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Abstract

There are still numerous challenges to be overcome in microarray data analysis because advanced, state-of-the-art 
analyses are restricted to programming users. Here we present the Gene Expression Analysis Platform, a versatile, 
customizable, optimized, and portable software developed for microarray analysis. GEAP was developed in C# for 
the graphical user interface, data querying, storage, results filtering and dynamic plotting, and R for data processing, 
quality analysis, and differential expression. Through a new automated system that identifies microarray file formats, 
retrieves contents, detects file corruption, and solves dependencies, GEAP deals with datasets independently of 
platform. GEAP covers 32 statistical options, supports quality assessment, differential expression from single and 
dual-channel experiments, and gene ontology. Users can explore results by different plots and filtering options. Finally, 
the entire data can be saved and organized through storage features, optimized for memory and data retrieval, with 
faster performance than R. These features, along with other new options, are not yet present in any microarray analysis 
software. GEAP accomplishes data analysis in a faster, straightforward, and friendlier way than other similar software, 
while keeping the flexibility for sophisticated procedures. By developing optimizations, unique customizations and 
new features, GEAP is destined for both advanced and non-programming users.

Keywords: Microarray, R, gene expression, GUI, biomedical research.

Received: March 08, 2021; Accepted: November 01, 2021.

Introduction
Microarray analyses are applied to quantify the global 

gene expression from multiple biological samples in a specific 
condition (Blohm and Guiseppi-Elie 2001; Blalock 2003). 
Microarray data has successfully contributed to elucidate 
molecular mechanisms from complex diseases, such as 
Alzheimer disease (Itoh and Voskuhl 2017; Wang et al., 
2017a; Garranzo-Asensio et al., 2018), Parkinson’s disease 
(Itoh and Voskuhl, 2017; Son et al., 2017; Kong et al., 2018) 
and multiple types of cancer (Vizkeleti et al., 2017; Wang et 
al., 2017b; Benkheil et al., 2018; Duan et al., 2018; Grindstad 
et al., 2018; Li et al., 2018; Yang et al., 2018; Zhang et al., 
2018). This fast growth of biological datasets created a fertile 
ground for medical research that can be employed by other 
studies to further scientific knowledge (Marcotte and Date 
2001; Zou et al., 2015; Yin et al., 2017). Hence, it is not a 
surprise that several publishers, such as Elsevier (see Elsevier 
in Internet Resources) and Nature (see Nature Scientific Data 
in Internet Resources) encourage or require authors to make 
their data available for the scientific community, whose files 

are publicly available in Gene Expression Omnibus (GEO) 
(see NCBI in Internet Resources) and The Cancer Genome 
Atlas (TCGA) (see National Cancer Institute in Internet 
Resources) for querying and validation.

Even nowadays, where the microarray technique is 
broadly available, the challenge of proper data analysis remains. 
In this sense, the three most known microarray manufactures, 
Affymetrix (see Affymetrix in Internet Resources), Agilent (see 
Agilent in Internet Resources), and Illumina (see Illumina in 
Internet Resources) offer specific software together with the 
analysis platform. However, these programs do not support file 
formats from other manufacturers and also may not provide 
a variety of options for statistical treatment, quality control, 
and results presentation, which imposes a significant barrier 
for researchers to obtain the best possible results.

An alternative is to create scripts using the R language 
(Ihaka and Gentleman, 1996; Crawley, 2012). There are a 
number of R packages provided by Bioconductor (Gentleman 
et al., 2004) that include high-level functions for transcriptomic 
analysis, including GEOquery (Davis, 2007) for GEO data 
mining and limma (Smyth, 2005) for regression model fitting 
used in differential gene expression analysis. Additionally, 
there are R packages for microarray manufacturers as well, 
including affy for Affymetrix (Gautier et al., 2004), agilp for 
Agilent (Chain, 2012), and illuminaio, lumi and beadarray 
for Illumina (Dunning et al., 2007; Du et al., 2008; Smith 
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et al., 2013). However, learning R can become troublesome 
and demand extra time for users without a programming 
background. Considering that dealing with algorithms is 
a less common expertise among biomedical researchers, a 
software dedicated for the regular, non-programming user 
can help accelerate scientific knowledge acquisition. In fact, 
creating accessible tools for non-bioinformatician users is 
already a topic of discussion (Kouskoumvekaki et al., 2013).

Here we present the Gene Expression Analysis Platform 
(GEAP), a new, easy, flexible, customizable, and ready-to-use 
software that takes advantage of both Graphical User Interface 
(GUI) and R, to analyze microarray data from all platforms. 
GEAP was developed to translate the programming complexity 
underlying R’s microarray analyzes and optimize features 
that usually require manual editing or impose a slow learning 
curve. GEAP also brings several unique features for advanced 
and smoother analysis not seen in other similar software, such 
as automatic raw data retrieval from the GEO accession ID, 
followed by a robust file format checking, organized data 
storage, custom table building, custom filters, and multi-field 
columns. We tested GEAP in multiple types of datasets from 
different sources, backgrounds, platforms, and sample size 
to show its capabilities.

Methods

C# and GUI

GEAP was developed in two layers, consisting of a front-
end GUI and a back-end R terminal (RTerm). The C#.NET 
programming language (Williams 2002) was chosen for GUI 
development since the .NET framework is majorly employed 
for Windows-based programs. The C# project was edited 
using Visual Studio 2017 environment, and the binaries were 
compiled in C# 7.3 using .NET Framework 4.6.1, which is 
compatible with Windows 7 to 10. Additionally, we developed 
a version for Ubuntu 18.04 using Mono 6.8.0 (see Mono 
Project in Internet Resources).

Back-end R console and optimizations

Along with the GUI runtime, an RTerm is executed 
as a background process sharing memory and interacting 
with the GUI. To support the interconnection between the R 
environment and GUI, we developed an R package named 
rgeap, which comprises the entire set of functions being called 
from the front-end layer. This package was developed with 
the aid of RStudio (see RStudio Team in Internet Resources) 
running R version 4.0.3, and its primary purpose is to establish 
variables, methods, and package dependencies inside a single 
namespace to be accessed and called in RTerm at runtime. 
Thus, rgeap is not really a R package aimed to perform 
standalone differential expression analyses because it was 
developed as a technical solution. In this sense, some rgeap 
functions are responsible for serializing, receiving, and passing 
R objects to the GUI by RAM, thus avoiding slower data 
transfer rates through I/O. Moreover, this communication 
between the GUI and RTerm allowed GEAP to make use of 
the already published Bioconductor packages for microarray 
analysis. The main packages in the current implementation 
include: (i) affy (Gautier et al., 2004) and oligo (Carvalho and 

Irizarry 2010) for reading and processing of Affymetrix CEL 
files; (ii) makecdfenv (Irizarry et al., 2020) to handle custom 
CDF annotations for Affymetrix microarrays; (iii) beadarray 
(Dunning et al., 2007) and illuminaio (Smith et al., 2013) for 
Illumina IDAT and BGX files; (iv) limma (Smyth 2005) for 
differential expression analysis and statistical treatment of 
arrays, including those provided by Agilent and Illumina, and 
for linear model fitting; (v) arrayQualityMetrics (Kauffmann 
et al., 2008) for array quality control; and (vi) topGO for gene 
ontology (GO) analyses (Alexa and Rahnenfuhrer 2010). In 
addition to the Bioconductor database, we used the Rcpp 
package to implement and optimize several R functions using 
the C++ language.

In some cases, the R functions were replaced by C# 
methods in the GUI for performance purposes. These features 
include:

•	 Download of multiple files using parallel Web requests: 
Since each Web request produce a connection delay, 
as occurs with single-threaded functions in R through 
the GEOquery package (Davis, 2007), multiple Web 
requests reduces download times when various files are 
requested. This was implemented using C# since R has 
no established support for multi-threading methods;

•	 Data table processing: When loading a tab-delimited 
file, R will scan the entire file before reading it. In our 
implementation, parallel computation is done to estimate 
the number of lines, followed by a lazy load of each 
line. In this second step, errors and forbidden entries 
(e.g., duplicates) are identified with the help of hash 
sets, thus reducing the complexity of some operations 
to O(1) instead of O(n).

•	 Plotting and filtering: When result tables are produced 
in R, instead of depending on the R interpreter, the 
data is fully transferred to C# through memory. The 
transferred results data, now optimized, are used to 
generate dynamic plots and can be filtered faster through 
the pre-compiled methods.

Availability and requirements

GEAP runs in Windows operating systems from 7 to 10, 
and in Ubuntu Linux from 18.04 onwards. In Windows, the 
Microsoft .NET Framework 4.6.1 or later is required to run the 
program and is installed by default in the latest Windows 10 
updates. In Linux, a complete installation of Mono is required 
to run the executable files. Below, we listed GEAP’s minimum 
and recommended specifications. Although the program could 
run even below the minimum specifications, the amount of 
required space allocation in memory and processing makes any 
microarray analysis unfeasible in older computers. Similar to 
R, the more samples and probes included, the more hardware 
is expected.

Software description

•	 Project name: GEAP

•	 Project home page: https://inf.ufrgs.br/geap

•	 Source code: https://github.com/nunesijg/rgeap

https://inf.ufrgs.br/geap
https://github.com/nunesijg/rgeap
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•	 Operating systems: Windows NT; Ubuntu

•	 Programming languages: C# and R

•	 License: MIT (GEAP); GNU LGPL (rgeap)

•	 Contact support: geapdevteam@gmail.com

Minimum system requirements

•	 RAM: 2 GB

•	 Processor: 2.4 GHz

•	 Operating system: Windows 7/8/10 or Ubuntu 18.04

•	 Free disk space: 1 GB

•	 Other requirements: .NET Framework 4.6.1 (Windows) 
or Mono 6.8.0 (Ubuntu)

Recommended system requirements

•	 RAM: 8 GB

•	 Processor: 2.4 GHz dual-core

•	 Operating system: Windows 7/8/10 or Ubuntu 18.04

•	 Free disk space: 10+ GB

Other requirements: .NET Framework 4.6.1 (Windows) or 
Mono 6.8.0 (Ubuntu); and Network access for the options 
marked as “WEB”

Results

Application and GUI

In GEAP, the features, options, and GUI elements are 
displayed on individual pages, which can be accessed by 
clicking on labeled buttons (Figure 1). This page-by-page 
design was preferred, in contrast to a single workspace 
design (e.g., Microsoft Word or Adobe Photoshop), as an 
attempt to combine a clean and intuitive interface with the 
multiple machine states adopted by the program. This way, 
each section has its own set of interactive elements dedicated 
to a particular purpose, thereby preserving the complexity 
along with the analysis steps and preventing new users from 
becoming confused due to separate GUI elements.

New features

GEAP takes an extra step from the primary R functions 
and provides new features created to expand the user’s 
possibilities to obtain, manage, customize, and analyze 
microarray data. We describe these features in each subsection 
below.

Automated dataset inspection: Every file used as input 
in GEAP is inspected and classified according to its extension 
and content. The format can be one of those listed in Table 1. 
During this inspection, the program checks the file format 
integrity, warning when data is corrupted or misformatted. 

Figure 1 – GUI Displayed in GEAP. Similar to a Website, GEAP divides each section into multiple pages, which can be accessed and returned by clicking 
the buttons. (A) Starts a new analysis, redirecting to pre-analysis menu; (B) Redirects to Library menu (see Figure 2A–D); (C) Redirects to Projects menu 
(see Figure 2E–J); (D) Displays the advanced options, including package updates, rendering quality and network connection; (E) Presents some additional 
tools, including a R console and the TypeChecker (see Figure S1); (F) Displays the program’s documentation; and (G) Toggles the displayed language.
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This automatic feature spares the user from any need for prior 
dataset checking, manual editing, and from wasting time 
trying to process a corrupted dataset, which is a significant 
time-wasting process in microarray analyses.

TypeChecker: A separate GUI application, named 
TypeChecker, was developed to create new methods of 
file checking (Figure S1). This add-on presents visually 
related fields and variables for easy editing. Furthermore, 
the instructions for file checking are developed with blocks 
of visual commands, and not by command-line code. The 
only requirement of superficial programming occurs when 
statistical treatment of a specific file format is desired. This 
feature was implemented to spare the user from dealing 
with non-supported outputs from old or custom platforms. 
TypeChecker is capable of processing separate samples, 
platform data, and annotations.

GEO metadata integration: When processing GEO 
datasets, GEAP takes into consideration the file headers, 
which usually contain experimental descriptions of the data. 
In most cases, this metadata is found in one or more files in 
SOFT format, or in one SOFT format representing multiple 
GEO entries, where, in both cases, GEAP will read and merge 

their contents with the analyzable data. This metadata is used 
to improve access to experimental information along any 
analysis step, in contrast to depending on repeated queries in 
R. This is especially useful when GSM metadata is present, 
where GEAP integrates them into the individual samples, 
aiding their identification. This feature works with both single 
and dual-channel samples since GEAP separates the sample 
attributes according to the different channels.

Library: In GEAP, users can save their input data, 
including GSE, GSM, GPL, custom tables, and annotation 
packages. Thereby, both metadata and content are indexed for 
further use into a portable database file that can be saved and 
loaded from another computer (Figure 2). All library data is 
serialized and stored inside a local SQLite database file for 
better compression and querying performance. According to 
benchmark tests, SQLite can provide approximately 35% of 
additional performance boost for binary data in comparison 
to reading the same data from File System (see SQLite in 
Internet Resources).

Projects: In contrast to other microarray analysis 
software, GEAP is capable of recording an entire analysis 
session, including the processed data and analysis results 

Table 1 – Data types supported by GEAP.

Full Name Extension Type Manufacturer

Cell Intensity File CEL (*.cel) Sample Affymetrix

Agilent Raw Text (*.txt) Sample Agilent

Microarray Image TIFF (*.tif) Sample Agilent; Illumina

GenePix Results GPR (*.gpr) Sample GenePix

Bead Level Data Text (*.txt) Sample Illumina

Pair Report PAIR (*.pair) Sample NimbleGen

Markup RCC RCC (*.rcc) Sample NanoString

Chip Definition File Package R Package (*cdf.tar.gz);  
CDF (*.cdf) Annotation Bioconductor; Affymetrix

Probe Sequence Data R Package (*probe.tar.gz) Annotation Bioconductor

Platform Design Info R Package (pd.*.tar.gz) Annotation Bioconductor

Organism Database R Package (*db.tar.gz) Annotation; 
Gene Ontology Bioconductor

GenePix Array List GAL (*.gal) Annotation GenePix

Simple Omnibus Format in Text SOFT (*.soft); 
Text (*.txt) Sample; Series; Platform GEO

Manifest File BGX (*.bgx); 
Text (*.txt) Annotation Illumina

Tab-delimited file TSV (*.tsv); 
Text (*.txt) Sample; Series; Annotation (User-provided)

Series Matrix Text (*.txt) Series GEO

Intensity Data IDAT (*.idat) Series Illumina

GO Annotation File

GAF (*.gaf)

Gene Ontology Gene Ontology Consortium

FB (*.fb)

MGI (*.mgi)

RGD (*.rgd)

TAIR (*.tair)

WB (*.wb)

ZFIN (*.zfin)
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Figure 2 – GUI for Library and Projects sections in GEAP. Users can use the Library to store microarray data and reload when needed, and use the 
Projects to save their own sessions from previous analyses. (A) Quick search bar for Library entries; (B) Currently stored Library data, categorized 
by Platforms, Series, Samples, Annotations, Raw data and Custom tables; (C) Information about the stored Library data; (D) Function buttons for the 
selected data. Series and samples can be stored in multiple formats since different statistical analyses can be applied on a single dataset, thus, generating 
distinct numeric matrices; (E) Project header; (F) List of saved sessions in the loaded project; (G) Session’s detailed info, appearing when a project 
session is selected; (H) Last quality analysis, if previously performed; (I) List of saved DE analyses, including the summary and preview plots from 
each previous DE result; (J) Available samples in the selected session; and (K) Button dedicated to reload the entire session. This spares the user the 
needless work of reanalyzing the entire array.
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(Figure 2). This allows users to access the results section 
and interact again with plots and apply new filters, instead 
of repeating the entire analysis. This feature was designed 
to save time from retrieving and reanalyzing any previous 
information. Similar to “Library”, this feature allows to store 
the information offline into a portable database file that can 
be saved and loaded from another computer.

Flexible input with custom tables: The present methods 
for reading GSE, GSM, and GPL file formats require strictly 
formatted files as input. Although this covers most of the 
microarray series, there is so much heterogeneity among 
microarrays that unsupported formats may occur, such as 
those from platforms that are too old to possess a standardized 
file format. For these cases, GEAP offers the Custom Table 
section. In this section, any input file is accepted as long 
it is correctly formatted as a data table. Numeric columns 
can be treated as probe intensity values, while text columns 
can be used as probe attributes, except for the first column, 
which is the probe identifier. GEAP takes care of merging 
multiple tables with standard probe identifiers, which is 
useful when working with numerous tables with distinct 
probes. Furthermore, background signals and dual-channels 
can be selected and included as part of the preprocessing. 
Background correction and normalization methods from the 
limma package can be applied to numeric matrices derived from 
both single- and dual-channel arrays. In a typical microarray 
analysis, dealing with unformatted or heterogeneous inputs is 
hugely time-consuming. By using this feature, any table can 
be converted to a microarray dataset independently from the 
source platform or manufacturer, a task that has been usually 
only achieved through R programming.

Filtering: Software from microarray manufacturers offer 
very basic filtering options to identify Differentially Expressed 
Genes (DEG) from comparison analyses, usually restricted 
to log2FC and p-value. Programmatic filtering is possible in 
R, although it requires programming skills and may suffer 
performance drawbacks in large arrays. In contrast, GEAP 
allows users to customize the filtering of any table column 
and offers several options for numeric and character-wise 
matching. The log2FC and p-value filters are presented by 
default, while other custom filters can be visually added and 
combined.

Multi-field columns: Numerous popular microarray 
platforms, in particular, those from Affymetrix, are known 
by probes identifying multiple genes. In GEO, the tables that 
represent such platforms concatenate genes into a single field, 
usually separated by ‘///’, making it difficult to dissociate 
the genes and work with them individually. In GEAP, these 
columns can be converted to a multi-field column, a data 
structure that indexes gene names into jagged arrays. This 
way, filters and analyses can be applied while taking into 
consideration the individual genes instead of the concatenated 
fields.

Interactive scatter and volcano plots: GEAP provide 
user-interactive scatter and volcano plots for visual exploration. 
Gene symbols and other attributes can be retrieved by hovering 
the mouse cursor over the plot points, and their selection is 
propagated to the data tables. Plot figures can also be saved to 
raster images, such as PNG, JPEG, BMP, TIFF, and GIF, and 

vectorial images, including SVG, WMF, and EMF. However, 
in contrast to the static plots generated in R, plots and charts 
in GEAP are optimized to dynamically change depending on 
the applied filters on the data tables, thereby increasing the 
interactivity and exploration capability over a large number 
of data points representing the filtered genes.

Gene Ontology analysis: GEAP supports Gene 
Ontology (GO) analyses to provide a biological meaning to 
gene expression results. The input genes are associated with 
biological processes and statistically evaluated by applying 
the topGO package (Alexa and Rahnenfuhrer, 2010). The 
relationship between genes and GO entries must be defined 
either from a chosen organism in a preset list or by providing 
a local GAF file. GEAP supports all organism database 
packages available in Bioconductor, currently comprising 
as much as 20 model organisms, and automatically solves 
package dependencies when necessary. For custom organism 
annotations, all the GAF and GAF-derived extensions listed 
in Table 1 are accepted and processed by GEAP. The accepted 
reference identifiers that establish the relationship between 
platform probe attributes and ontologies are: “Gene Symbol”, 
“Gene Name”, “Gene Alias”, “GenBank”, “Ensembl”, 
“Entrez”, “RefSeq”, “UniGene”, and “UniProt”. These 
fields are commonly present in both GPL data and organism 
databases.

R source code generation: GEAP keeps track of most 
actions along with the microarray data processing and analysis, 
mainly those executed with the aid of R environment, and 
aggregates them into an R script that can be accessed from 
an active analysis session. The generated code includes the 
user’s decision for method parameters and the input files 
and processed data, which can be exported in addition to the 
source code file. This way, experienced R programming users 
can also take advantage of GEAP’s interface to generate a 
reproducible script quickly and apply their methodology 
afterward. As the generated R scripts employ many functions 
developed in rgeap, this package is required to execute the 
code outside GEAP.

Software validation

We had to make sure that this program can: (i) identify 
and process a reasonable variety of microarray data types; (ii) 
correctly deal with several amounts of samples, regardless of 
the chosen comparison mode; and (iii) efficiently display the 
results. We tested the program in the context of these three 
topics by analyzing 15 microarray datasets (Figure 3), choosing 
groups of three GSE from Affymetrix, Agilent, Illumina, 
GenePix, and NimbleGen. All GSE were directly loaded from 
Web mode, just by using the GSE code as input, satisfying 
the first topic. In each group, there was one GSE with a few 
samples, one with numerous samples divided between two 
phenotype groups and one with various samples divided into 
many phenotype groups. All datasets were analyzed from the 
raw format, and the default parameters of statistical treatment 
were applied using the R packages provided by the respective 
manufacturers.

Regarding the identification of microarray types, GEAP 
supports both single-channel and dual-channel microarrays. 
The program can distinguish when one or two-colors are used 
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during pre-analysis, depending on the dataset file contents. 
The main difference can be observed when determining the 
samples for differential expression comparison. Samples are 
typically distributed to different groups for single-channel 
arrays. However, for dual-channels, once a sample is assigned, 
for example, to the control group, GEAP automatically assigns 
the same sample in the experimental group. Users can visually 
distinguish the channels when two-color microarrays are 
employed by the colors of the circles that precede the sample 
names. When sample information from GEO is available, the 
circles are painted with the colors emitted by the labels (e.g., 
red for Cy5, green for Cy3, yellow for biotin, and blue for 
some Alexa products). If this information is not available, 
GEAP deduces the channel color based on the file contents. 
Three of the chosen GSE to validate the software were dual-
channel (GSE9466, GSE10402, and GSE 17978), which 
GEAP successfully identified.

After pre-processing, the samples were distributed for 
differential expression comparisons, with the comparison 
results being plotted (Figure 3). These plots indicate that 
GEAP can deal with many samples and comparisons, being 
limited only by the local RAM. The generated plots also 
presented some expected results, such as higher dispersion 
and flattened volcano plots (i.e., less statistical significance) 
in groups with fewer samples. Few samples, in general, make 
noise more apparent between the array intensities, while a 
higher number of samples usually yield a more precise and 
realistic distribution of probe intensities.

Even in the multiple group’s comparisons, a biased 
result might be observed for the Illumina platform, where the 
proportion of underexpressed genes may be imprecise due 
to the low sample amount (Figure 3). On the other hand, the 
sequential comparison for Agilent was performed using many 
samples, and the plot depicts the lifelong gene expression 
changes in a Rattus norvegicus kidney. These observations 
fulfill the second topic since GEAP presents different modes 
to analyze data and present adequate results regardless of the 
chosen comparison.

Finally, we tested the efficiency of displaying results in 
GEAP. While the user can interact with the plots in real-time, 
there is a processing time to generate the plots every time a 
new filter is applied. Although this limitation is real for R 
and GEAP, we observed, after 96 benchmarking tests (48 for 
C# and 48 for R), that GEAP had a significant performance 
improvement to generate plots (Figure 4) over R. These 
benchmarks evidenced that GEAP not only plots faster, but the 
plots also are user-interactive, in contrast to the static R plots.

Discussion

Using GEAP for microarray data analysis

The complete analysis is composed by multiple steps, 
starting from the data processing and analytical treatment 
(i.e., pre-analysis, see Figure 5) for quality evaluation and 
differential expression (in other words, the main analysis, see 
Figure 6). We describe, in each subsection below, the detailed 
procedures when analyzing microarrays using GEAP.

Pre-analysis using GSE or GSM as input: Before pre-
analysis, transcriptomic data sets must be localized within the 

GEO database and downloaded. In this sense, a few definitions 
are required: (i) a group of samples related to a study is 
denominated GEO series (GSE); (ii) probe values related to 
a GEO sample are designated GSM; and (iii) probe identifiers 
associated with a specific GEO platform, named GPL.

In GEAP, from the initial page, following “Start 
Analysis”, three options of input data are presented: “Series”, 
“Separated Samples” and “Custom Table”. The first and 
second options share the same parameters, except that the 
first accepts a single GSE file, and the later accepts multiple 
GSM files. When working with GSE or GSM, users must 
choose if the arrays will be in the previously treated format 
(i.e., SOFT format) or in RAW form, as well as the method 
to obtain the GPL corresponding to the selected series or 
samples. All data concerning GSE, GSM, and GPL, including 
dependency files, can be obtained by three methods: Web, 
Local File, and Library. Both “Local File” and “Library” 
methods use data exclusively from local secondary storage. 
If “Web” option is chosen, the program will send a request 
to the GEO database to verify if the inserted GSE or GSM 
codes exist, and then checks data integrity. This happens for 
both SOFT or RAW data. Occasionally, a single GSE may 
associate with multiple GPLs. In these cases, GEAP gives 
the choice of which platform will be loaded and automates 
the process of separating platform-specific files.

Figure 4 – Filtering and plotting performance. When comparison results 
are produced, GEAP uses his data frame structure compiled in C# instead 
of depending on the R environment. As a result, GEAP finishes the same 
procedures with almost twice the performance. These observations were 
based on 48 benchmark tests performed separately in GEAP and the R 
console. We restricted the time range from before the matrix redefinition 
to the moment after matrix plotting. In the left column, the measure refers 
to when the matrix is filtered, and the obtained values are plotted, while in 
the right column, the matrix was returned to its unfiltered state.
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After checking all input files, GEAP prompts a dialog 
listing these files, allowing users to select which files will be 
taken into account. This is useful, for example, when an entire 
GSE with multiple sample files was downloaded, but only a 
subset of samples is desired. Moreover, if data was provided 
in RAW format, the user is prompted with the available 
preprocessing methods for this format. The preprocessing 
methods correspond to functions and packages used in R for 
microarray data treatment, including background correction 
and normalization. Currently, there is a total of 32 statistical 
methods that users can choose. GEAP readily distinguishes 
single and dual-channel experiments.

Overview and quality control: At the end of pre-
analysis, the GUI redirects the user to a section displaying the 
entire overview of the obtained microarray (Figure S2) that 
can be saved into the GEAP library. There is also an option to 
export the processed data as text file (TXT and SOFT formats) 
or R session (RData and RDS formats), which can be reloaded 
in R. The next steps are depicted in Figure 6.

Before comparing samples, it is worth accessing the 
overall array quality control. Although statistical treatment 
helps to correct moderate amounts of noise, it does not 
change the overall array quality nor repair poorly performed 
experimental procedures. In this sense, the consistency and 
scale of numeric values between samples and probes may 
be tested and plotted for more in-depth validation to detect 
incoherent expression profiles and outliers. If there are samples 
outliers that do not correspond to the context of the study, they 
can be removed from further analyses. In this sense, GEAP 
applies arrayQualityMetrics function from the homonym 
package. The generated plots describing each section are 
separated between the section tabs, as depicted in Figure S3. 
If outliers are identified in one or more sections, the section 
number is presented in the quality results table (Figure S3); 
otherwise, an “OK” message is displayed.

In the end of the quality analysis, a report describing 
the results becomes available, as well as the output plots, 
which can be accessed by the “Full Report” button. Users 
can opt to export all results as an HTML document, similar 
to the arrayQualityMetrics report by clicking on the “Export 
Results” button.

Differential expression analysis: In this step, the 
samples are presented as group items on a list box, which 
are distributed between other list boxes representing the 
experimental and control groups, as shown in Figure S4. 
GEAP provides two additional modes, aside from the regular 
control versus experimental option. The first is multiple group 
comparison and sequential comparison, where two or more 
experiment-versus-control pairs are created. The second is 
the temporal comparison, where the samples are distributed 
in separate groups named “steps”, and the comparisons are 
made taking “steps” as the control group and the next “steps” 
as the experiment group. In addition, these “steps” can be 
compared between distinct layers of experimental conditions. 
For example, it is possible to combine different treatments 
with time-dependent tests in one single analysis.

If a GPL (from GSE and GSM) or attribute values (from 
custom tables) are obtained during pre-analysis, the user can 
select which probe attributes will appear in results. The “Gene 

Symbol” option, as well as any other gene identifiers present 
in the GPL, is checked by default. For p-value correction, 
the available methods are FDR (Benjamini and Hochberg, 
1995), Benjamini-Yekutieli (Benjamini and Yekutieli, 2001), 
Bonferroni, Hochberg (Hochberg, 1988), Holm (Holm, 1979) 
and Hommel (Hommel, 1988).

Results presentation and management: Finally, a 
section containing the general results overview is displayed 
(Figure S5), with the DEGs being depicted in a pie chart. 
If multiple comparison mode was selected, a bar chart is 
displayed instead.

If the sequential comparison mode was selected, a 
stacked area chart is displayed to illustrate the sequential 
change of proportions between DEGs. Through the “Full 
Table” button, a separate window is displayed with one half 
of its area occupied by a results table and another half by the 
dynamic plots (Figure 7). In this specific case, a pop-up window 
was favored to allow scale adjusting. The table is paged to 
support the exploration of extensive amounts of data. The 
plots are interactive and react to mouse hover, click, and area 
selection, whereas every node selection reflects into the table.

The initial output is not filtered by default, unless if 
previously specified in “Advanced Options”, hence, no clear 
threshold can be observed between DEG. By clicking on 
“Filter”, the filter dialog box is shown, presenting a couple of 
default filtering options for logFC and p-value. Below these 
options, a grid is available, where any textual or numeric 
column can be used as a filtering parameter. Setting filters 
will affect all comparison results on the entire analysis. In the 
table, only the rows matching the filter will be displayed, while 
in the plots, the nodes corresponding to non-filtered values 
become obscured and unselectable. Finally, after applying the 
desired filters, users can export the filtered tables and plots 
in a ready-to-publish format.

Comparison to similar software: How is GEAP 
different?

In this section, we will describe GEAP’s differences from 
software currently used for similar purposes. An overview of 
the comparisons between specific features from each program 
is presented in Table 2. 

We highlight that some implementations are exclusive 
to GEAP and not featured in other programs, including: (i) 
downloading the entire array in raw format and solving its 
dependencies by only providing a GEO accession ID; (ii) 
GEO metadata integration to analysis workspace; (iii) support 
for custom tables; (iv) project management; (v) library for 
file storage; and (vi) fully customized filtering of results. 
TypeChecker add-on also separates GEAP from other software 
because it allows the user to expand the program’s support 
to more file formats.

Affymetrix’s Transcriptome Analysis Console (TAC) 
features data pre-processing, statistical treatments, multiple 
comparisons, and interactive plots, just as GEAP, but only 
accepts Affymetrix microarrays. TAC provides more plots such 
as HeatMaps and Chromosome views, while GEAP supports 
customizable tool-tips linked to the data points, making GEAP 
plots easier to explore. Illumina’s GenomeStudio and Agilent 
Genomic Workbench provides features related to single-
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Figure 7 – Full table of comparison results. (A) Comparison result selector. If multiple comparisons were performed, various items are displayed; 
(B) column sorting button and ``Pin first column’’ button; (C) the complete results table; (D) filtering functions; (E) currently applied filters; (F) table 
exporting; (G) available plots, separated between tabs; and (H) plot dynamic interacting with the mouse. If filtering was applied, only the filtered (blue 
and red) points become interactive, and the selection propagates to the full table.

Table 2 – Comparison between GEAP and other microarray software with similar features. Aside from the comparisons made below, GEAP is the only 
software that contains a library storage, project section, download and file integrity check directly from GEO, thus we did not include a column for 
those features.

Sofware Functional 
requirements

Runtime 
environment

Supported sources  
and manufacturers

Internal data 
storage

Input and 
dependency 

handling

Latest version 
and release date

GEAP None (Windows);
Mono (Linux) Standalone

Agilent; Affymetrix; 
Illumina; GenePix; 

NimbleGen; 
NanoString; GEO; 

User (Custom 
tables)

Files (Library); 
Sections (Projects); 

Results

Automatic  
and Manual

0.4.0
March 2021

Transcriptome 
Analysis Console None Standalone Affymetrix None Manual (Except 

annotations)
4.0.2

January 2019

GenomeStudio None Standalone Illumina None Manual 2011.1
June 2011

Genomic 
Workbench None Standalone Agilent None Manual 7.0

December 2015

GEO2R Network connection Web GEO (curated only) None Automatic only (Not versioned)
April 2021

Babelomics Network connection Web Agilent; Affymetrix; 
Illumina; GEO Uploaded Files Manual (Except 

annotations)
5

July 2018

Chipster

Java;  
Virtual Machine (v3.x);

Web (v4, requires 
institutional account)

Virtual 
Machine 
(v3.x);

Web (v4)

Agilent; Affymetrix; 
Illumina; GEO

Files (inside 
Virtual Machine);

Server (v4)

Automatic  
and Manual

v4
December 2020

eUTOPIA R R Agilent; Affymetrix; 
Illumina; GEO None Automatic  

and Manual
(Not versioned)
September 2019

ShinyGEO Network connection Web GEO None Automatic only (Not versioned)
April 2021
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nucleotide polymorphisms, which is not implemented in the 
current GEAP version; however, both of them only accept 
their platform-specific files.

Some platform-independent programs can also be 
compared with GEAP. Babelomics (Alonso et al., 2015; see 
Babelomics in Internet Resources), for instance, can process 
Affymetrix, Agilent, and GenePix microarrays, although it 
currently has no Illumina data support. Illumina datasets are 
the most heterogeneous in terms of data structure and file 
extension, which automatically impose an extra challenge 
for data handling. As an online application, Babelomics also 
requires uploading the files to be processed, where GEAP 
can retrieve data from GEO, or access local data. ShinyGEO, 
in contrast, does not provide a data storage service and the 
input is automatically imported by providing the accession 
ID (Dumas et al., 2016), although this feature is limited to the 
author’s preprocessed format and has no support for RAW data, 
not offering the same raw data processing and dependency-
solving that GEAP provides. Moreover, Chipster (Kallio et 
al., 2011) is an example of an offline application that supports 
data from GEO and provides tools for statistical treatment, 
quality analyses, filtering, and results plotting. Chipster also 
is capable of importing data directly from GEO, although 
similarly to ShinyGEO, this feature is restricted to the author’s 
preprocessed format from GEO. Furthermore, Chipster is a 
server-based program and is expected to be installed inside 
a virtual machine to run at maximum performance. GEAP, 
in contrast, is portable, and downloading the application is 
sufficient to run with its full potential, being more user-friendly 
for non-programming users.

A more recent example is eUTOPIA (Marwah et al., 
2019), a GUI tool developed in R that makes use of different 
Bioconductor packages. Some additional plots that are 
provided by eUTOPIA are not currently present in GEAP. 
However, eUTOPIA depends on the installation of R and 
many dependencies to run, thus not relatively ready-to-use 
if compared to GEAP, which does not demand any contact 
between the user and R environment during the analyses.

In a final note we want to highlight that GEAP was 
developed with portability in mind by avoiding installation and 
software requirements (except Mono in the Ubuntu version); 
hence it can work from a USB flash disk in any Windows 
machine. It also extends this portability by including local 
storage for the analyzed data in RAW and processed formats. 
Furthermore, it was developed to maximize the automation 
of microarray analysis by developing a processing method 
for every RAW data format and encapsulating the procedures 
for quality analysis, differential expression comparisons, and 
Gene Ontologies in a user interface to avoid manual data 
handling or programming knowledge. This automation was 
extended to the point that an entire dataset in RAW format 
and its dependencies could be loaded (locally or from the 
internet) and fully processed into a common analysis workflow 
by providing a GEO accession identifier (GSE, GDS, or 
multiple GSM) without the user’s interference. There is a 
set of processing options for every use case, which is also an 
exclusive feature to GEAP. Another crucial mindset that was 
embedded into GEAP is the possibility to overcome possible 
analytical road-blocks with TypeChecker, which allows the 

user to process samples, platform data, and annotations in an 
easy and custom way. This combination of capabilities related 
to automation, versatility, and portability is what makes GEAP 
unique from other microarray software, even though it may 
share similarities in particular points.

Conclusions
The majority of the scientific community that employs 

microarray analysis are molecular biologists and biomedical 
researchers with little or no programming background, 
making it harder for them to have the best pipeline available 
to analyze microarray data. Although other existing software 
provides state-of-the-art microarray analysis for the non-
programming user, GEAP still offers the most significant 
flexibility and customization options of them all. To ensure the 
friendliest interface, GEAP takes extra steps in all layers of 
a microarray pipeline from data retrieval, project and library 
organization, to a myriad of statistical options, table, and 
data customization, to faster filtering and results plotting. 
GEAP is also available in two languages: Portuguese and 
English. A Japanese version of this software is also being 
considered for future releases.

Currently, GEAP offers only single and dual-channel 
microarray data analysis, but we are currently studying a 
possibility to automate RNA-seq analysis in GEAP in the 
future. This is a hard task, because the RNA-seq pipeline 
is massively customized from preprocessing to analysis, 
and changes according to numerous variables, not being 
nearly as straightforward as microarrays. Likewise, the 
massive demand for RAM makes it difficult to optimize 
the pipeline with a GUI application on a regular computer 
(e.g., GALAXY, for example, runs on a large server). But 
advances on preprocessing steps of RNA-seq can be expected 
soon. Other add-ons are already being developed for GEAP, 
including plug-in development tools and plug-in support, 
aiming to expand the software’s capabilities. Such plug-in 
system is planned to allow users to create pipelines, macros, 
and R package integrations through instruction blocks similarly 
to TypeChecker, as an effort to further increase GEAP’s 
support to other large-scale analyses. Besides, since GEAP 
was initially intended to run in Windows only, the Ubuntu 
version of GEAP is still in its early implementation stages. It 
has limited functionality compared to the Windows version, 
and more development is in the process to compensate these 
limitations for the next releases.

Acknowledgements
This work was supported by grants from FAPERGS 

[16/2551-0000520-6] for the acquisition of computational 
resources. CNPq [151680/2019-1] for post-doc scholarship, 
and was financed, in part, by CAPES – Finance Code 001, 
for master’s degree scholarship.

Conflicts of Interest
The authors declare no conflicts of interest. GEAP is 

a freely available software and registered at the Brazilian 
Instituto Nacional de Propriedade Industrial (INPI) under 
the process BR512018052262-9 (see INPI in Internet 
Resources).



Nunes et al.14

﻿

Author’s Contributions
NIJG is the lead programmer and was involved in 

GEAP’s design, implementation and creation of new features, 
as well for data validation and manuscript writing. MMR was 
involved in GEAP’s implementation and project managing. 
FBC was enrolled in GEAP’s design, creation of new features, 
whole project managing and manuscript writing. All authors 
read and approved the final manuscript.

References
Alexa A and Rahnenfuhrer J (2010) topGO: enrichment analysis 

for gene ontology. Bioconductor. R package version 2.42.0.
Alonso R, Salavert F, Garcia-Garcia F, Carbonell-Caballero J, Bleda 

M, Garcia-Alonso L, Sanchis-Juan A, Perez-Gil D, Marin-
Garcia P, Sanchez R et al. (2015) Babelomics 5.0: Functional 
interpretation for new generations of genomic data. Nucleic 
Acids Res 43:w117-w121.

Benjamini Y and Hochberg Y (1995) Controling the false discovery 
rate: A practical and powerful approach to multiple testing.  
J R Stat Soc Ser B 57:289-300.

Benjamini Y and Yekutieli D (2001) The control of the false discovery 
rate in multiple testing under dependency. Ann Stat 29: 
1165-1188.

Benkheil M, Paeshuyse J, Neyts J, Van Haele M, Roskams T and 
Liekens S (2018) HCV-induced EGFR-ERK signaling promotes 
a pro-inflammatory and pro-angiogenic signature contributing 
to liver cancer pathogenesis. Biochem Pharmacol 155:305-315.

Blalock EM (2003) A Beginner’s Guide to Microarrays. 1st edition. 
Springer, Boston.

Blohm DH and Guiseppi-Elie A (2001) New developments in 
microarray technology. Curr Opin Biotechnol 12:41-47.

Carvalho BS and Irizarry RA (2010) A framework for oligonucleotide 
microarray preprocessing. Bioinformatics 26:2363-2367.

Chain B (2012) agilp: Agilent expression array processing package. 
R package version 3.19.0. 

Crawley MJ (2012) The R book. 1st edition. John Wiley & Sons, 
Chichester.

Davis S and Meltzer P (2007) GEOquery: a bridge between the Gene 
Expression Omnibus (GEO) and BioConductor. Bioinformatics 
23:1846-1847.

Du P, Kibbe WA and Lin SM (2008) lumi: A pipeline for processing 
Illumina microarray. Bioinformatics 24:1547-1548.

Duan S, Gong B, Wang P, Huang H, Luo L and Liu F (2018) 
Novel prognostic biomarkers of gastric cancer based on gene 
expression microarray: COL12A1, GSTA3, FGA and FGG. 
Mol Med Rep 18:3727-3736.

Dumas J, Gargano MA and Dancik GM (2016) shinyGEO: A web-
based application for analyzing gene expression omnibus 
datasets. Bioinformatics 32:3679-3681.

Dunning MJ, Smith ML, Ritchie ME and Tavaré S (2007) beadarray: 
R classes and methods for Illumina bead-based data. 
Bioinformatics 23:2183-2184.

Garranzo-Asensio M, San Segundo-Acosta P, Martínez-Useros J, 
Montero-Calle A, Fernández-Aceñero MJ, Häggmark-Månberg 
A, Pelaez-Garcia A, Villalba M, Rabano A, Nilsson P et al. 
(2018) Identification of prefrontal cortex protein alterations 
in Alzheimer’s disease. Oncotarget 9:10847.

Gautier L, Cope L, Bolstad BM and Irizarry RA (2004) Affy - Analysis  
of Affymetrix GeneChip data at the probe level. Bioinformatics 
20:307-315.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit 
S, Ellis B, Gautier L, Ge Y, Gentry J et al. (2004) Bioconductor: 
Open software development for computational biology and 
bioinformatics. Genome Biol 5:R80.

Grindstad T, Richardsen E, Andersen S, Skjefstad K, Donnem T, 
Ness N, Nordby Y, Bremnes RM, Al-Saad S, Busund L-T et al. 
(2018) Progesterone receptors in prostate cancer: Progesterone 
receptor B is the isoform associated with disease progression. 
Sci Rep 8:11358.

Hochberg Y (1988) A sharper Bonferroni procedure for multiple 
tests of significance. Biometrika 75:800-802.

Holm S (1979) A simple sequentially rejective multiple test procedure. 
Scand J Stat 6:65-70.

Hommel G (1988) A stagewise rejective multiple test procedure 
based on a modified Bonferroni test. Biometrika 75:383-386.

Ihaka R and Gentleman R (1996) R: A language for data analysis 
and graphics. J Comput Graph Stat 5:299-314.

Irizarry RA, Gautier L, Huber W and Bolstad B (2020) makecdfenv: 
CDF Environment Maker. R package version 1.66.0.

Itoh Y and Voskuhl RR (2017) Cell specificity dictates similarities 
in gene expression in multiple sclerosis, Parkinson’s disease, 
and Alzheimer’s disease. PLoS One 12:e0181349.

Kallio MA, Tuimala JT, Hupponen T, Klemelä P, Gentile M, Scheinin 
I, Koski M, Käki J and Korpelainen EI (2011) Chipster: 
User-friendly analysis software for microarray and other 
high-throughput data. BMC Genomics 12:507.

Kauffmann A, Gentleman R and Huber W (2008) arrayQualityMetrics-- 
A bioconductor package for quality assessment of microarray 
data. Bioinformatics 25:415-416.

Kong P, Lei P, Zhang S, Li D, Zhao J and Zhang B (2018) Integrated 
microarray analysis provided a new insight of the pathogenesis 
of Parkinson’s disease. Neurosci Lett 662:51-58.

Kouskoumvekaki I, Shublaq N and Brunak S (2013) Facilitating 
the use of large-scale biological data and tools in the era of 
translational bioinformatics. Br Bioinform 15:942-952.

Li SY, Wu HC, Mai HF, Zhen JX, Li GS and Chen SJ (2018) 
Microarray-based analysis of whole-genome DNA methylation 
profiling in early detection of breast cancer. J Cell Biochem. 
DOI: 10.1002/jcb.27423.

Marcotte EM and Date S V (2001) Exploiting big biology: Integrating 
large-scale biological data for function inference. Br Bioinform 
2:363-374.

Marwah VS, Scala G, Kinaret PAS, Serra A, Alenius H, Fortino 
V and Greco D (2019) eUTOPIA: solUTion for Omics data 
PreprocessIng and Analysis. Source Code Biol Med 14:1.

Smith ML, Baggerly KA, Bengtsson H, Ritchie ME and Hansen 
KD (2013) illuminaio: An open source IDAT parsing tool for 
Illumina microarrays. F1000Res 2:264.

Smyth GK (2005) Limma: Linear models for microarray data. In: 
Gentleman R, Carey V, Huber W, Irizarry R and Dudoit S (eds) 
Bioinformatics and computational biology solutions using R 
and Bioconductor. 1st edition. Springer, New York, pp 397-420.

Son M-Y, Sim H, Son YS, Jung KB, Lee M-O, Oh J-H, Chung S-K, 
Jung C-R and Kim J (2017) Distinctive genomic signature 
of neural and intestinal organoids from familial Parkinson’s 
disease patient-derived induced pluripotent stem cells. 
Neuropathol Appl Neurobiol 43:584-603.

Vizkeleti L, Kiss T, Koroknai V, Ecsedi S, Papp O, Szasz I, Adany 
R and Balazs M (2017) Altered integrin expression patterns 
shown by microarray in human cutaneous melanoma. 
Melanoma Res 27:180-188.

Wang L, Min L, Guo Q, Zhang J, Jiang H, Shao S, Xing J, Yin L, 
Liu J, Liu R et al. (2017) Profiling microRNA from brain 
by microarray in a transgenic mouse model of Alzheimer’s 
disease. Biomed Res Int 2017:8030369.

Wang Y, Skibbe JR, Hu C, Dong L, Ferchen K, Su R, Li C, Huang 
H, Weng H, Huang H et al. (2017) ALOX5 exhibits anti-tumor 
and drug-sensitizing effects in MLL-rearranged leukemia. 
Sci Rep 7:1853.



Gene Expression Analysis Platform 15

﻿

Williams M (2002) Microsoft Visual C# (Core Reference). 1st 
Edition. Microsoft Press, 746 pp.

Yang Z, Li H, Wang Z, Yang Y, Niu J, Liu Y, Sun Z and Yin C (2018) 
Microarray expression profile of long non-coding RNAs in 
human lung adenocarcinoma. Thorac Cancer 9:1312-1322.

Yin Z, Lan H, Tan G, Lu M, Vasilakos AV and Liu W (2017) Computing 
platforms for big biological data analytics: perspectives and 
challenges. Comput Struct Biotechnol J 15:403-411.

Zhang Z, Fang C, Wang Y, Zhang J, Yu J, Zhang Y, Wang X and 
Zhong J (2018) COL1A1: A potential therapeutic target for 
colorectal cancer expressing wild-type or mutant KRAS. Int 
J Oncol 53:1869-1880.

Zou D, Ma L, Yu J and Zhang Z (2015) Biological databases for 
human research. Genomics Proteomics Bioinform 13:55-63.

Internet Resources
Affymetrix, http://www.affymetrix.com/site/mainpage.affx (accessed 

19 October 2020).
Agilent, https://www.agilent.com/ (accessed 19 October 2020).
Babelomics, http://babelomics.bioinfo.cipf.es/ (accessed 19 October 

2020).
Elsevier Research Data Policies, https://www.elsevier.com/about/

policies/research-data (accessed 10 October 2020).
Illumina, https://www.illumina.com/ (accessed 19 October 2020).
INPI – Revista da Propriedade Industrial (2018) Programa de 

Computador, http://revistas.inpi.gov.br/pdf/Programa_de_
computador2501.pdf (accessed 8 March 2020).

Mono Project, https://www.mono-project.com/ (accessed 19 October 
2020).

National Cancer Institute – The Cancer Genome Atlas Program, 
https://cancergenome.nih.gov (accessed 8 March 2020).

NCBI – GEO Datasets, https://www.ncbi.nlm.nih.gov/geo/ (accessed 
19 October 2020).

Scientific Data – Data Policies, https://www.nature.com/sdata/
policies/data-policies (accessed 19 October 2020).

SQLite – 35% Faster Than The Filesystem, https://www.sqlite.org/
fasterthanfs.html (accessed 19 October 2020).

RStudio Team — RStudio: Integrated Development Environment 
for R, http://www.rstudio.com/ (accessed 19 October 2020).

Supplementary Material
The following online material is available for this article:

Figure S1 – TypeChecker’s main workspace with a use case 
example.
Figure S2 – Overview section that summarizes the information 
extracted from pre-analysis.
Figure S3 – Quality results section.
Figure S4 – Distribution of samples between experimental 
and control groups in a study case involving tumors.
Figure S5 – Summary of differential expression analysis results 
obtained by comparing the groups indicated in Figure S4.

Associate Editor: Roberto Hirochi Herai

License information: This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (type CC-BY), which permits unrestricted use, distribution 
and reproduction in any medium, provided the original article is properly cited.

http://www.affymetrix.com/site/mainpage.affx
https://www.agilent.com/
http://babelomics.bioinfo.cipf.es/
https://www.elsevier.com/about/policies/research-data
https://www.elsevier.com/about/policies/research-data
https://www.illumina.com/
http://revistas.inpi.gov.br/pdf/Programa_de_computador2501.pdf
http://revistas.inpi.gov.br/pdf/Programa_de_computador2501.pdf
https://www.mono-project.com/
https://cancergenome.nih.gov
https://www.ncbi.nlm.nih.gov/geo/
https://www.nature.com/sdata/policies/data-policies
https://www.nature.com/sdata/policies/data-policies
https://www.sqlite.org/fasterthanfs.html
https://www.sqlite.org/fasterthanfs.html
http://www.rstudio.com/

