather than concerns

relating to high mutation rates or other evolutionary consid-

erations. Where the problems of range constraints, high

mutation rates and size homoplasy are addressed, SSRs

may be utilised in phylogenetic studies, even among diver-

gent taxa, so long as SSR primers amplify across such taxa.

In eucalypts, cross-genera SSRs transferability has recently

been reported to be high (Shepherd et al., 2006). We used 8

polymorphic SSRs isolated from Corymbia variegata (F.

Muell. Hill and Johnson) clones to genotype Corymbia and

Angophora samples previously analysed for ITS (Steane et

al., 2002), to test the hypothesis that Corymbia is

monophyletic.

Material and Methods

Plant material and DNA isolation

This study utilized a total of 32 DNA samples repre-

senting Corymbia (20), Angophora (8), Eucalyptus (3),

Allosyncarpia (2), Eucalyptopsis (1) and Stockwellia (1)

(Table1). Within Corymbia, nine species were sampled

from the red bloodwood group (sections Rufaria and

Apteria) (Hill and Johnson, 1995), seven from the yellow
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Table 1 - List of taxa used in this study, including those analysed previously in the ITS study of Steane et al. (2002). Names are those in the classification

of Hill & Johnson (1995).

Genus Section Species Code2 Source

Corymbia Blakearia apparerinja BG Steane et al., 1999

Corymbia Apteria trachyphloia AT Steane et al., 1999

Corymbia Politaria henryi PM Steane et al., 1999

Corymbia Politaria variegata PM Steane et al., 1999

Corymbia Politaria maculata PM Steane et al., 1999

Corymbia Rufaria calophylla RG Steane et al., 1999

Corymbia Rufaria gummifera RG Steane et al., 1999

Corymbia Rufaria haematoxylon RG Steane et al., 1999

Corymbia Rufaria intermedia RI Steane et al., 1999

Corymbia Rufaria ficifolia RF Steane et al., 1999

Corymbia Rufaria polycarpa RP Steane et al., 1999

Corymbia Rufaria oocarpa 1 RD CCA, DN 2479

Corymbia Rufaria zygophylla1 RZ CCA, DN

Corymbia Blakearia bella 1 BP CCA, DN 4204

Corymbia Ochraria dimorpha 1 OE ATSC, SL 16881

Corymbia Ochraria eximia (1) OE Steane et al., 1999

Corymbia Ochraria eximia (2) OE Steane et al., 1999

Corymbia Ochraria leichhardtii1 OE ATSC, SL 11038

Corymbia Cadagaria torelliana (1)1 CT DPI Gympie, 1ct2-029

Corymbia Cadagaria torelliana (2)1 CT DPI Gympie, 1ct2-030

Angophora costata Steane et al., 1999

Angophora leiocarpa Steane et al., 1999

Angophora floribunda Steane et al., 1999

Angophora bakeri Steane et al., 1999

Angophora melanoxylon Steane et al., 1999

Angophora robur 1 CCA, DN

Angophora subvelutina 1 CCA, DN

Angophora woodsiana 1 CCA, DN

Allosyncarpia monotypic ternata Steane et al., 1999

Eucalyptopsis dispecific papuana Steane et al., 1999

Stockwellia monotypic quadrifida Steane et al., 1999

1New taxa analysed in this study but not in the ITS analysis of Steane et al. (2002).
2Species codes are those used on the phylogram (Figure 1), and represent the sections and series initials respectively. The initials CCA and ATSC code for

Currency Creek Arboretum and Australian Tree Seed Centre, respectively.



bloodwoods assemblage (Ochraria, Politaria, Cadagaria)

and two paper-fruited bloodwoods (section Blakearia)

(Hill and Johnson 1995). C. eximia and C. torelliana in-

cluded two samples each. Our analysis retained the same

individual DNA samples analysed by Steane et al. (2002)

for comparison, but we included a new section (Corymbia

sect. Cadagaria), new series and species not included in the

previous DNA phylogeny of these genera. Herbarium

voucher numbers or origin for new samples is indicated in

Table 1. For new samples, total genomic DNA was ex-

tracted from 10 mg of leaf tissue using a DNeasy plant kit

(QIAGEN, Germany) according to the manufacturer’s pro-

tocol. Leaf tissue was ground using tungsten carbide beads

(QIAGEN) and a RETSCH MM300 Mixer Mill at fre-

quency of 1/30 s for three lots of one minute. DNA was

eluted from the filter membranes with 150 μL of elution

buffer and was stored at -20 °C.

PCR amplification and fragment separation

Eight polymorphic SSRs used in this study have been

published previously: EMCRC26, EMCRC32, EMCRC39

(Jones et al., 2001); EMCRC46, EMCRC51, EMCRC54,

EMCRC93 (Shepherd et al., 2006); Eg126 (Thamarus et

al., 2002). For each primer pair, the forward primer was

fluorescently labelled with a dye. PCR was performed in

10 μL volumes comprising 1x PCR buffer (10 mM Tris -

HCl pH 83, 50 mM KCl, 0001% gelatin (Sigma, St Louis,

MO, USA), 025% Nonidet P40 (BHD, Poole, UK) and

2 mM MgCl2) and contained approximately 0.5 ng of

genomic DNA, 0.125 mM of each dNTPs, 0.15 μM of each

primer, and 0.5 Units of Platinum Taq (Invitrogen). All am-

plifications were carried out on an ABI 9700 Thermocycler

(Applied Biosystems) with an initial denaturation of 7 min

at 95 °C, followed by 10 cycles of denaturation at 95 °C, a

touchdown annealing from 60 °C to 55 °C (decreasing at

-0.5 °C each cycle), 1 min. extension at 72 °C. This was fol-

lowed by 25 repeated cycles of denaturation at 95 °C, an-

nealing at 55 °C and an extension of 1 min. at 72 °C. A final

extension of 72 °C for 10 min was applied to all reactions.

For each sample, one microliter of the PCR products were

separated on a 3730 DNA analyser (Applied Biosystems;

SCPG, Lismore, Australia) and raw data were imported

into ABI Prism GeneMapper Software v 3.0 (Applied Bio-

systems) for size calling. All samples amplified success-

fully at the eight SSR loci, except for the three Eucalyptus

species (E. urophylla, E. camaldulensis, E. globulus) that

amplified only four of the loci (EMCRC26, EMCRC39,

EMCRC46 and Eg126). The three samples were therefore

removed from subsequent analyses. Diploid allele size data

from SSRs were exported to an Excel spreadsheet for statis-

tical analyses.

Statistical methods

Allelic counts were estimated for each informal

group, i.e., yellow bloodwoods assemblage, red blood-

woods, and for Angophora using FSTAT computer

programme, V 2.9 (Goudet, 2001), while the variance in al-

lele size for each locus per group was computed from MS

Excel spreadsheet. Cumulative variance was the sum of

single locus variances, taking allele sizes (in bp) as values.

Genetic distances based on allele size variation are mod-

elled on the premise that when a mutation occurs, the new

mutant is related to the allele from which it was derived. In

this case, the difference in length between alleles contains

phylogenetic information (Goldstein et al. 1995). Two

measures were employed to estimate the between-

individual genetic distance: the average square distance

(D1) of Goldstein et al. (1995), and Nei’s (1972) standard

genetic distance (D). The average square distance accounts

for size homoplasy, and is suitable for reconstructing trees

that include more distantly related taxa. Both distances

were computed using the MICROSAT programme avail-

able from the Human Population Genetics Laboratory

(HPGL), Stanford University, with the option of either ex-

haustive or 100 bootstrap replicates. The allele sizes ana-

lysed were nucleotide counts rather than repeat scores,

using the option that allows for repeat lengths = 1. Duration

of linearity was calculated for each locus and averaged over

loci. The primer error (size of the region flanking the SSR)

was entered and corrected for, by assuming a default of no

error (i.e., 0 nucleotides). Genetic distance matrices were

imported into the computer programme PHYLIP (Felsens-

tein 1995) for phylogenetic tree reconstruction. Neigh-

bour-Joining (NJ) trees were drawn using NEIGHBOUR

with 100 bootstrap replications, using the Eucalyptopsis

group (Eucalyptopsis, Stockwellia, Allosyncarpia) as an

outgroup. All phylogenetic trees were displayed using

TREEVIEW Version 1.5 available from the Department of

Zoology, University of Glasgow. To take the small sample

size into account, a second analysis was conducted for sam-

ples pooled into five main groups: three within Corymbia

(yellow bloodwoods assemblage, red bloodwoods and pa-

per fruited bloodwoods, Blackearia), Angophora and the

outgroups. In subsequent discussion, the yellow blood-

woods will be termed Corymbia A, whereas the red blood-

woods will be referred to as Corymbia B, following the

informal grouping by Steane et al. (2002)

Results and Discussion

Variability of SSRs

The eight markers used in this study were polymor-

phic with a total of 189 unique alleles obtained from 32

samples representing 29 different species. The most vari-

able locus was EMCRC39 with 34 unique alleles, while the

least variable was EMCRC93 with 14 alleles (Table 2).

Corymbia A had greater intragroup diversity in terms of

both the cumulative variance and the mean number of al-

leles (cum. variance = 204; MNA = 9.7) compared to either

Corymbia B (cum. variance = 170; MNA = 9.6) or Ango-
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phora (cum. variance = 184; MNA = 7.0). However, elimi-

nating C. torelliana (Cadagaria) from Corymbia A

lowered the variance to 192, which was, nevertheless, still

higher than the other groups. Our sampling of Corymbia A

included three sections (Ochraria, Politaria and

Cadagaria) and three series (Eximiae, Maculatae and

Torellianae), while Corymbia B included two sections

(Rufaria and Apteria) and seven series (see Table 1). The

higher diversity within Corymbia A may relate to the fact

that seven out of the eight markers used in this analysis

were isolated from a clone of C. variegata, a species in

Corymbia A, possibly making the Maculatae series (spot-

ted gums: C. maculata, C. citriodora, C. henryi,

C.variegata) more variable than species more distant from

C. variegata, consistent with the principle of ascertainment

bias.

Ascertainment bias

Ascertainment bias describes the observation that

when the size distribution of microsatellite alleles across

different species is compared, the absolute allele sizes in

the species from which the microsatellite was derived are

often greater than those found in closely related species

(Ellegren et al., 1995; Forbes et al., 1995; Rubinstein et al.,

1995). Ascertainment bias may result from either direc-

tional evolution occurring within different species (Ru-

binstein et al., 1995) or bias in the selection of clones for

sequencing and primer development (Ellegren et al., 1995).

Although there is no precedence for the utility of ascertain-

ment bias as a phylogenetic probe, our data suggest that the

means of allele size, averaged over loci, reflected the ex-

pected taxonomic distance, with the closest relatives of

Corymbia A (from which the SSRs were developed; C.

variegata) being Corymbia B, followed by Angophora,

then the Eucalyptopsis group (Stockwellia/Eucalyptopsis/

Allosyncarpia; Table 2). Although it would be expected

that the locus Eg 126 show a different pattern since it is

based on Eucalyptus globulus, this was not observed, per-

haps due to the lower polymorphism at this locus compared

to the other loci used in this study. Whereas Stockwellia,

Allosyncarpia and Eucalyptopsis successfully amplified at

all eight loci, the three Eucalyptus species (E. urophylla, E.

camaldulensis, E. globulus) failed to amplify in half of the

loci studied (four out of eight). By morphology and fossil

record, Eucalyptus is the closest clade to Corymbia and

Angophora. It is not clear whether this failure to amplify

Corymbia specific SSRs in Eucalyptus, while successfully

amplifying all the loci in Eucalyptopsis group, reflects rela-

tive evolutionary distances, since the branch lengths for the

Eucalyptopsis group and Eucalyptus relative to Corymbia

were inconsistent between datasets (e.g., Hill and Johnson,

1995; Steane et al., 2002; Wilson et al., 2001; Parra-O et

al., 2006). This observation may indicate that Eucalyptus is

a faster evolving clade, thereby accumulating more muta-

tions in the flanking sequences of the SSRs. SSR analysis

excluded Arillastrum because available morphological and

molecular data (Hill and Johnson, 1995; Udovicic and

Ladiges, 2000; Wilson et al., 2001; Steane et al., 2002) put

this genus the farthest from Corymbia among the eucalypts;

Ladiges et al. (2003) suggested, based on biogeography,

that the divergence of Arillastrum from the other eucalypt

genera may be as old as Late Cretaceous (70 MYA; see also

Crisp et al. (2004). These data suggested a potentially low

prospect of transferring Corymbia SSRs to Arillastrum.
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Table 2 - Numbers, size ranges and cumulative variances for SSR alleles observed in each informal group in this study. The observed number of alleles at

each locus is given in parentheses. Cumulative variances are based on absolute allele sizes.

Marker Size range and number of alleles (in parentheses)

Corymbia A1 (N = 9) Corymbia B2 (N = 11) Angophora (N = 8) SEA3 (N = 5) All (N = 33)

EMCRC26 26 (8) 44 (8) 30 (8) 25 (6) 46 (19)

EMCRC32 38 (12) 38 (6) 32 (8) 18 (4) 48 (28)

EMCRC39 98 (14) 84 (9) 78 (10) 16 (3) 98 (34)

EMCRC46 29 (12) 39 (18) 33 (8) 16 (5) 40 (30)

EMCRC51 46 (7) 44 (16) 10 (3) 40 (3) 64 (26)

EMCRC54 38 (9) 32 (11) 34 (6) 20 (4) 40 (18)

EMCRC93 38 (8) 14 (4) 14 (5) 16 (2) 38 (14)

Eg126 22 (8) 30 (5) 32 (8) 2 (2) 34 (20)

Mean 41.8 (9.7) 40.6 (9.6) 32.8 (7.0) 19.1 (3.6) 51 (23.6)

Average of means 33.6 (7.5) 51 (23.6)

Cum. variance 204 170 184 98 201

Total n. of alleles - (74) - (81) - (56) - (29) - (189)

1,2Correspond to grouping by Steane et al. (2002); 3Stockwellia, Eucalyptopsis, Allosyncarpia group. Allele size range was obtained by subtracting the

smallest allele (in bp) from the largest allele. Cumulative variance is the sum of variances in allele size (bp) per locus for each group. Blakearia was ex-

cluded from this analysis.



Phylogenetic relationships among the investigated
genera

In this study, a Neighbour-Joining phylogenetic tree

using both the average square and the standard genetic dis-

tances from the 189 alleles, showed Corymbia to be mono-

phyletic (Figure 1). The topologies and bootstrap values for

trees from the two distance measures were nearly identical,

so only one such tree is presented. The tree had three major

clades in the ingroup. Angophora, and Corymbia both

formed monophyletic groups with moderate (71% and 81%

respectively) statistical confidence. Corymbia split into three

major clades, two of which corresponded to Corymbia A and

B of Steane et al. (2002). However, samples of Corymbia

that were new in this study, (C. torelliana, C. bella) clustered

with Corymbia B rather than Corymbia A. The bootstrap

support values for the partitioning of these three clades were,

however, low. By pooling individual species into their tradi-

tional taxonomic groups (according to Hill and Johnson,

1995) similar phylogenetic relationships (Figure not shown)

were recovered with high bootstrap support (97%). A simu-

lated inclusion of species in the wrong (taxonomic) group

caused group paraphyly, indicating that taxonomic aberra-

tions such as lumping or oversplitting can cause paraphyly in

phylogenetic assemblages.

The Eucalyptopsis group (Stockwellia,

Eucalyptopsis, Allosyncarpia) was used as an outgroup be-

cause Eucalyptus, which would be an alternative outgroup

for Corymbia-Angophora phylogeny, failed to amplify at

four of the eight loci. The outgroup taxa formed a clade at

the base of the tree, with the relationship (Stockwellia,

Eucalyptopsis + Allosyncarpia). On flower development,

the clade of these three rainforest genera had the relation-

ship: Allosyncarpia, (Stockwellia + Eucalyptopsis) (Carr et

al., 2002; Ladiges et al., 2003), which was also supported

by Parra-O et al. (2006) based on a combined data set of

nrETS and ITS. The monophyly of Corymbia has previ-

ously been proposed based on morphological and anatomi-

cal characters (Hill and Johnson, 1995; Ladiges et al.,

1995), and recently, by DNA data from the ETS (Parra-O et

al., 2006). However, data from ITS (Steane et al., 1999,

2002) and other regions of nrDNA and cpDNA (Udovicic

et al., 1995; Udovicic and Ladiges, 2000; Wilson et al.,

2001; Whittock et al., 2003) were either equivocal or sug-

gested that the group may be paraphyletic.

Intrageneric relationships

SSR data have resolved Corymbia B as a mono-

phyletic group (Figure 1) and the topology within the group

was similar to that obtained from ITS data (Steane et al.,

2002). The nesting of section Apteria (C. trachyphloia)

within Rufaria was in agreement with results based on the

ETS (Parra-O et al., 2006) and ITS (Steane et al., 2002)

data. However, our results differ slightly from the ETS with

regards to the relationships between sections Politaria,

Ochraria and Blakearia. Whereas the ETS data show

Ochraria and Blakearia as sister taxa relative to Politaria,

SSR data support the position of Ochraria as more closely

related to Politaria than to Blakearia (Figure 1) revealed by

morphological data analyses (Hill and Johnson, 1995).

Parra-O et al., (2006) attribute this discrepancy to taxon

sampling and the absence of C. torelliana in their dataset.

Our study included Cadagaria (C. torelliana) and still sup-

ported the closer relation between Politaria and Ochraria.

As in all molecular data so far (ITS, trnL, trnH, psbA,

ETS), SSR data suggests that Corymbia would be

paraphyletic without the inclusion of Blakearia, contrary to

the classification of Brooker (2000).

The relationships within Politaria are inconsistent

with previously published datasets (Hill and Johnson,

1995; Asante et al., 2001; Steane et al., 2002; McDonald et

al., 2000; King, 2004; Parra-O et al., 2006), possibly re-

flecting a high rate of interspecific hybridization among

these taxa. In the SSR dataset, C. maculata was not the

closest relative of C. variegata and C. henryi. ITS data

(Steane et al., 2002) showed the four spotted gums as being

a clade, although C. maculata was highly divergent, with

eight base differences, whereas C. citriodora and C.

variegata were shown to be indistinguishable. Compared

with ITS sequences (Steane et al., 2002), the SSR data were

more effective in resolving the relationships of Angophora

species. ETS combined with ITS, however, were more in-

formative than ITS alone (Parra-O et al., 2006), and corrob-

orated the SSR phylogeny.

SSRs were useful in eucalypt phylogeny

It is a widely held view that SSRs may not be useful in

phylogenetic studies above the species level (e.g., Stre-
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Figure 1 - Neighbour-Joining tree based on average square distance (δμ)2

from 8 microsatellite loci, showing monophyly of genus Corymbia with

81% bootstrap support. Corymbia A and B correspond to the assemblages

comprising the yellow bloodwoods and the red bloodwoods, respectively

(Steane et al., 2002).



elman et al., 1998; Zhu et al., 2000). Hence it is not ex-

pected that SSRs would resolve among-genera

phylogenetic relationships in the eucalypts. However, anal-

ysis of SSRs in this study recovered a tree topology congru-

ent to those based on analyses of morphological characters

and a combined ETS/ITS dataset. The following factors

may explain why SSRs appear to retain informative phylo-

genetic signals superior to some genomic regions such as

the ITS:

Appropriate genetic distance measures

Homoplasy is expected under the stepwise mutation

model (SMM, Kimura and Ohta, 1978), which assumes

loss or gain, with equal probability, of a single repeat unit

through mutation. However, the infinite allele model (IAM,

Kimura and Crow, 1964) expects no homoplasy because a

mutation is assumed to result in an allelic state not previ-

ously encountered in the population. Several genetic dis-

tances that make different assumptions have been

developed for use with microsatellite data, however, the ap-

propriateness of each of these distance methods will vary

from case to case, depending on the model of microsatellite

evolution, mutation rates, effective population size, and

time since divergence. The ideal distance measure will

therefore depend on the characteristics of the SSRs and on

the phylogenetic question being addressed. Since it was not

clear under what model the SSRs used in this study

evolved, we used two genetic distance measures: the SMM

model based average square distance (δμ)2; analogous to

D1) of Goldstein et al. (1995), and Nei’s (1972) IAM based

standard genetic distance (Gst). The average square dis-

tance (Goldstein et al., 1995) addresses size range con-

straints, thereby accounting for homoplasy. The distance

retains linearity with increasing evolutionary distance, and

hence is suitable for reconstructing trees that include more

distantly related taxa (Goldstein et al., 1995; Pollock et al.,

1998; Petren et al., 1999; Ritz et al., 2000; Richard and

Thorpe, 2001). This distance has been successfully used in

recovering well-corroborated phylogenetic hypotheses in a

number of studies involving divergent taxa (e.g., Petren et

al., 1999; Ritz et al., 2000; Richard and Thorpe, 2001). On

the other hand, Nei’s (1972) distance is expected to become

more linear while the linearity of average square distance

wanes as the SSR mutations become more like the IAM

model (Goldstein et al., 1995). In the Bovini study (Ritz et

al., 2000) reviewed earlier, the authors used the genetic dis-

tance measure, (δμ)2 (Goldstein et al., 1995) to account for

size homoplasy. They found the measure to be robust de-

spite fluctuations in population size, and retained linearity

with increasing time. In our analysis, both distances recov-

ered a similar tree topology. One way to explain this obser-

vation is that the data comprised a minimum proportion of

homoplasious alleles. Also, this may suggest that SSRs in

eucalypts (albeit Eucalyptus) evolve at a lower rate and are

highly conserved, both in the repeats and in the flanking re-

gions.

Range constraint and size homoplasy

Homoplasy may arise due to (i) mutations in micro-

satellite repeat region that result in alleles being similar in

state but not by descent, and (ii) a constraint to the upper

(and sometimes lower) bound on the number of repeat units

at a locus may exacerbate homoplasy in the repeat region,

as these size limits allow only a finite number of character

states. (iii) Insertion and deletions in the flanking region

making alleles similar in state but not by descent. At longer

time intervals, homoplasy is expected to increase, while

phylogenetic signals move to obscurity as saturation is ap-

proached (Takazeki and Nei, 1996). Our data and results do

not support a likelihood of phylogenetic signal saturation

for the following reasons: (i) The average of the means of

allele size range for each clade (Corymbia A, Corymbia B,

Angophora, Eucalyptopsis group) considered separately

across all loci was (33.6), while the mean for all species

combined was almost twice that value (51; Table 2). This

suggested that saturation of phylogenetic signal through

homoplasy due to range constraint was minimal because

the allele size range of subgroups did not reach the total ob-

served allele size range. (ii) The sizes of most alleles in the

dataset differed by a number divisible by their repeat unit

length, implying a low likelihood of homoplasy due to mu-

tations in the regions flanking the repeats. Insertions and

deletions should be equally likely to involve odd and even

numbers of bases (iii) in theory, variation in the amount of

size homoplasy is expected among SSR loci because varia-

tion in mutation rates reflects the stochasticity among loci

of the coalescence process (Garza and Freimar, 1996).

However, the bootstrap support for tree topology recovered

in our analysis of eight SSRs reflected concordance among

loci. Bootstrapping characters from loci with varied levels

of homoplasy is expected to recover discordant phylogen-

etic hypotheses, usually signified by low bootstrap values

on the consensus tree.

‘Below threshold’ number of generations

Corymbia and Angophora have diverged for about 30

million years (Crisp et al., 2004) which corresponds to

three million generations, if the natural generation time

(without human selection) of 10 years (L.D. Pryor, FAO

corporate document depository) is considered. The proper-

ties that limit SSR use in phylogenetics (mutation rates, size

constraint and homoplasy) relate to the number of genera-

tions since the divergence of taxa, rather than to their classi-

fication. If SSRs correctly resolved phylogenies of lizards

that have diverged for five million generations (Richard

and Thorpe, 2001), then they may recover the correct phy-

logeny for eucalypt genera that have diverged for three mil-

lion generations, assuming the mutation rates are compara-

ble. Notably, Richard and Thorpe (2001) analysed only five
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SSR loci, and the results corroborated the true and con-

firmed organismal phylogeny. Apart from the average

square distance of Goldstein et al. (1995), the authors uti-

lized other distances such as Nei’s (1972) Gst and allele

sharing statistic (PSA) for comparison. Their data contra-

dicted the expectation that the SSR genetic distances may

lose linearity after several thousands of generations, essen-

tially due to range constraints in allele sizes (Feldman et al.,

1997). As the authors noted, the fact that the essentials of a

well-corroborated tree can be reconstructed from such a

relatively small number of loci argue for their utility in this

area. As stated in the introduction, SSR length variation has

also been used in reconstructing the phylogeny of Darwin’s

finches, which are believed to have radiated at least three

MYA, corresponding to over five million generations. (Pe-

tren et al., 1999). Apart from the factors discussed above,

eucalypts are tree species with temporal heterogeneity in

outcrossing rates (Moran and Brown 1980) and flowering

asynchrony that affects pollinator behaviour (Southerton et

al., 2004). This may lower their effective population sizes

(Ne). The risk of homoplasy would be less for taxa with

small effective population sizes (Estoup et al., 2002).

Sampling variance and phylogenetic reconstruction

We analysed the genetic distances among species,

represented by a single individual in each case. There has

been considerable discussion regarding the optimal sample

size in population genetic analyses, with some workers rec-

ommending large samples sizes to account for sampling

variance (e.g., Nei, 1978; Ruzzante, 1998). In this study,

pairwise genetic distance between individuals rather than

allele frequencies are relevant. Kalinowski (2005) recently

simulated the relationship between sample size, polymor-

phism, and the coefficient of variation of genetic distances

derived from microsatellite markers. He found that when

the differentiation among the taxonomic units to be mea-

sured is large, one or two samples per group would give

similar results to a large sample size. Increasing sample size

under a large FST scenario produced diminishing effect on

the coefficient of variation of the genetic distance. Kali-

nowski’s simulated data showed that the rate at which in-

creasing sample size decreased the coefficient of variation

was determined principally by the amount of differentia-

tion between populations. This means that more individuals

are necessary only when the degree of differentiation is

low. In the case of eucalypt genera Corymbia and Ango-

phora, the differentiation in question is among species

rather than just between populations of the same species.

Hence the between species and between genera FST values

are expected to be large since the two genera have diverged

for tens of millions of years (Ladiges et al., 2003). Apart

from SSRs, proteins have been used in phylogenetic recon-

struction. Demastes and Remsen (1994) analysed allozyme

variation to reconstruct the phylogeny of eight bird genera

in the family Cardinalinae, using a single individual to rep-

resent each genus in the family. Their tree topologies sup-

ported phylogenetic analyses of morphological characters.

As the authors noted, in a phylogenetic context the priority

switches from more samples to more phylogenetic charac-

ters (Demastes and Remsen, 1994, and references therein).

We are aware that allozymes are less polymorphic com-

pared to SSRs, however, Kalinowski’s (2005) simulation

addresses this difference in variability and its implications.

When we pooled samples into their prevailing taxonomic

groups (according to Hill and Johnson, 1995) and con-

ducted phylogenetic analysis as described for ungrouped

samples, using the same distance measures and tree meth-

ods, the tree topology recovered was congruent to that ob-

tained for ungrouped samples. In part, grouping of samples

into larger taxonomic assemblages catered for the few sam-

ples per species (most species were represented by a single

sample) analysed in the individual-specific distance mea-

sures. Also, for grouped samples, we wanted to estimate the

group effect for each taxonomic assemblage. If, for some

reason, a species were classified under an assemblage

where it does not belong in a molecular genetic sense, then

we would expect to see a relationship shift in tree topology.
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