Review Article

O Genetics and Molecular Biology, 40, 3, 553-576 (2017)
Copyright © 2017, Sociedade Brasileira de Genética. Printed in Brazil
DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0230

Approaches for in silico finishing of microbial genome sequences

Frederico Schmitt Kremer', Alan John Alexander McBride' and Luciano da Silva Pinto'

'Programa de Pés-Graduagdo em Biotecnologia (PPGB), Centro de Desenvolvimento Tecnolégico,

Universidade Federal de Pelotas, Pelotas, Brazil.

Abstract

The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic informa-
tion, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately,
due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes re-
mained as “drafts”, incomplete representations of the whole genetic content. The previous genome sequencing stud-
ies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the
gaps, making the entire process very expensive. As such, several in silico approaches have been developed to opti-
mize the genome assemblies and facilitate the finishing process. The present review aims to explore some free
(open source, in many cases) tools that are available to facilitate genome finishing.

Keywords: microbial genetics, molecular microbiology, genomics, microbiology, draft genomes.

Received: September 25, 2016; Accepted: March 13, 2017.

Introduction

The advent of second generation of sequencing plat-
forms, usually referred to as Next Generation Sequencing
(NGS) technologies, promoted an expressive growth in the
availability of genomic data in public databases, mainly
due to the drastic reduction in the cost-per-base (Chain et
al., 2009). Compared to the Sanger sequencing technique
(Sanger et al., 1977), NGS platforms, like [llumina HiSeq,
TonTorrent PGM, Roche 454 FLX, and ABI SOLiD, are
able to generate a significantly higher throughput, resulting
in a high sequencing coverage. However, they typically
have a lower accuracy (in terms of average Phred-score in
the raw data) and, in most cases, can only generate short-
length reads (short-reads) (Liu et al., 2012). The term
“short-read” is commonly used to refer to the data gener-
ated by platforms such as I[llumina, IonTorrent and SOLiD,
as the length of their reads usually range from 30 bp (eg:
SOLiD) to ~120 bp (e.g., lllumina HiSeq), which is smaller
than the length usually obtained by Sanger sequencing (~1
kb), and by the PacBio and Oxford Nanopore platforms
(commonly referred to as “long-reads™).

The higher throughtput obtained by NGS has stimu-
lated the development of new algorithms and tools that are
capable of dealing with a larger volume of data and generat-
ing genomic assemblies in a reasonable time. Traditional
sequence assemblers, like Phrap (http://www.phrap.org/

Send correspondence to Frederico Schmitt Kremer. Centro de
Desenvolvimento Tecnoldgico, Universidade Federal de Pelotas,
Campus Universitario, S/N, CEP 96160-000, Capao do Leao, RS,
Brazil. E-mail: fred.s.kremer@gmail.com.

phredphrap/) and CAP3 (Huang and Madan, 1999), were
replaced with new ones, such as Velvet (Zerbino and Bir-
ney, 2008), ABySS (Simpson ez al., 2009), Ray (Boisvert et
al., 2010), SPAdes (Bankevich et al, 2012) and
SOAPdenovo (Luo et al., 2012), many of which were based
on the De Bruijn graph algorithm (Pevzner et al., 2001;
Compeau ef al., 2011). A large number of these software
offerings are capable of assembling data from different se-
quencing platforms, called “hybrid assembly”’; however, all
of them exhibit some limitations and, even after several
corrections and optimization steps, the generation of a fin-
ished genome continues to represent a complex task (Alkan
etal.,2011).

Genome finishing is achieved by converting a set of
contigs or scaffolds into complete sequences that represent
the full genomic content of the organism without unknown
regions (gaps) (Mardis ef al., 2002), and aims a “closed”
and full representation of the chromosome organization.
On the contrary, a draft genome may be composed of a set
of a few or several contigs or scaffolds (Land et al., 2015).
Although useful for many studies, the unfinished and frag-
mented nature of draft genomes may difficult analysis on
comparative genomics and structural genomics (Ricker et
al.,2012). In addition, some genes may be missed if located
in a region without coverage (e.g., edges of contigs/scaf-
folds), or due to assembly errors (e.g., repetitive regions
that are “collapsed” into a single one) (Klassen and Currie,
2012).

Genome finishing represents a relevant step to reduce
data loss and lead to a more accurate representation of the
genomics features of the organism of interest. The tradi-

554

tional way to close gapped genomes includes: (1) design
primers based on the edge of adjacent contigs, (2) PCR am-
plification, (3) Sanger sequencing, and (4) local assembly,
usually with (5) manual curation. As this process is very
time consuming, new in vitro approaches were developed
to speed it up, including multiplex PCR (Tettelin et al.,
1999), optical mapping (Latreille et al., 2007), and hybrid
sequencing and assembly (Ribeiro et al., 2012). This, how-
ever, usually results in a drastic increase in the cost of the
sequencing project. Therefore it is not surprising that from
the 87,956 prokaryote genomes available in GenBank until
December 2016 (GenBank release 217), only a small frac-
tion (~6,586) is finished (http://www.ncbi.nlm.nih.gov/
genbank/).

In the last years, the availability of third-generation
sequencing technologies, such as PacBio SMRT and Ox-
ford Nanopore, has also provided another way to achieve
finished genomes (Ribeiro et al., 2012). As these platforms
usually generate reads with length > 10 kb, the assembly al-
gorithms have to deal with less ambiguities and problem-
atic regions (Koren and Phillippy, 2015). This makes the
reconstruction of the chromosome sequences easier, but
just like second generation technologies, both platforms
have their own limitations. In the earlier versions of the
PacBio SMRT platform, for example, it used to present a
high error-rate, so it was recommended to correct part of
these errors using short-reads data (e.g., [llumina) (Koren et
al.,2012; Auetal.,2012; Salmela and Rivals, 2014) before
using its result for any analysis. Although this problem has
been minimized with the improvements in the sequencing
chemistry and base-calling process over the last years, the
time required for the sequencing, the cost of each run, and
the price of the equipment itself are still drawbacks, and
these are some of reasons as to why it is not more frequently
applied. In the case of Oxford Nanopore, there is a limited
number of tools that can be used to pre-process and analyze
its data, and some types of errors (e.g., under-represen-
tation of specific k-mers) are still recurrent (Deschamps et
al., 2016). Therefore, second-generation platforms are still
the most popular ones for a wide variety of applications,
and remain as the cheaper alternative to obtain genomic
data.

Previous reviews that focused on genome assembly
and whole-genome sequencing analysis have already de-
scribed some of the in silico tools that have the potential to
improve a genome assembly without the need for experi-
mental data. Edwards and Holt (2013), Dark (2013) and
Vincent et al. (2016) have provided very comprehensive
descriptions of some of the main steps of data analysis in
microbial genomes sequenced by next-generation technol-
ogies, including de novo assembly, reference-based contig
ordering, genome annotation and comparative genomics,
and these are useful starting points for those that are new to
microbial genomics with NGS. Nagarajan et al. (2010)
have also made some useful considerations regarding ge-

Kremer et al.

nome assembly and presented some methodologies for ge-
nome finishing, but limited to a small set of approaches that
they have developed to improve assemblies. Ramos ef al.
(2013) exemplified some assembly and post-assembly me-
thods for genomes sequenced with lonTorrent platforms.
Finally, Hunt et al. (2014) have also made a complete and
accurate benchmark analysis of different tools for assembly
scaffolding based on paired-end/mate-pair data. However,
although very instructive, these reviews provide descrip-
tions of some specific procedures, but do not give an in-
depth view of the different finishing strategies, nor of the
algorithms that are used in background by different tools
from each category. Therefore, a more complete descrip-
tion of these tools may be useful, especially for those re-
searchers that are starting to work with microbial genome
analysis and want to achieve better assemblies without re-
lying on re-sequencing or manual gap-closing.

The present review aims at discussing some of the
categories of software that may be applied in the process of
assembly finishing, especially in the context of microbial
genome sequencing projects. A particular focus is placed
on those that do not require additional experimental and/or
new sequencing data. The review intentionally focuses on
tools that are freely available, at least for academic use, and
omits proprietary software, like the CLC Genomics Work-
bench (http://www.clcbio.com/), for example. This was not
due to anticipated differences in the performance or quality
of the results, but to adhere to the original intention: an
overview of tools that could be used by most researchers.
As different approaches have been developed to improve
genomic assemblies, the description of these programs was
divided into four main categories: scaffolding (placement
of contigs into larger sequences by using experimental data
or information for closely-related genomes, and joining
them by gap regions), assembly integration (generation of a
consensus assembly using multiple assemblies for the same
genome), gap closing (solving gaps by identifying their
correct sequence), error correction (removal of misidenti-
fied bases or misassembled regions) and assembly evalua-
tion (quantification of the reliability of a genome assembly
and identification of its erroneous regions) (Table 1). These
different categories of programs can be combined, accord-
ing to the type of data that is available (e.g., sequencing
platform and library that was used), and may help to reduce
the fragmentation and improve the reliability of a genome
assembly. Based on the categories of software that are dis-
cussed in the present review we have created the flowchart
showed in Figure 1, which may of help in choosing the
most appropriate approach for genome finishing, depend-
ing on the type of the data that is available. Examples of ge-
nome projects that used some of the tools discussed in the
present review are shown in Supplementary material (Ta-
ble S1).

555

"300foxd

Surp[ojgeds oures o) U pasn oq 0} SOLIBIqI] A[dn[n SMO[TY -

1Rura3103901no0s yseyasreds-3003//:dpy Jeul1o) INVg' ut o[y Surddew pear oy

:A1e1qr ysey-osiedg gy Suofe ‘indur se (SSAGY a8eyded ay) woiy) 3sgooueisiq

_uradiojeonos sjooywes,/:dny (6007 70 weidoid oy) £q poyeIduasd soouerISIP PAJLWIS) SS() -

12 17T) S|00OJWES /39U'9310J00IN0s eMq-01q//:dny ‘sowIouod

(6007 ‘waqn pue 17) Vg o3.e[pue ejep eurwni[y 10§ paziwndo st yorym ‘ourjodid

(Z107 ‘uiqing sjoojwreq, | g1oysewrzad/wod qnpid/ssdny - Ajquiasse yOHS oy} ul pajersajur Apeaife aInjedj Suipjojjeos -
e3s/sy[woo qnund;/sdpy pue uosdug) ((110T “1v 12 poureg) sjooyueyg ‘3uIp[0JJeOS pud-pale - VDS urpjojyess

"100f01d

SuIp[ojjeds aures oY) Ul pasn 2q 0} SaLIRIqI] A[dn[nw SMO[[Y -

["Ajquiasse o) Jo OGN Ay} uey)

1y edress/1o1quiasdey/npa-ojuol (€107 ‘oupnig 1018013 YISU9 Y)IM SS1U0DO 9SOy} SUIp[0JJeds 10J sasn A[uQ -
-0y'so-01qdwos//:dpy pue zowuo(]) QUON ‘SuIplo}Jeds pud-paled - VdIvOS Suipjojjess

'SIOII0 A[qUIOSSE MU 0 PEI]
Aeu 31 SOWT)OWIOS INq “P[OJFEOS SUO UL} AIOUWI JO UOTIONNS
/1ouro310Jed1nos sjoojwes//:dny (600 7P -U0d A} UI Pasn oq ALUI PI[QUISSSLSIW SB PATUIPT STNUOY) -

72 1'T) S[OOJWES /19U 9310J90IN0S 01q-a1m0oq,//:dny *Burp[ojFeoSs 9y} JO AN[IQEI[aI A}

(6007 7 12 peowIue) oMoy 1091 ABW JBY[) SJUSWS[SIIWOUdT 9An1ador pue spear oLl

Jsexadoysyoaf /1U"9510J00In0s BMQ-01q//:dNY -owIyd AQ Pasned suonoduuod snounds [erudjod soyIIudpy -
-o1dou-adiogeomos;/:sdny (110T “1v 12 0€D) 600z wqIn(pue I7) VAL “SuIp[ojyeos puoe-paired - ViddO Suipjoyedss

/19 /9y s uow)//:dny :Areiq

projjeos-diw/[aweswy/n/1y urs -1] uowd] /aAjosdy/s10ofoadjoura3ioyooinos)/:dyy “spear (o3ues Suoj) ared-ojewr pue pud-paired yjoq spoddng -
-y sommmy/ssdny - (1107 7 12 eowfes) :A1e1q1] dAT0Sd] ‘3uIpjoJJeds puo-pale - dIN Surpjojyess

‘SIeuLIOJ

eyep sy pue o3exoed SOINY Y} YHm doudnadxo sarnbay -

‘sowioud3e)ow Jo Jurpjoyyeds ayy spoddng -

-a8exoed SOV 2yp Jo doy uo jjing

/sowre/s)oal /19u°9310J00In0s sowre//:dpy are jey) syo9foxd Ajquuosse yim pojeISajur A[Ised oq ue)) -
-o1djoura8105091mo0s,//:sdpy (1102 “7v 12 U210Y]) (1107 “7v 12 uoSueai) 9exyoed SOV ‘Surpjojjeds pud-palred - zsnqueg Suipjojjeos

‘sutojied axodoueN p10Jx() pue orgoed Aq pojerd
/1Rura810J001n0s yseyasieds-3003/:dny -uad osoy) se yons ‘spear-uo] Sursn JUIp[ojjeds Ay} SMO[[Y -

:K1e1q1] ysey-osieds ‘ndur se (aSeyoed swes oY) woiy) ISFIULISI

S101dw-uado mmm/:dny weidoid ay) £q pojeIduasd SOoUBISIP PAJBWISI A} SS() -

IdIN wdO -ourjodid Ajquiesse oaou

SSAQe/21eM)JOS/OJUTOIq/WI0] /310°1S00Q" MMM ap SSAGY oy ur pajerSorur Apeaife amjeaj Surp[ojgeds -
-jerd/eoros3oq mmmy:dny (600 “7v 12 uosdwis) :S9LIRIQI] }S00q *3UIp[0JJBOS puS-palle - SSAgV urpjojyess
I0AIOSQOM / UI] PRO[UMO(] Q0UQIAJY «Soouapuadog S9INJBAJ UIBIA [oox, K103918)

Finishing microbial genomes

MA1AQI JuosaId oY} UI PAQLIOSIP S[00) A} JO MIIAIIAQ - | IqEL

Kremer et al.

/o9 cxowindy/:dny

(zroz w2

IosseSIoi ¢/007 ‘WY PUL ILESSAIOY]) ¢IOWLIJ

/1ou-o810J901n0s rourtnu//:dyy

(¥00T “7p 12 ZANY]) PWINNIN

se[q/a08 yrurwu-tqou-dy/:dyy

“(600T “1P

12 oydRWE) (0661 IV 12 [MYISIY) +1SV 14

/310 uoyAdorq,/:dny

:(93eyoed uoyLq) uoypLdorg

o /1ou"0310J021n0S seorqe//:dNy
u9310J201n0s 103en31U09//:dny (1107 7P 72 WUIpIR[RD) 1(600T 1 12 ©JASSY) SYOVIV

/29m crwindy/:dny

(z1oz w2

10sSE3IANUN /007 ‘WY PUL JeesSAI0Y) CIOWLI]
/1oura810J00In0s Towwnu//:dyy

eurag1ojeoinos seoeqe//:dny {($00T “Ip 12 ZyNY]) PWNNOA

(600T “'1 12 €JA8SSY)

/1ou-o310Je01nos rourtmnu,//:dyy ($007Z “v 12 Z3Y])

/S[0010SEq/SOTJULIOJUTONq/SITUT
0ud3/W0d" I1BI[0seq MMmm//:dny

(10 ‘ouenorg

pue 192390¢) QUON.

/S]00)ASBQ/SOIBULIOJUION] /ST

0Ud3/W0d" 18A[00sEBq MMM //:dNY

(1107 “1P 12 1923209 QUON

A4
UdOS/SUBAIIUR~/NPI’SIOFINI"SIL
-sAyd-mmm//:dnyg

(010T “v 12 ueLIRAR(]) QUON

"ISWWIA NN 10)J& [oIeos

1SV1g e serdde 11 se ‘SyDvgy 01 paredwos 1 ‘suoid

-01 OTUQJUAS JO UOTILINJT)UIPT IATIISUDS QIO B SMO[[Y -
"u0o1]daI / SWOSOWOIYO JUO

uey) a1ow £q pasoduwiod st awouoF Jo31e) Y uUoyM [NJos)-
“SUIp[0jJEOS Paseq-00udId)aI [SuIS-

‘Bursofo-des 103 s1ownid Jo uSisap oY) SMO[Y -

‘(snuoS v.u1dsoydaT :x9) sowosoworyd/suoordor

2I0W 10 0M) [JIM BLI)ORQ 10J paziundo JoN -

"QWOUAT 20UdIQJRI AU URT])

IoSIe[10U ST POP[OJJEIS 9q 0} dWOUST A} pue ‘paje[aI-A[9so[o
ore owoua3 Jo51e) Y} PUL U A} UYM [NJAS() -
*SuIp[0}JeOS PIsSeq-00udId)al 9[3UIS -

"SPIOJJBOS oY) UIE)
-qo 0} passaooid-jsod aq ysnw JuowruSI[e Ay} JO JNSAI Y], -
*SUIp[OJJBOS PASEq-00Uu0IaJal 9[JUIS -

‘sutojied axodoueN p10Jx() pue orgoed Aq pojerd
-uo3 9soy) se yons ‘spear-guo] Jursn JuIpjojeds oy} SMO[[V -
‘3uIp[0JJeOS pud-pale -

"Sojeul A} JO UONBIUALIO DAL
-B[O1 OU) PUE UONBIAID PIEPUL)S)IOSUI O} JO OZIS uedw Sur
-pnjour ‘Areiqr| pus-paired oy Jnoqe UONLWIOUT SAIINbay -
'SI0110 A[quIosse

0) 9]qelINS dI0W I8 AJU) Se SSNU0D Y} JO 93Pa Y} SWlL], -
‘SuIpjojjess pus-paled -

‘Surpjogyess oy jo doys yoes 10y sydrios

JUQIQJJIP UNI 0} AIBSSO00U ST 31 0S “pajewone A[[nj jou sy -
‘speal Jred-ojew pue puo-patred Juipnjour ‘SuLIO}

-jeld Qr10S 19V pue eurwnj] A[Jed wodj ejep syoddng -
'SO[Y DAV oY) permbar pue ‘I VSS pue

JOAIA Aq parerdudd sarjquiasse oy daoxdwr 0} padooad(-
‘Surpjojgeos puo-parred -

10JenDLLNOD

Svovav

JOUWANNIN

peaysuo]
-HOVdSS

HOVdSS

ViddOS

Surpjoggess

Surpjoyyeos

Supogzeos

Surpjogyess

Supjoyyeos

Surpjoyyess

JOAIOSIM / MUI] PEOTUMO(T Q0U0IJY xSoouapuado(y

SQINJBaJ UTRJA

[ooL

K103918)

556

panunuoo - [AqeL

557

Finishing microbial genomes

"S)eULIO)
'yep si1 pue o3eyoed SOINY U3 YHm oudLadxo sarnbay -

/sowre/s)of /19u°9310J00In0s sowre//:dpy -a8exoed SOV oyp Jo doy uo jing uoneIs)
-oxdjour03103001n0s//:5dny (LOOT 7P 12 JoWWOS) (1107 “7p 12 uaBueal]) o3exoed SOV are jey) s309foxd A[quuosse Yim pojeISajur A[Ised oq ue)) - SNWIUIA -Ul A[QUIOSSY
/1ou-o810j001n0s rourtnu//:dyy
(¥00T “1p 12 ZANY]) PWINNIN
Jwod eAel mmm//:sdny
‘BAR[
BSNpaW/SOTUI /310 uoypAdorqy/:dny *9JUQIQJAI SB SOWOUAS JeIp pue paysiuly y3oq s3dodoy -
ouaSoquiod/wod qnyg,//sdyy (10T “I7 12 1509) :(93eyoed uoyLq) uoypLAdorg "3uIp[0JJeos paseq-oouardjal oidnnip - BSNAON Surpjojyess
BI[2QIS/JuI0Iq/wod qnuis)/:dny
‘RIS
U YOIMU/pUN[Iet~/p Ne TwIep mmm//:dny
:(oFeyoed uoyiLq) JoImoN 'SPJ0JJeos / SS1IU0D 9y} JO UOIBIUALIO J[q
mnoSey (¥10T 17 Jorqnupid xsromiou/:dyy -eqoid jsowr oyy AJuapr 03 uoneuriojul onouago[Ayd sesn -
/sse[31opua)/wod qnyis//isdny 12 A010S0W[OY) :(eSeyoed uoyiAg) XI0MION “3uIpjo}jeos paseq-oduaiojor o[dnnyy - nodey Suipjojgeds
“BJep pud-parred asn os[e ue)) -
*SuWI0S
/N OV d/npasiou -owoayo J[dnnwr yIm pue sawouasd ag1e| 10y pazrundQ -
-1[[1I'u201q-o1qdwo-uso1q//:dny (€107 “7p 12 Wry) QuoN “3uIp[ojJeos paseq-aduaIafal AidnnA - VvOVY Surpjojeos
*SOWIOSOWIOIYI/Su0dT[dax
QI0W 10 OM])M BLI)ORq 10J paziumdo JoN -
neurdydy/sdny "IOAIISQAM B SB J[QR[IBAR OS]V -
:dHd *SUOT}BOO[SUET)
LIV /M) P MU Sd dWOU /1ou-o810J001n0s Tourunu//:dyy PUE SUOISIOAUT OTWIOUSS JO UOTIROIJIIUIPI) SMO[[Y -
-08//:dny (¥10z “1v 12 01) (F00T “1p 12 Z1NY) PWNNIN “BuIp[0jjeOS PASEq-00ULIAJI O[SUIS - VD Suipjogyeos
*SOWOSOWOIYd/suodrjdax
2I0W 10 0M) [)IM BLI)ORQ 10J paziundo JoN -
/19u-9310J991n0s Tourunw,//:dyy "SUOISIAUT OIWIOUDS JO UOTIROIJIIUPI) SMO[[V -
‘L 1.8:1q dwreorun-or-arew//:dyy (z10T 17 12 seiq) (($00T 7 12 Z)NY]) DWINOIN “BUIP[0JJBOS PASLQ-20UudIJaI Q[FUIS - SIS Suipjojjeds
*PIOJFBIS 2} JO douanb
Y0E-11-S01C -0s 9} Jon1su0oa1 03 Juissadord-jsod armbar Aew synsoy -
-1L¥1/9811°01/310° 10p"Xp//:dny *SOWOSOWOIY/suorjdax
(0107) 712 /oo eArl-mmm//:sdpy QI0W 10 0M] M BLIJORQ 10J paziundo JoN -
zouny Jo erep Areyuowd(ddng (0107 “7v 12 ZOUNIN) BAR[-BUIp[OJJBOS Paskq -90udIdJal J3UIS - SPIOJJBOSIIId SuIp[ojjeos
*SOWI0SOWIOIYI/suodT[dax
QI0W 10 0OM))M BLI)ORQ 10J paziumdo JoN -
*SUOT}BIO[SUET)
PUE SUOISIOAUT 010U JO UOTIROIJIIUPI) SMO[[Y -
((1nD) 2oey1)ur 1osn [edrydeis e pue
[uyaAn (6007 “7v 12 uewISSTY JwodeARlmmm/isdny (7)) 998JI2)UT QUI[PUBIWIOD B YFNOIY) Yjoq pasn 2q ue)) -
'w/2ANneW/310°qe[3urrep,//:dny 00T v 12 Surpreq) ‘BAR[*3UIp[0JJBOS Paseq -2dud1djal J[3uIg - QANBIN Surpjojyess
JOAIOSQIM / MUI| peOJUMO(] 0UIRJY «Souopuadoq S2INJeaJ UIRIA 1001, £K103918)

panunuoo - [Aqe,

Kremer et al.

558

so110z/1q dwreosrun1qr-agy/:dny

s3u
-wed// §901A/Wod qnyIg//:sdny

XTIA/QIqQd/t0d qnus//:sdyy

/13nm-eed/s1oa
-01djoura3103901n0s//:dny

/VSIO/MY 310" LIy gs//:dny

[wiFIopny soneuLIouIoq//:dny

/Npa°puun-awoudd mmm//:dny

(600T “v 12 0san3ry)

(€10T “m 12
IUIWOPAdIA 1600T 7P
2 opueidese)))

(€10T “v 12 uepIoNOS)

(z10T 1112 0BX)

(€107 ‘oery pue ury)

(010T “7v 12 dwrefIN)

(800¢ “7p 32 urrz)

/1ou-o810j001n0s rourunu//:dyy
(¥00T “7p 12 ZANY]) PWNNIN
/19u"9310J90IN0S 01q-011M0q//:d)
:(600T “1v 12 peowdue]) anmog
S10-110do1qy/:dny

‘(ompour [194) [1oJorg
/1Rur0310J901n0s sowre//:dny
110z v 12 uoBuea1l) SONY

/1ourag10jo01nos yseyasieds-3003//:dny

:Are1qr ysey-osieds
/310'1500q" MMM

'SaLIRIQI] }S00q
eurqrizmmm//:dny

Arexqu quz

/310" 03eWwo//:sdny

ayewd

/1ou-o310J001n0s Tourtnu,//:dyy
“(P00T "1V 12 ZMUDIDWNON
/310 uoypAdorq/:dny
:(a3eyoed uoypL]) uoypLgorg
/A0Z Tue] xoI0mIau//:dny
:(e3exord uoyLg) XIOMION

/w00 G 7//:dny

:10ddeNSD
/npa-oson-awouss)/sdny

{(zooz o) 1vId
/1oura310J90In0s Jowwnu//:dyy
“(#00T 7P 12 Z)IN) PDWNNIN
se[q/A08 yrurwuriqoudyy//:dy
:(600T “7v

J2 oydRWE)) {0661 7P 12 INYISHY) +LSV'1d

owired/yor1eSp/wod qnipis,//:dny
{(x0q[o01 qepEIN) DINTVD
/1ou-o310J001n0s Tourunu,//:dyy
LIOWA A
/WOD"SYIOMIIET MMM //:sdpy
1qenEIN

/12ur2310J201n0s" rowwunu//:dny
“(#00T 7P 12 V) PDWNOIN

‘snwirurjy Suisn uorersajul

Ajquiosse oy swroyrod pue s31u0d pajquuassesiur oy syds -
"08B19A00 91} UO Paseq suoIFaI 9ATIIRdAI pUE PI[QUIASSESIU
SOITIULPT PUL STNUOD A1) 0} J[oeq Speal o) sdewoyy -
‘uonjeidur Ajquiasse ay) wogiod 03 s91y pear ay) sannboy -

‘Ajquuasse

[eu1y oy JO UONEIOUdS JY) 210Joq PIJILIOD dIE YIIYM ‘I9)Seul
Q) Ul SUOITAI PI[QUIASSESIW JO UONEDIJIIUIPI O} SMO[[V -

" SOAB[S,, S& PAULJOp A1k SIOYI0 dY) [y ©, 19}

-Seu,, Se PauLjop SI PaSIow 9q 03 SAIQUIASSE dY} JO dUQ) -
‘uoneIdajur A[quiasse oy} wiioj1ad 0} so[1j pear ay) sarmboy] -

‘soouanbas aAnnadar

Kq pasnes sonngiquie oY) 9onpal 03 JUSWUSI[E Y} SIAI] -
's31IU0D 9} U2IMIOq

uonOaUU0d oY syuasador jeyy ydelS uoIsusIxo ue 9jeIoudn) -

‘syjed yuapuadapur Jo jos [ewrurw 03 AJuapt 03 pasofd
-X9 St yoIym ‘yderd Ajquiosse ue 9)e1duds 0} SOI[qUIOSSE JO
19§ oY) UT SSNUOI JUIIQIJIP A} UM} JUSWUTITE) SIS -

‘suo1gar pajeador
papuedxo / passardwiod pue SuoISaI PO[qUISSSESIW S)OLI0)) -
*SOI[QUIASSE 9JOUL JO 9} JO UOLLISAUI AY) SMO[[Y -

"SQI[qUIOsse
JIO1JO 9} UT 90UdPU0dsaIIod oYM SINU0D SOT) 10J [nFasn
SIJeym ‘urpjojyeds worad 03 owouasd 2oudlejar s)doody -

"SOI[qUIOSSE QIO 10 0M] JO UOTIRISIIUT O} SMO[[V -

‘suorsuedxo
10 suorssaxdwod pardgyns jey) suordar aannadar saynuapy -
‘Qwoud3 dwes ay) 10} A[quIasse dAeUId)R ue 0} Jurredwod
Aq Ajquiasse 1231e) © Ul SUOIFAI PI[QUISSSLSIW) S}OALI0)) -

uoneido)
01107 -UI A[qUIOSSy

SON-INVD uoneIso)
/INVD Ul K[quassy

uonei3o)
XIN -UI A[QUIdSS Y

uoneidy)
VVD -ur A[quiossy

uoneido)
VSIO -ut Ajquessy

uonei3o)
VIVIN -ul A[quidssy

uoneida)
IOJRI[IOU00YY -UI A[qUISSSY

IOAIOSQAM / JUI| PeO[UMO

QouIRoy

«Souopuadoq

SOINJEQ) UIBJA!

1001, K103918D)

panunuod - [dqeL

559

Finishing microbial genomes

OSBO[OI-I0[BIS /01

S1o1dw-uado mmam/:dny

‘IdIN uedO

1Rurag103001n0s yseyosreds-3003//:dpy
:K1e1q1] ysey-osieds

/310°31500Q" MMM

'soouanbas aAnnadar ym suoid
-01 Jo Surajos oy ur djoy Aewr jeym ‘IouW-3 Jo SSUINIS JUIIY

3/ssAqe/osFoquod qnuid/ssdny (S 1og v 1o ourned) :soLIeIq[3s00q -JIp Suisn suor3ar desd oy Jo A|qUIsse-a1 [BJ0] B SWIOLIO] - 0[S Sursopo den
/ /WY SYIOMUIRW MMM //:sdNYy -de3 oy def1oa0 yeyy suordax
de3y/1q-adyn-ojurorq mmm//:dpy (#10T “v 12 011q) (qepRIN AJIUSPI 0] QWU 19318 AU} JO SAI[QUIASSE IATBUII)[R SIS() - dvDd Suisopo den
Tuny pasuodderydparyd/Sio-deryd-mmm/:dny
:deyq
/19u°9310J991n0s " Tourunu//:dny
((#00T 17 12 Z3n) WA NN
/1ua310J90In0s sowe,//:dny
((110T “7v 72 uaSuERAI]) IO]qUIdSSE OWIUTA
/19u"9310J901n0s"ssoquua//:dny
‘SSOdINA
/21eM1J0S/13)/Npa-pIeArey 195p-oiqdwod,/:dny
S[ueAqpo/eIseIqp)
Aseq/a03 yrurwuiqoudyy/:dy ‘Ajquuasse o) oroxdwr 03 pauriorad oq ueo
((600T “7p 72 oydewe) doys uIrp[ojjeIs MU B ‘papIA0Id ST OWIOUDT 90UIJAI B J] -
0661 “1v 72 INYISIY) +LSV1d Pue LSV 14 *A[quiasseal [e00] & pue uoida1 ded
/310'uoypAdorqy:dpy oy def10A0 Jey) 9SO JO UONII[IS A} Aq PIMO[[OF ‘STNU0D
/19u°9310J001n0s" A[ud,//:dpy (#10T “v 12 1pUOL) :(oSeyoed uoyLg) uoppLgorg oy 03 spear oy Jo Surddewar e swiojiad A[oAneIo)] - Alug Sursopo den
"S9)BW A1) JO UOTIBJUILIO JATJE
-[9I Y} PUB UOT)BIAOD PIEPUE)S S} 4IOSUI) JO OZIS ULdW Ul
-pnjour ‘Areiqi pue-paired o1 Jnoqe uoneULIOJuT SaNMbay -
‘A[quiosseal [800] & pue uoidar ded
S[00}35Bq/SOTIRULIOJUTOIq/SOTUI (z107 ‘ourAOIIg o) def10A0 Jet)) 9501 JO UOTIOI[AS Y Aq PAIMO][OF ‘SSTIU0D
0Ud3/W0d" 1BI[09sEq MMM //:dNy pue 192300¢) QUON. oy 03 spear ay) jo Surddewar e swaojrad A[9AneId)] - wgden Juisopo den
‘Ajquuassear [eoo] e pue uor3ar ded
zo8ewy/s)oal o) def12A0 jer) 950Y) JO UOOJ[AS A} Aq PAaMO[[O] ‘SS1IU0D
-01d/30u°0810J001n0s//:5d1Y (0107 “Iv 12 18S]) QUON. oy 03 spear oy Jo Surddewar e swojiod A[oAneIa)] - ADOVINI Suisopd den
's31U0o JuIpuNOLINS Ay} JO SO3PA Y} Ul PAJBIO] SPEAI
oy Sursn uor3a1 ded oy ur A|qUISSSEAI [BI0] B SULIOLIO -
ourjodid Ajquesse odou ap
/uo310°sorwoud3d-deos,//:dyy (0107 “P 12 177) QUON O0AOUIPJVOS Y} Ul pajerdojur Apeaie oInjedy Jursofo-den - so[pdeny Jursopo den
JOAIOSIM / YUI] PRO[UMO(Q0uaIJY xSoouapuadog SQINIBJ UIRIA [ooL, K103912)

panunuood - [Aqe],

Kremer et al.

560

jsenb/nrneqds-Jurorqy/:dpy

1dea/sj00y/00u0
-10syn-oe" 105 ues mmm//:dpy

/S10719se[qdes/syoaf
-01d/30u°0810J001n0s//:5d1Y

jeadordewr
/OUBLIEWIQOP/W0d" qnupis//:dny

/19s01ow3/s309[
-01djour93103901n0s//:sdpy

(€102 “I 12 yo1a21nD)

/310 uRdo Mmmm//:dny
(a[npow [194) SYIH: oWl],
310 qipordyew/:dny
:(oSeyoed uoyLq) qpordiey
Jwod eARl mmm//:sdny

BAR[

/3101500q" MMM

:SOLIRIQI[1500q

/310°300(01d-1"Mmmmy/:sdny
d
/310 uRdo Mmmm//:dny

((sornpowr [194) 1381 pue SuoT::3doyon Nur:

(€107 “v 12 uny) :09dS::91] “0adg::aq1 ‘Ado))::[I] ‘QueUISEH: (L]

(9102 “/v 12 €S 3p)

(ST10T “1v 12 OuELIRIN)

(S10T “17 12 18nS03Y)

/12ur2310j201n0s rowwunu//:dny

“(#00T "1 12 Z)IN) PDWNNIN

/1se[q/A08 yruwiur1qou-dyy//:diy

(600 “1v 12 oyoewER)

‘0661 10 70 TYSIV) +1SV1d Pue LSV'1d
/1ou-o310J001n0s Tourtnu,//:dyy

(00T “1v 12 ZAINY) PWNNIN
Joura510§00In0s Io[qUIAsSE-eIIw//:dny
VAIN

/310 uoypAdorq/:dny

:(oSeyoed uopLg) uopLgorg

/se[q/A08 yru-wjuriqoudyy/:dy

{(600T v

Jo oqoRWE) (0661 "IV 12 TNYOSIY) +1SVId

sseA /1y i[-oyutorq//:dny

:(S00¢ “AoxoyoNy puE 9ON) SSVA
/1U"9310J901n0s°01q-11M0q//:dNy

:(600T v 12 peowdue]) anmog

se[q/a08 yrurwu-tqou-dy/:dyy

(600T “1P

12 oyoRWE) (0661 <77 12 [MYISIV) +LSV 14
/1ur2310J901n0s" Iowrwunuy//:dyy

(p00T 77 12 ZNY) PWNNN

"owouas 90UI0JAI B 0) Uy} dredwod 1o / pue ‘Ouousd
ouIes 9} 10 SAI[qUIOSSE JUAIYJIP dredwod 0) pasn oq ue)) -

‘0sTpue

0SN %D+ Se Yons ‘SoLIow A|qUIOSSE [BIOAS 9JB[NO[e)) -

"PI[QUIISSESIW S PIJIIUSPT

suor3or oy} Sumids £q pojeIouds s1 SP[0JJeoS JO 39S MU Y -

*98e10A00 Juedarosip e juosard

Arensn £ay) se pOYIUSPI 9 ULD SUOISAI POJqUISSSESIIA] -
*SPJ0JJeos oy} 01 Jorq spear oY) Surddewar 1oyye o5e10
-A09 1]} U0 paseq A[qQUIASSE A} JO AOBINDOE O SAJR[NOTR)) -

-owouas 10318} o1 JO

Ajquuasse oanjeurdfe ue Suisn Sursojo-deS [enuewr e SMO[Y -

'ss0001d Fursofo-ded

oy uiioy1ad 03 A[quIasse papIn3-oouaIofol € sas() -

“Josn oy} Aq papIaoid owouss paje[aI-A19so[o

& Sursn SUIp[OJJeOS POSEQ-00UIAJAI B SULIOJIdJ -

"SOT[qUIOSSE DATIRUINE) UT SAI[QUIISSESIUT

J0 1031J9 2y} p1oAe 0} sisA[eue pooyray1] & sarddy -

‘Sursopo-des oy wioyrad 03

SOI[qUIOSSE dATIRUIR)[E PUE speal pud-paired 1joq osn AepAl -

uoneneAd
LSvNO Ajquiassy

uonenyeAd
AdVAd Aquassy

wysegdeny Sursopd den

jeodoydely Sursopo den

SOTOIND Sursopo den

IOAIOSQIM / JUI] PEOTUMO(

ERIRNEIEN|

«Soouopuadoq

SoINJBJ UTRJA

1001, £K103918)

panunuoo - [Aqe,

561

Finishing microbial genomes

"sooudpuadap se pajsi| jou d1om swerSoid osay) ‘SgO S} JO SUOISIOA / SUOnng

-LI)SIP Y} JO ISOW Ul PopN]oul Apealfe o1e Jos AJ[1in pIepue)s XIun)/ND oy} pue uoikd ‘yseq ‘[1od DDD “me ‘pas ‘ayejq sy "(sSO) swaisAs Sunerodo SO orJA 10 Xxnur ‘XN Suruunt 10jnduwiod e SuLIopIsuo)) = ,

/IoNOFS/Pa"pson'xiq//:dny

/1our0310J021n0s UI001//:d)y

/19s01ow3/s309[
-01djour23103901n0s//:sdpy

/[eSo/npa K9]
-1 yyewrolq,/:dny

8100100501 MMM //:dPY

Jwod ARl mmm//:sdny

_uragdiojeonosiaystuyd/dny (9107 7 12 IAZIND) ‘BAR[

/310yderd(y:dny

:(Areaqi] eaef) pydein

Jwod eAel mmm//:sdny

(Z10T “1v 12 udUOY) ‘BAR[
/dnaqid eyess; juz/qndsn-oe 1o3ues-dyy//:dy
(100 "7 32 SUIN) dnd[ld VHV'SS

onew
0dus/}00IUAS/JaU"9310J001n0s uAs drewodus/:sdny
(600T “DISMONILIMY] PUB OXSUBIA]) OLeW-0-dNS

sseA /1y i[-oyutorq//:dny

:(S00T “AozeydNI puE 0N) SSVA
/12u"2310J901n0s°01q-11M0q//:dNy

1(600C v 12 peowdue]) anmog

se[q/a08 yrurwu-tqou-dy/y:dyy

(600¢ 17

72 OyoRWED (0661 "IV 12 [YOSIY) +1SV'1d
/12ur2310J201n0s" rowwunu//:dny

“(#00T 7P 12 Z)IY) PDWNOIN

(010T 17 12 ONO)

(S10T “v 12 130803

(€107 “ToryoRd
pue uewyey) QUON

sjooydmos/edAd/woo qnuns,/:sdny
:(93eyord uoyLy) sjoordnog
xrwAd /310 X1wAd - mmm//:dny
:(o3exord uoyLq) x1wukg

310" Adwnu-mmam//:dny

:(93exord uoyAg) AdwnN
S1oyrewduwy//:dpy

:(e8eyord uoy£q) yrewdy

810 qipordiew//:dny

(€10T “1v 12 1e[D) {(e8epord uoyA) qrpordien

‘uonnqrusip

MINS-DD) A} UO PIseq SUOITAT PA[QUISSSLSIW SAYTUIP] -
‘ssa001d

uo1oa1109 A[quIdsse Ay} YPm Suofe ‘sainpadold Juisopo-ded
pue das SuIp[ojeos PIPING-20uIQJal B SAeIZAU] -

‘speal pua-paxted axnbar) usdo(-

‘speal pud-paired pue SIOW-Y WOJJ UoHeULIOjUl SuIsn
SUOISAI PA[qUISSSESIW A} JO A|qUISSSEAI [BOO] B SULIOJId] -

‘STAANI HOYS pue suonmsqns-oseq se Yons ‘sorjquiossesiu

1I0US S}091100 PUE SOIIIIUIPI A[OATIORION] -
‘speal puo-paired sarnbay -

'STANI HOYS Pue SUOTIMIISQNS-9SEq S [ONS ‘SAI[qUIdSSESTUT

1I0YS S}0AII00 PUE SOIFIIUAPT A[OAT)ORION] -
‘speal pua-paired saxmnboy -

"PI[QUIASSESIW SB PAIJIIUPI

suor3ar oy} Sumiyds £q poje1ouas s1 Sp[0JJeds JO 19 MU Y -
*Suo13a1 pa[quuassesiw AJnuapt 0} (Ajquiasse

JATIRUIS)[E JO) SWIOUDT dOUIQJAI B 0) A[qUIASSE oY) SUSI[Y -

'SpJ0JJeos oy} 01 yoeq spear oY) Jurddewor 1oyye 9510
-A0D 9]} UO Paseq AJquIasse) JO AoBINIOL) SOIR[NO[R)) -

“OWOUdT 9OUAIJAI B 21rnbar 3, usa0(] -
*SPJ0JJeos oy} SUO[e UONNQLISIP 9,0+, PUB SIOW-I
o1) U0 paseq A[qUIASSE A} JO AOBINDOE oY) SAIB[NOTR)) -

uorj0ax
IQUSIULD) -100 A[qUIASSY

uoroal
[PondIS -109 A|[qUIASSy

uondalx
NYUOD! -100 A[quiassy

uoneneAd

AN[BAIND Alquiassy
uonen[eAd

TVH0 Ajquuassy
uonenjeAd

41V Ajquuiossy

JOAIOSQIM / JUI] PEOTUMO(T

Q0U0IJY xSoouapuado

SoINJB9J UTRJA

1001, K103918)

panunuood - | AqeL,

562

Draft genome assembly

/\
P Y —_——
Ppéired-end. yos /() Paired-end //
<or long-read 3/ long-read based /
“available?” scaffolding
N\ d
| No

7 ,Ma%\
/ (b) Assembly / _dlternative ™.
integration /" ygg . denovo /T
/ assemblies?

" No

/\
Close-related
_ reference . Yes
“._genome
available?
N/

/ 7

/ (e) Multiple /
reference

/ contig ordering/

AN
_ Mdltiple (dratt)_ Yes
“references?/
N
| No

/\ = ,
/ (d) Rearrangemeng//
/ aware contig /
ordering ~ /

LN
No _/Structural . Yes
rearrangements?
X .2 L

[No

— / \\ ”
4 (c) Standard /
/ contig ordering /

/ / \

/ -/ Yes ,Remaining-__
(g) Gap-closing / S gaps?
/ / AN /

No

/\
/ VA
/ () Assembly /
correction /

N
/Palred-end\ Yes
»<{ data SR
“available?/
/
\(/ A

‘No

/ /
/ /

7

/(h): Assembly /.
evaluation
/

/

‘ Improved genome assembly ‘

Figure 1 - A flowchart demonstrating how and when the different genome
finishing approaches can be combined according to the data that is avail-
able for the user. (a) Scaffolding using paired-end reads or long-reads,
which is directly dependent on the way the genome was sequencing (plat-
form, library), and sometimes performed as part of the de novo assembly
process. (b) Assembly integration, which consists in the combination of
different de novo assemblies and generation of a consensus/extended as-
sembly. Some programs use only the assemblies as input, while others use
also the sequencing reads. (c) The standard contig-ordering approach
based on a single reference genome, which consists in the identification of
synteny blocks that guide the orientation of the contigs in the draft ge-
nome, without taking into count the occurrence of genome inversions
other rearrangements. (d) The rearrangement-aware contig-ordering, that
identifies potential sites of inversion and translocations based on signa-
tures on the alignment against the reference genome. (e) The multi-
ple-reference contig ordering, that may be more appropriate in those cases
where there is no finished reference genome, but there is a relatively high
number of close-related drafts, or when there are no apparent closest refer-
ence to be used. (f) Assembly correction, which consists in the removing of
short misassemblies, including base-substitutions and short insertions and
deletions. (g) Gap-closing, which consists in the joining of adjacent
contigs that used to be spaced by a gap. (h) Assembly evaluation, which
may provide help to access the reliability of the assembly.

Scaffolding

By definition, a contig consists of a contiguous se-
quence has no unknown regions or assembly gaps (but may
contain “N” that represent base-calling errors) (Staden,

Kremer et al.

1979). On the other hand, a scaffold consists of two or more
contigs that have been joined according to some linkage in-
formation (e.g., paired-end reads, genome maps) (Huson et
al., 2002). Paired-end or mate-pair libraries can be very
useful in de novo genome assembly, and several tools use
the relative position information to connect contigs into
scaffolds (Hunt ef al., 2014). In a similar way, with the in-
crease in the availability of genomic sequences from a wide
variety of species, other scaffolding alternatives were de-
veloped to use one or multiple genomes as reference to or-
der the contigs.

Paired-end scaffolding

Most of the de novo genome assemblers usually inte-
grate scaffolding steps after the contig constructions, al-
though it is also possible to use third-party tools aiming a
more reliable result. The A5 assembly pipeline (Tritt et al.,
2012), for example, uses de novo assembler IDBA (Peng et
al.,2010) to construct the contigs and SSPACE (Boetzer et
al., 2011) to generate scaffolds. The scaffolding with
paired-end reads usually consist of the alignment of reads
to the contigs, followed by the identification of connections
between different contigs using the relative-orientation in-
formation and the estimated insert-size. ABySS (Simpson
etal.,2009), SOPRA (Dayarian et al., 2010), SOAPdenovo
(Li et al., 2010), Bambus 2 (Koren et al., 2011), MIP
(Salmela et al., 2011), Opera (Gao et al., 2011), SSPACE
(Boetzer et al., 2011), SLIQ (Roy et al., 2012), SGA (Sim-
pson and Durbin 2012), SCARPA (Donmez and Brudno
2013), WiseScaffolder (Farrant et al., 2015) and
ScaffoldScaffolder (Bodily ef al., 2016) are examples of
scaffolding tools based on paired-end information. More
recently, the use of long-reads was also incorporated into
scaffolding tools such as AHA (Bashir ef al., 2012) and
SSPACE-LongRead (Boetzer and Pirovano, 2014).

ABYySS (Simpson et al., 2009): The program abyss-
scaffold, which comes with the ABySS assembly package
(Simpson et al., 2009), uses the estimated mate-distance
distribution in paired-end reads to connect contigs and gen-
erate scaffolds. The distance distribution can be calculated
by DistanceEst, that is also part of the package, and is also
used by other assembly pipelines, such as SGA (Simpson
and Durbin, 2012). ABySS was developed to be used both
with small and large genomes, and can be executed in a
computer clustering by using the Message Passing Inter-
face (MPI), this being useful also in case of high-coverage
data and when dealing with multiple libraries. Like most
scaffolding programs, abyss-scaffold can be used also in
the scaffolding of contigs generated by third-party pro-
grams. Finally, ABySS also supports scaffolding with
long-reads by using BWA-MEM for read alignment (Li
and Durbin, 2009). The source code of the ABySS package
is available at the address http://www.bcgsc.ca/platform/
bioinfo/software/abyss, and is developed to work on the
Linux operating system.

Finishing microbial genomes

SOPRA (Dayarian et al., 2010): This scaffolding tool
was designed to improve assemblies generated by Velvet
(Zerbino and Birney, 2008) and SSAKE (Warren ef al.,
2007), and targets the earlier sequencing platforms from
Illumina and ABI SOLiD. The program parses the read-
placing file generated by these assemblers and extracts in-
formation of paired-end/mate-pair reads, that is used to cal-
culate the mean distance between pairs and the correct
orientation. Based on this file, SOPRA also infers the con-
nections between contigs by searches of those pairs of reads
where mates are in different contigs. The program is not
fully automated, so each step of data processing must be ex-
ecuted by a different script before the main scaffolding pro-
cess. Another drawback is the limited support for different
de novo assemblers, as it requires read-placing files in AFG
format, and this is only produced by a few assemblers now-
adays (e.g., Velvet, Ray and AMOS). SOPRA can be ob-
tained from the website http://www.physics.rutgers.edu/
~anirvans/SOPRA/.

Bambus 2 (Koren et al., 2011): It is part of the AMOS
package (Treangen et al., 2011) and is both a genome and
metagenome scaffolding tool and an updated version of the
Sanger-based program Bambus targeting NGS data (Pop et
al., 2004). The program requires read-placing information
to construct a contig-graph, and explore the graph to find
consistent connections between the contigs. As Bambus2
can also be used to scaffold metagenomic assemblies, dif-
ferent from other programs, it considers the effect of DNA
samples containing mixes of closely related organisms in
the assembly processes and reduces the chance of fragmen-
tation and miss-joining by analyzing the molecular vari-
ants. However, the use of Bambus 2 is not as simple as for
other scaffolding tools, as it requires some experience with
the AMOS tools to generate its input file and processes the
outputs (Treangen et al., 2011). The AMOS package can be
obtained from the SourceForge repository:
https://sourceforge.net/projects/amos/.

MIP (Salmela et al., 2011): uses the concept of mixed
integer programming to generate a set of scaffolds from a
genome assembly and a set paired-ends/mate-pair reads.
First, readaligner (Mékinen et al., 2010) is used to map the
read-pairs back to the contigs. Then, the pairs are filtered to
remove inconsistent connections, and the distances be-
tween the contigs are estimated based on the mean distance
between the mates, which is calculated for each library used
in the assembly. The connections in the generated scaffold
graph have a minimum and maximum estimated length, de-
rived from the library information. The MIP source code,
along with wusage instructions, is available at
https://www.cs.helsinki.fi/u/lmsalmel/mip-scaffolder/.

Opera (Gao et al., 2011): takes as inputs a collection
of contigs and mapped reads and generates a scaffold graph
based on the paired-end information. Frist, the program fil-
ters the connections between contigs to remove possible
miss-joining errors caused by chimeric pairs. The graph is

563

contracted, and the optimum orientation of the contigs
inside the scaffolds is inferred by a dynamic programming
algorithm that explores the search space. The algorithm can
also infer the occurrence of repeated genomic regions, usu-
ally assembled into a single contig in case of short-reads. In
this case, repeated regions are identified by comparing the
coverage of the contigs to the mean coverage of the whole
genome and selection those with value greater than 1.5
times the genomic mean. The identification of these regions
allows a contig to be used in more than one scaffolds, which
can provide a better assembly of repeated regions, but can
also result in misassemblies. Opera can be obtained from its
SourceForge repository https://sourceforge.net/projects/
operasf/.

SGA (String Graph Assembler) (Simpson and Durbin
2012): is a de novo genome assembler developed for the
memory-efficient assembly of small and large genomes by
applying the method proposed by Myers (2005). As part of
its assembly pipeline, SGA also provide a scaffolding tool
that uses information from read alignment (in .BAM for-
mat), that can be generated by a wide variety of mapping
tools (Li ef al., 2008; Langmead et al., 2009; Lunter and
Goodson, 2011), and estimated distance between mates,
generated by DistanceEst, from the ABySS package, to
connect contigs into scaffolds. SGA also supports scaffold-
ing from multiple libraries, with different insert sizes, and
was optimized to work with Illumina data. SGA is available
from the GitHub repository https://github.com/jts/sga.

SCARPA (Donmez and Brudno, 2013): wuses
paired-end information to generate scaffolds, but takes into
account that not only chimeric reads may be to responsible
for inconsistent linkages between contigs but also mi-
sassembled sequences. It estimates the mean and standard
deviation of the distance between the mates, but only uses
information from those contigs with length greater than the
assembly N50. The connections between the contigs are es-
timated based on the mate information and the calculated
metrics, and if more than one library is provided, SCARPA
process the scaffolding iteratively starting from the library
with smaller insertion size. The program can be obtained
from the URL http://compbio.cs.toronto.edu/hapsembler/
scarpa.html.

SSPACE (Boetzer et al., 2011) and SSPACE-
LongRead (Boetzer and Pirovano, 2014): these scaffolding
programs are currently distributed by BaseClear
(http://www.baseclear.com), which also distributes the
gap-closing program GapFiller (Boetzer and Pirovano,
2012). SSPACE requires information about paired-end li-
brary, including mean and standard deviation of distance
between the mates and the expected orientation, whose val-
ues can be predicted with the script “estimate in-
sert_size.pl”, distributed along with the program. The user
may choose between BWA (Li and Durbin, 2009) and
Bowtie (Langmead et al., 2009) for read mapping, the mini-
mum number of connections to link two contigs, the num-

564

ber of bases that will be removed from the border of the
contigs (as they usually contain errors), and the number of
iterations. For SSPACE-LongRead, the target assembly is
aligned to a collection of long-reads using BLASR (Chai-
sson and Tesler, 2012) and the alignments are filtered and
refined to find the best orientation. Both SSPACE and
SSPACE-LongRead can be requested from the BaseClear
website http://www.baseclear.com/genomics/
bioinformatics/basetools/.

Hunt e/ al. (2014) have performed an extensive com-
parison of the scaffolding tools and demonstrated that the
quality of the resulting scaffolds is directly affected by the
read-mapping program and the complexity of the genome.
For the tested datasets, the best results were obtained by
SGA, SOPRA and SSPACE, although all tested tools pre-
sented a certain percentage of miss-joined scaffolds in their
outputs. Some scaffolding tools (e.g., SGA) use pre-
aligned reads as input, so the user is able to test and choose
the read mapper. In this case, it is important to try different
read mappers, taking into account that platform-specific
bias and read quality may have a drastic effect on the qual-
ity of the alignment (Hatem et al., 2013; Caboche et al.,
2014). When using mate-pair libraries (long-insert paired-

a) Unordered Contigs

b) Aligning contigs to a reference sequence

)
(\(&6
('0
c°""es

Kremer et al.

end reads) it is also important to check if the scaffolder was
designed to support it, or if it was just designed for stan-
dard, short-insert, paired-end reads. As mate-pairs may
present a relatively high rate of “false mates”, special care
may be taken when working with this type of data.

Single reference-based scaffolding

In many cases the pairing information is not enough
to generate a reliable reconstruction of the genome’s struc-
ture, or simply, the genome was not sequenced using
paired-reads, but with single-end sequencing. In order to
overcome this, some tools were developed to use a refer-
ence genome as a template to perform the contig ordering
and relative positioning (Figure 2). Software like MUMmer
(Kurtz et al., 2004), ABACAS (Assefa et al., 2009),
CONTIGuator (Galardini et al., 2011) and Mauve (Darling
et al., 2004; Rissman et al., 2009) are able to identify the
most probable orientation of the contigs, but may generate
incorrect results in the case of genome inversions of trans-
locations. On the other hand, SIS (Dias et al., 2012), CAR
(Lu et al., 2014), and FillScaffolds (Mufloz et al., 2010)
consider the occurrence of changes in the genomic struc-
ture and take these phenomena into account during the

e

cOntig 10

| contigs | | Contig 5 | | contig7
reference sequence
c) Scaffolding
Contig 9 I-' Contig 5 I——l Contig 7
‘ ...NNNNNNNNNNNNN... ‘

gap region

gap region

Figure 2 - Reference-based contig ordering. (a) The program takes a set of contigs (or scaffolds) and (b) aligns these to a reference genome to identify the
most probable relative orientation of the sequences in the draft genome. (¢) Regions not covered by the contigs represent gaps and may be sequencing/as-
sembling artifacts or natural deletions. Based on the relative position of each contig, a scaffold is created.

Finishing microbial genomes

analysis, generating a more accurate reconstruction. All
these tools use information from a single genome as refer-
ence, however more recently, some tools, such as Ragout
(Kolmogorov et al.,2014) and MeDuSa (Bosi et al., 2015),
were developed to use information from multiple reference
genomes, allowing an evolutionary-based inference of
structural re-arrangements. These multiple reference-based
contig ordering tools will be discussed in the next section.
MUMmer (Kurtz et al., 2004): is a genome-scale se-
quence alignment tool which can be applied to perform the
alignment of a set of contigs/scaffolds to a reference ge-
nome, allowing a wide variety of applications in genomic
analysis and NGS data processing, including reference-
guided scaffolding. The two main algorithms of the
MUMmer package are NUCmer, which performs a stan-
dard DNA-DNA alignment, and PROmer, which performs
an alignment of the six reading frames of both sequences
(leading to a more sensitive result, especially in the case of
highly divergent organisms). The package also includes
other tools, such as delta-filter, that can be used to remove
the ambiguities in the alignments and select those that are
more relevant for the analysis. Many scaffolding tools, like
ABACAS (Assefa et al., 2009), CONTIGuator (Galardini
et al., 2011) and MeDuSa (Bosi et al., 2015), are built on
top of MUMmer and take advatange of its performance, but
also add new features to improve the output. MUMmer it-
self does not provide the sequence of the scaffold, just the
positions of the alignments. Therefore, it is necessary to
perform a post-processing of the results to obtain the se-
quence of the scaffolds. MUMmer can be obtained from its
SourceForge repository http://mummer.sourceforge.net/.

ABACAS (Algorithm-based Automatic Contigua-
tion of Assembled Sequences) (Assefa et al., 2009): can use
NUCmer or PROmer from the MUMmer (Kurtz et al.,
2004) package to align the contigs against a reference ge-
nome. The regions that do not have an equivalent sequence
in the contig set are filled with Ns, indicating gaps.
ABACAS can also be used to design PCR primers to am-
plify the unknown regions by integrating Primer3 (Ko-
ressaar and Remm, 2007; Untergasser et al., 2012).
ABACAS can be obtained from its SourceForge repository
http://abacas.sourceforge.net/, and as part of the PAGIT
package (Swain et al., 2012), available at http://www.sang-
er.ac.uk/science/tools/pagit.

CONTIGuator (Galardini et al, 2011): uses
ABACAS (Assefa et al., 2009) to perform the contig order-
ing, but adds support to multiple references, which may be
useful in the case of organisms that have more than one
chromosome. BLAST (Altschul ef al., 1990; Camacho et
al.,2009) is used to align the contigs used as input with the
reference sequences to identify the correct reference for
each sequence. Then, ABACAS (Assefa et al., 2009) is
used, and its results are integrated with the BLAST align-
ment to generate a final assembly. CONTIGuator can be
obtained from its SourceForge repository

565

http://contiguator.sourceforge.net/, and is also available as
a webserver http://combo.dbe.unifi.it/contiguator.

Mauve (Darling ef al., 2004; Rissman et al., 2009): is
an alignment tool that can handle and align multiple ge-
nomes and identify regions of high similarity called Lo-
cally Collinear Blocks (LCBs). One of the program’s fea-
tures, Mauve Contig Mover, performs contig ordering
using the same algorithm (Rissman et al., 2009). The pro-
gram runs in an iterative mode, generating and optimizing
the contig orientations based on the reference until no
change is possible that can improve the model. A directory
is generated for each iteration that contains inputs to visual-
ize the genome in Mauve and a FASTA file with the sorted
contigs. The Mauve aligner can be obtained from the URL
http://darlinglab.org/mauve/mauve.html.

FillScaffolds (Mufioz et al., 2010): analyzes the ge-
nomic distance between the contig set and a reference ge-
nome and generates an ordered sequence through
identifying orthologous genes. It considers the effects of
the evolutionary distance in the case of missing genes, and
then uses the position of the orthologos present in the refer-
ence to order the contigs. The source code of FillScaffolds
is available as a supplementary data of the Muioz et al.
(2010) paper at:
http://bmcbioinformatics.biomedcentral.com/arti-
cles/10.1186/1471-2105-11-304.

SIS (Scaffolds from Inversion Signatures) (Dias et
al., 2012): takes as input a set of contigs in FASTA format
and a coordinate file generated by NUCmer or PROmer
(Kurtz et al., 2004) after these contigs have been aligned
with the reference sequence. Using the coordinates, the
program searches for inversion signatures and generates a
collection of orientations of the sequences that can be used
to construct the scaffolds. The source code of SIS can be
obtained from the URL http://marte.ic.unicamp.br:8747.

CAR (Contig Assembly using Rearrangements) (Lu
et al., 2014): uses NUCmer and PROmer in combination,
unlike ABACAS (Assefa et al., 2009) and SIS (Dias et al.,
2012), that use the result of only one. Based on the coordi-
nates, CAR uses a block permutation model to generate the
contig order by considering not only the effect of the ge-
nomic inversions, but also the occurrence of transpositions
(Li et al., 2013). CAR can be used from the webserver
http://genome.cs.nthu.edu.tw/CAR/, where the source code
is also available for download.

Considering the main algorithm of each program, it is
important to keep in mind that the most appropriate tool for
a given task will depend on the organism and the availabil-
ity of the reference genomes. ABACAS (Assefa et al.,
2009) is very useful if the reference genome is larger than
the target genome (considering the sum of the length of all
contigs, and that all contigs have a homologous region in
the reference), and the primer designing tools might be
helpful in some cases; however, its sensibility decreases in
cases of structural divergence. In such cases, other tools,

566

like CONTIGuator (Galardini et al., 2011) and Mauve
(Darling ef al., 2004; Rissman et al., 2009), may be more
effective. Finally, SIS (Dias ef al., 2012) and CAR (Lu et
al., 2014) are indicated if the draft genome may present
genomic inversions or transpositions. For most of the appli-
cations, these tools usually provide reliable results, espe-
cially for organisms that do not show a very variable ge-
nomic organization, and/or when there are enough finished
genomes to properly choose the best reference. However,
in some situations it may be necessary to evaluate different
tools and references to check which one provides the best
results. Finally, a single-reference may also lead to an
“overfitted” ordering, especially when the reference is
smaller, or in case of genomic inversions and translo-
cations.

Multiple reference scaffolding

Sometimes it is very difficult to identify the most ap-
propriate reference genome to use for contig ordering, es-
pecially when structural rearrangements are common
events in the genus/species of interests. Additionally, when
using BLAST to identify the most “close-related” strain
from a database of already finished genomes, it is not usual
to find different strains as best hit for each contig. Finally,
there are also those cases where no finished genome is
available, but there are draft genomes of related strains. In
these cases it would not be appropriate to use programs that
take into account alignments against only one reference, so
data from multiple organisms should be considered. The
use of multi-references is relatively recent and another con-
sequence of the advent of NGS, as there is more draft
genomes than finished ones available in public databases.
Examples of algorithms and programs that use this ap-
proach are RACA (Kim et al., 2013), Ragout (Kolmogorov
et al., 2014) and MeDuSa (Bosi et al., 2015).

RACA (Reference-Assisted Chromosome Assem-
bly) (Kim et al., 2013): uses local sequence alignment to
identify co-linear synteny blocks. The synteny blocks are
filtered using a length threshold, and based on the reference
genomes, the probability of each synteny block adjacent to
the others is calculated. This probability can also be com-
bined with paired-end information to identify the most
probable set of scaffold. The source code of RACA can be
obtained from the URL http://bioen-compbio.bioen.illi-
nois.edu/RACA/.

Ragout (Kolmogorov et al., 2014): uses phylogenetic
information and synteny blocks to order a set of contigs
from a target genome using multiple genome references.
First, Sibelia (Minkin et al., 2013) is used to identify
synteny blocks shared by the target and the reference se-
quences. Based on the synteny, the nucleotides of the ge-
nomes are represented as sequences of blocks, and the best
“block orientation” is identified by a maximum parsimony,
taking into account the block order in the reference ge-
nomes. The source code of Ragout can be obtained from its

Kremer et al.

repository at GitHub https://github.com/fenderglass/Ra-
gout.

MeDuSa (Multi-Draft based Scaffolder) (Bosi ef al.,
2015): is a graph-based scaffolder that uses information
from multiples references, which can be finished or draft
genomes. The program uses NUCmer to alignment the tar-
get genomes to the references and construct a weighted
graph based on the alignments were the nodes of the graph
are connected by identifying those contigs that aligned to
the same sequence in the references. In the next step, the
orientation of each contig is assigned based on the align-
ment information and the most-probable ordered identified
in the graph. The source code of MeDuSa can be obtained
from the repository at GitHub https://github.com/
combogenomics/medusa.

Assembly integration

Different assemblers, or even the same assembler ex-
ecuted with different configurations, may produce different
results. Minimum coverage, coverage cut-offs, minimum
contig length, and k-mer size are examples of just some pa-
rameters that can affect the decisions of the assembler dur-
ing the construction of the contigs (Baker, 2012). The way
low-quality reads are treated, or how the correct paths in the
assembly graph are constructed, is also different for each
program. As different assemblies may present different
representations of a given region in the genome, the con-
struction of a “consensus assembly” can be an effective
method of reducing assembly errors and generating an opti-
mized set of contigs. This process, which is sometimes
called “assembly reconciliation,” “assembly merging,” or
“assembly integration,” can receive as input only a set of
assemblies, as implemented in Minimus (Sommer et al.,
2007), Reconciliator (Zimin et al., 2008), MAIA (Nijkamp
et al., 2010), CISA (Lin and Liao 2013), GAA (Yao et al.,
2012) and Mix (Soueidan et al., 2013), or both a set of as-
semblies and the reads used for the assembly, as is the case
with GAM-NGS (Vicedomini et al, 2013) and Zorro
(Argueso et al., 2009).

Minimus (Sommer ef al., 2007): is an assembly tool
from the AMOS package (Treangen ef al., 2011). Initially
conceived to perform assembly of small genomes, it was
posteriorly adapted for assembly integration. The main al-
gorithm is based on the overlap-layout-consensus paradigm
(Peltola et al., 1984), which involves taking a set of se-
quences and performing several alignments to identify
overlaps. The information provided by the alignments is
used to construct a graph that is minimized by a combina-
tion of algorithms (Myers, 1995, 2005) to generate a final
assembly. Minimus is available as part of the AMOS pack-
age, which can be obtained from the SourceForge reposi-
tory https://sourceforge.net/projects/amos/.

Reconciliator (Zimin et al., 2008): uses NUCmer,
from the MUMmer package (Kurtz et al., 2004), to identify
assembly errors by comparing a template with a secondary

Finishing microbial genomes

assembly. With the alignments, the tool is able to identify
the regions that have possibly suffered compression or ex-
pansion due to assembly errors in repetitive DNA se-
quences. The source code of Reconciliator is available from
the URL http://www.genome.umd.edu/.

MAIA (Multiple Assembly Integrator) (Nijkamp et
al., 2010): uses the overlap-layout-consensus paradigm in a
similar way to Minimus to construct a graph based on the
overlaps identified by MUMmer (Kurtz et al., 2004). The
connections in the graph are used to construct a new assem-
bly, and contigs that have no connection can be integrated
with the assembly using a reference genome as a template.
MAIA was implemented on top of the Matlab program-
ming language and is available as a package for it that can
be obtained from the URL http://bioinformatics.tudelft.nl.

GAA (Graph Accordance Assembly) (Yao et al,
2012): is an assembly integration software that is based on a
homonymous data structure. Taking a set of contigs as in-
put, the tool uses BLAT (Kent, 2002) to generate align-
ments, identify overlaps and then generate a graph that
represents the connections between the contigs. GAA is
available from the SourceForge repository
http://sourceforge.net/projects/gaa-wugi/.

CISA (Contig Integrator for Sequence Assembly)
(Lin and Liao, 2013): uses a four-step algorithm to generate
the merged assembly. First, a set of representative contigs
is chosen from the individual assemblies. Assembly errors
are identified by aligning all sets to one another, and any re-
gions that are present in only one sequence are considered
to be erroneous. In the event of errors, the contigs are bro-
ken in the incorrect portion into smaller sequences. The
third step consists of generating several alignments using
BLAST (Altschul ef al., 1990; Camacho ef al., 2009), and
NUCmer (Kurtz et al., 2004) to identify the optimal length
of repetitive sequences. The information generated in the
third step is used to construct the merged assembly in the fi-
nal stage of the program. CISA can be obtained from the
URL http://sb.nhri.org.tw/CISA/.

Mix (Soueidan ef al., 2013): uses alignments gener-
ated by NUCmer (Kurtz ef al., 2004) to generate an exten-
sion graph where the contigs are connected by their
borders. The alignments are filtered to remove repetitive
sequences, and this information is used to generate a graph.
Finally, the algorithm parses the graph to identify the Maxi-
mal Independent Longest Path Set (MILPS) that represents
the final assembly. The Mix source code is available at the
GitHub repository https://github.com/cbib/MIX.

GAM (Genomic Assemblies Merger) (Casagrande et
al., 2009) and GAM-NGS (Genomic Assemblies Merger
for Next Generation Sequencing) (Vicedomini et al.,
2013): GAM takes an assembly as a template, which is re-
ferred to as the “master”, and extends it using one or more
sets of auxiliary assemblies (called “slaves”) by identifying
blocks inside the sequences that were generated by the
same reads. GAM was designed to run using contigs that

567

are generated by Sanger sequencing, and it needs an AFG
layout file that contains the position information of the
reads used to construct the contigs. AFG files are only pro-
duced by a few NGS assemblers, like Velvet (Zerbino and
Birney, 2008) and Ray (Boisvert ef al., 2010). A newer ver-
sion, called GAM-NGS (Vicedomini et al., 2013), was de-
veloped to work in the modern context of genome assembly
and to avoid the requirement for a template file by using a
read alignment file (BAM) (Li ef al., 2009) instead. Addi-
tionally, GAM-NGS can also identify misassemblies and
perform corrections before generating the final assembly.
The source code of GAM-NGS is available from the
GitHub repository https://github.com/vice87/gam-ngs.
Zorro (Argueso et al., 2009): Combines a preprocess-
ing step based on the masking of repetitive DNA in the se-
quences, followed by the split of possible misassembled
regions, and the assembly integration performed by Mini-
mus (Sommer et al., 2007). The misassembled regions are
identified by using Bowtie (Langmead et al., 2009) to re-
map the reads used for the assembly back to the contigs and
by analyzing the coverage along the sequence. Zorro can be
obtained from the URL http://Ige.ibi.unicamp.br/zorro/.
The use of read alignment information, usually taken
from BAM/SAM files, may help Assembly integrating
tools to properly choose and identify bocks that are derived
from the same genomic region, but, just like scaffolding,
the quality of the process be directly affected by the se-
quencing platform and settings of the read mapper. Addi-
tionally, assembly integration with paired-end reads is usu-
ally much more time and memory consuming than
scaffolding, so it is important to its important to check the
system’s availability before choose use this approach.

Gap closing

As described in the first section, different kinds of in-
formation may be used to generate scaffolds, like paired se-
quence, optical and/or genomics maps, and a reference
genome. To improve the assembly, some algorithms were
designed to close the gaps inside the scaffolds. One ap-
proach (Figure 3), which is used by tools like GapCloser (Li
etal.,2010; Luo et al., 2012), IMAGE (Tsai et al., 2010),
GapFiller (Boetzer and Pirovano, 2012), Enly (Fondi et al.,
2014), MapRepeat (Mariano et al.,2015) and Sealer (Pauli-
no et al, 2015), utilizes the information of single-
end/paired-end reads to extend, and sometimes locally-
reassemble, the contigs and close the gaps. Another ap-
proach, which is employed by FGAP (Piro et al., 2014) and
GapBlaster (de Sa et al., 2016), uses an auxiliary set of
contigs to find sequences that may fill the region based on
local alignment. Finally, hybrid approaches, such as
GMcloser (Kosugi ef al., 2015), may use a combination of
paired-end data, alternative assemblies and long reads in
the gap-closing process.

GapCloser (Li et al, 2010): is part of the
SOAPdenovo software package (Li et al.,2010). This mod-

568

a) Mapping paired-end reads back to the scaffold

[aTcccaeaeaeaeaeaac

Kremer et al.

[AGccaTAcGAGGCGTACAY

[AcaTAGCTAGCAGCGCAT »

[cTaGaTCGCTAGATAGET)

[aGcacceaTATTAGCCAT >

[TCGCTAGATCGCTAGATA »

|cacaeaeanGeAGCGATA >

[CGCGCGCGCAAGCAGCG)

[6GCGTACATCGCTAGATCG)

[GAGGCGTACATCGCTAG >

i TCAGCTAGCATCCCGCGCGCGCGCAAGCAGCGdNNNNNNNNNNNNNNl\kCGTACATCGCTAGATCGCTAGATAGCTAGCAGCGCATCGA

b) Selecting reads that overlap the gap region

| ATcccaeacaeaeacaacy

Gap region

[AGccaTACGAGGCGTACA »

[AGATAGCTAGCAGCGCATY

| cTAGATCGCTAGATAGCTY

| AGcAGCGATATTAGCCATY

[TcacTAGATCGCTAGATA Y

| cacacaeanceageeaTay

| cacacacacanceaces »

| ecaTacaTcaeTAGATCY
| GAGGCGTACATCGCTAG)

TCAGCTAGCATCCCGCGCGCGCGCAAGCAGCGANNNNNNNNNNNNNNI\JGCGTACATCGCTAGATCGCTAGATAGCTAGCAGCGCATCGA

c) Local assembly in the gap region

Gap region

| GCGTACATCGCTAGATCGCTAGATAGCTAGCAGCGCATCGAI

| cecaTACATCGCTAGATCO

| eacacaTacaTCGCTAG Y

I AGCCATACGAGGCGTACA>

[AccaGcaaTATTAGCCATY

CGCGCGCAAGCAGCGATA)

| TCAGCTAGCATCCCGCGCGCGCGCMGCAGC64

d) Closed Gap

| TCAGCTAGCATCCCGCGCGCGCGCAAGCAGCG}\TATTAGCCATACGAdGCGTACATCGCTAGATCGCTAGATAGCTAGCAGCGCATCGA

Closed gap

Figure 3 - Example of a gap-closing approach using paired-end reads. (a) Taking as example a scaffold constituted by two contigs joined by an assembly
gap (a run of 'N’s) by remapping the reads back to the contigs (b) it is possible to identify reads that have at least one of the mates in the gap region.
Finally, (c) the reads identified inside the gap can be de novo assembled to fill the region, resulting in a (d) closed gap.

ule uses the alignment algorithms from the package to re-
align the reads to the scaffolds. Based on the reads located
near the gap, a local de novo assembly is performed con-
structed using a De Bruijn algorithm. In SOAPdenovo2
(Luo et al., 2012), the GapCloser module was updated to
deal with the possible errors caused by high divergent reads
that might be used during the construction of the consensus
sequence. GapCloser is distributed both as a stand-alone
application or as part of the SOAPdenovo package, and can
be obtained from the URL http://soap.genomics.org.cn/.

IMAGE (Iterative Mapping and Assembly for Gap
Elimination) (Tsai et al., 2010): takes as inputs a library of

[llumina paired-end reads and a set of scaffolds and per-
forms a remapping of the reads back to the sequences using
SSAH2 (Ning et al., 2001). Alternatively, the user can pro-
vide only the reads, and a de novo assembly is performed by
Velvet (Zerbino and Birney, 2008) before the gap-closing
step. The program maps the reads to the scaffolds and iden-
tifies those that are located at the border. Then, the reads
pairs that have at least one of the mates on the border are se-
lected, and a de novo assembly is performed by Velvet us-
ing the selected reads and contigs where the reads were
mapped as inputs. After the assembly, the contigs are ex-
tended, and this increases the probability that the mates will

Finishing microbial genomes

align with the adjacent contigs or the gap will be filled after
the assembly increases as more iterations are performed. At
the end of the process, the contigs that were linked during
the assembly can be ordered according to their previously
known relative position. IMAGE https://sourceforge.net/
projects/image2/ can be obtained from its SourceForge re-
pository or as part of the PAGIT package www.sang-
er.ac.uk/science/tools/pagit.

GapFiller (Boetzer and Pirovano 2012): In a similar
approach to that used by the previous tools, GapFiller per-
forms a remapping of the paired-end reads back to the scaf-
folds. However, to run the program, it is necessary to know
(or at less have an estimation of) the insert size and the ori-
entation of the library used. If this information is not avail-
able, it is possible to calculate it using the script
“estimate_insert_size.pl” that is distributed along with
SSPACE. To perform the gap filling exercise, the program
trims the contigs on both sides to reduce the possible as-
sembly errors caused by low coverage and then applies an
iterative process of read remapping and extension of the
contigs. The alignment of the reads can be performed using
BWA (Li and Durbin, 2009) or Bowtie (Langmead et al.,
2009) and the pairs that have one of the mates on the border
of the contig and the other inside the gap region are identi-
fied. The contig extension uses a k-mer based assembly ac-
cording to the reads found inside the gap. GapFiller, in the
same way than SSPACE, is available for download at the
BaseClear website http://www.baseclear.com/genomics/
bioinformatics/basetools/.

Enly (Fondi et al., 2014): is a simple gap-closing pro-
gram that works by re-mapping reads, in FASTA format,
back to a target assembly using BLAST (Altschul et al.,
1990; Camacho et al., 2009), followed by a local assembly
using Phrap (www.phrap.org/) or Minimo, from the AMOS
package (Treangen et al., 2011). If a reference genome is
provided, a modified version of CONTIGuator (Galardini
et al.,2011) is used to order de target assembly and verify
the accuracy of the gap-closing. The program can be ob-
tained from the SourceForge repository
http://enly.sourceforge.net/.

FGAP (Piro et al., 2014): Unlike the other gap-filling
tools, which utilize paired-end reads, FGAP’s algorithm
uses a supplementary set of long sequences, which can be a
library of long-reads or an alternative assembly of the ge-
nome. After trimming the contigs, BLASTn, from the
NCBI-BLAST+ package (Altschul et al., 1990; Camacho
et al., 2009), is used to identify sequences in the supple-
mentary set that overlaps the gap. FGAP can be download
and used as a webserver from the URL
http://www.bioinfo.ufpr.br/fgap/.

Sealer (Paulino ef al., 2015): The program was devel-
oped to be applied in large genomes, although can be ap-
plied in small prokaryote genomes as well. The main
algorithm consists in the selection of nucleotides in the as-
sembly that flank the gap-regions, followed by a local as-

569

sembly by Konnector (Vandervalk et al., 2014) using data
from paired-end reads. Konnector, which takes the paired-
end reads and generates pseudo-long reads by applying a
combination of Bloom filter and De Bruijn graph, is distrib-
uted alongside with the recent versions of ABySS (Sim-
pson et al., 2009). Sealer evokes Konnector with different
k-mers, what allows a more efficient closing of gaps caused
by low coverage (usually closed by shorter k-mers) and re-
petitive elements (usually closed by longer k-mers). As it
was developed aiming large genomes, Sealer tends to be
more memory-efficient, but some steps of the program are
executed serially, not in parallel, increasing the computa-
tion time. Sealer can be obtained from its GitHub repository
https://github.com/bcgsc/abyss/tree/sealer-release.

GMCLoser (Kosugi ef al., 2015): combines informa-
tion from paired-end reads and an alternative assembly, or
long-reads, to fill gaps inside scaffolds. Paired-end reads
are mapped to the target, and alternative assembly with
Bowtie (Langmead et al., 2009) and MUMmer (Kurtz et
al.,2004) is used to align the alternative assembly to the tar-
get assembly. To reduce the effect of misassembled regions
that may be present in alternative assemblies, the program
uses a likelihood approach to evaluate the contig joining by
verifying the consistence based on the mate information.
The likelihood algorithm available to evaluate assemblies
can be accessed with the GMValue program, distributed
alongside with GMCloser. The program can be obtained
from its SourceForge repository https://sourceforge.net/
projects/gmcloser/.

MapRepeat (Mariano et al., 2015): is both a gap-
closing and reference-guided scaffolding program. This
software receives a genome assembly (in FASTA format),
a reference genome (in Genbank format) and the sequenc-
ing reads (FASTA or FASTQ format). First, the assembly
is ordered using the reference genome using CONTIGuator
(Galardini et al., 2011), and for each gap the adjacent
contigs are aligned back to the reference using BLAST
(Altschul et al., 1990; Camacho et al., 2009), aiming the
identification of the region in the reference that is analo-
gous to the missing region inside the gap in the target as-
sembly. MIRA (www.chevreux.org) is used to align the
reads to the reference and generate a consensus sequence,
and the regions analogous to the gap are selected and used
to close it. The source code of MapRepeat can be obtained
from its GitHub repository http://github.com/dcbmariano/
maprepeat.

GapBlaster (de Sa et al., 2016): is a gap-closing pro-
grams that, in contrast with most of the other tools, allows a
manual curation of the gaps in a draft assembly instead of
providing an automated gap-closing algorithm. The user
may choose between the legacy NCBI-BLAST package ,
NCBI-BLAST+ (Altschul et al., 1990; Camacho et al.,
2009) or Nucmer (Kurtz et al., 2004) to perform alignments
between a set of contigs and the draft genome of interest,

570

and then verify which alignments identified as flanking the
gap regions may be considered for gap-closing.

The algorithms implemented in GapCloser (Li et al.,
2010; Luo et al., 2012), IMAGE (Tsai ef al., 2010) and
GapFiller (Boetzer and Pirovano, 2012) are based on
paired-end information and are very useful for most of the
genomes sequenced using Illumina or Roche 454 plat-
forms. GapFiller requires not only the paired-end reads, but
also an estimation of the size, of the insert (and its standard
deviation) and the orientation of the read pairs (FR: for-
ward-reverse, RF: reverse-forward, FF: forward-forward or
RR: reverse-reverse), however, if such information is not
available, it is possible to estimate it using the same script
distributed along with SSPACE (Boetzer ef al., 2011).

In comparison to Gapfiller, Gapcloser, which also
uses paired-end information for gap-closing, requires less
information and may provide a more straightforward way
to fill gaps. However, GapCloser also has its own limita-
tions, including the lack of support for reads longer than
155 bp (nowadays, 2x250 bp paired-ends reads are very
common for whole-genome sequencing, especially for mi-
crobial genome sequenced using [llumina MiSeq).

IMAGE is also very easy to be executed. It does not
require prior knowledge about the library construction, and
only needs the scaffolds, the reads and the number of itera-
tions to be run. As it uses SMALT (based on hashes) in-
stead of BWA or Bowtie (based on Burrows-Wheeler com-
pression), the read-mapping also tends to be more sensitive
and able to identify alignments, even if only part of the
reads matches the sequence (e.g., edges of contigs and
gaps). However, as IMAGE does not handle insert size, it is
unable to estimate the size of the gap, so the user must
choose an arbitrary length after closing for those gaps that
remained in the scaffolds. Although it is not problem when
working with genomes assembled using only paired-end
reads (with short-insert sizes), it may result in drawbacks if
mate-pair reads where used for scaffolding, as long gaps
would be confused with short ones.

More recently, FGAP (Piro et al., 2014), GMcloser
(Kosugi et al., 2015) and GapBlaster (de Sa et al., 2016)
have provided another way to close gaps by using informa-
tion for alternative assemblies, long reads or merged
paired-end reads. In fact, GMcloser may also use informa-
tion from paired-end reads, but by combining data from al-
ternative assemblies and longs reads, it is possible to
achieve a more reliable result. Sealer (Paulino ef al., 2015)
also uses some of the advantages of long-reads, but by
merging paired-end reads in artificial long one. Although it
is not even close to PacBio or Oxford Nanopore reads, or
not even to Sanger reads (~1 kb), this merging process may
be helpful to solve some short unknown regions.

FGAP and GapBlaster are similar in the way they
identify potential targets for gap-closing, but different in
the sense that FGAP performs the gap-closing automati-
cally whereas GapBlaster requires manual inspection. Al-

Kremer et al.

though most of the tools are automated, the availability of
tools for manual revision is also important, as some regions
are very difficult to be assembled or corrected, and it is dif-
ficult to define generic rules to solve these situations.

Error-correction and assembly evaluation

The combination of different approaches employed to
assemble and finish a genome can result in some artifacts,
caused by the limitations of each software and/or the plat-
form used for sequencing. Tools like QUAST (Gurevich et
al., 2013), REAPR (Hunt et al., 2013), ALE (Clark et al.,
2013) and GMvalue (Kosugi et al., 2015) were developed
to evaluate the accuracy of an assembly. Additionally,
other softwares, like iCORN (Otto et al., 2010) and SEQuel
(Ronen et al., 2012), are able to correct assembly errors, in-
cluding insertions, deletions and base substitutions.

Assembly evaluation

REAPR (Recognition of Errors in Assemblies using
Paired Reads) (Hunt ef al., 2013): takes as input a FASTA
file containing the scaffolds and a BAM file generated by
the remapping of the reads used in the assembly. First, a
coverage analysis is performed using SNP-o-matic (Mans-
ke and Kwiatkowski 2009) or SMALT (https://www.sang-
er.ac.uk/resources/software/smalt), for genomes that are
smaller or bigger than 100 Mb, respectively. The software
analyzes the assembly base-per-base and uses the informa-
tion per position in a metric called Fragment Coverage Dis-
tribution (FCD), where the expected coverage distribution
is compared to the observed values. The discrepant regions
are treated as possible misassemblies and REAPR can gen-
erate a new set of scaffolds splitting the erroneous regions
into separate sequences. REAPR can be obtained from the
URL http://www.sanger.ac.uk/science/tools/reapr.

QUAST (QUality ASsessment Tool for genome as-
semblies) (Gurevich et al., 2013): can be used to compare
different assemblies of the same genome or to simply ana-
lyze an assembly. If more than one assembly is loaded, the
program uses the MUMmer package to align the sequences
and identify possible erroneous regions, count the number
of aligned/unaligned bases, and also calculate, for each as-
sembly, metrics like N50, L50, C+G% content, and other
useful statistics. QUAST can be obtained from the URL
http://bioinf.spbau.ru/quast, where it is also available
through a webserver.

ALE (Assembly Likelihood Evaluation) (Clark et al.,
2013): uses a combination of statistical analysis that are
mainly based on probability distribution and Bayesian in-
ference to determine the accuracy of an assembly without
requiring a reference genome. To evaluate the assembly,
the program analyzes the k-mer distribution, C+G% and the
relative orientation of the mates (paired-end reads) in the
BAM file. ALE can be obtained from its website
http://www.alescore.org.

Finishing microbial genomes

CGAL (Computing Genome Assembly Likelihood)
(Rahman and Pachter 2013): evaluates the accuracy of the
assembly using a probability distribution analysis that takes
into consideration the expected coverage with that obtained
after the reads are remapped to the scaffolds. CGAL can be
obtained from the URL http://bio.math.berkeley.edu/cgal/.

GMyvalue (Kosugi ef al., 2015): is a program distrib-
uted along with the gap-closing program GMCloser, but
can be used as a stand-alone application. The program uses
NUCmer to align the assembly to a reference genome and
identify misassemblies, such as insertions and deletions
(INDELs). GMvalue can also generate “error-free” assem-
blies by splitting contigs in their erroneous regions. The
program is distributed along with GMCloser and can be ob-
tained from its SourceForge repository
https://sourceforge.net/projects/gmcloser/.

When assembling a novel genome, the first metrics
that are taken into account are the number of contigs, the
length of the assembly and the N50. Although they can pro-
vide a good idea of how “contiguous” is the assembly, they
do not measure its reliability, and may be easily distorted
by inappropriate assembly procedures. Use of information
from just one pair of reads to join two contigs into a scaf-
fold, for example, may lead to an assembly error, even if the
apparent fragmentation of the assembly is being reduced. If
two regions are wrongly joined during the assembly, it may
be misinterpreted as a natural biological event, and makes
difficult further steps of assembly finishing.

Assembly correction

Assembly evaluation tools are very useful to identify
structural inconsistences in a draft of apparently “finished”
genome, but sometimes a manual revision and correction is
inapplicable. Platform-specific errors, such as base-substi-
tutions in [llumina data, or homopolymeric-sequence errors
in lonTorrent data, may affect the annotation process, as
some genes may be wrongly identified as frameshifted or
mutated. As these types of errors may occur along the ge-
nome assembly, it is important to have automated tools to
correct them automatically and reduce the chance of poten-
tial effects on the downstream analysis. ICORN and SE-
Quel are examples of programs that can be used to reduce
these base-scale errors, and are based in the same principle
that is used for variant calling analysis, consisting in the
mapping of the reads against the sequence followed by the
identification of those regions where there is a discrepancy,
such as single-nucleotide polymorphism (SNPs) and Inser-
tions and Deletions (INDELSs) (Figure 4).

iCORN (Iterative Correction of Reference Nucleo-
tides) (Otto et al., 2010): is an automated pipeline for as-
sembly correction. Using a paired-end library, the program
performs the read remapping using SSAH (Ning et al.,
2001) and the variant calling and coverage analysis using
SNP-o-matic (Manske and Kwiatkowski, 2009). The cor-
rection of the reference is followed by a new coverage anal-

571

ysis. If the correction promoted an improvement in the cov-
erage, a new iteration commences, and the corrected
sequence is used as the new reference; otherwise, the pro-
gram stops and the last corrected sequence is returned as
output. ICORN can be obtained from its SourceForge re-
pository http://icorn.sourceforge.net/ and as part of the
PAGIT package.

SEQuel (Ronen ef al., 2012): uses a modification of
the widely used De Bruijn graphs called positional De
Bruijn graph. Using the BWA’s output (Li and Durbin,
2009), the main algorithms combine the k-mer information
with the relative position and orientation information of the
mates in the paired-end library to construct a graph that is
used to generate a new set of corrected contigs. SEQuel can
be obtained from the URL http://bix.ucsd.edu/SEQuel/.

Both iCORN and SEQuel can be used to reduce
base-scale errors in genome sequences, such as single nu-
cleotide substitutions errors and small artificial INDELSs,
but are not able to identify and correct genome-scale mi-
sassemblies, such as those identified by REAPR or
GMValue. In fact, both REAPR and GMValue can be used
to break misassembled genomes and generate a correct set
of contigs, but they are not able to generate an improved as-
sembly, in terms of contiguity, and new rounds of scaffold-
ing and gap-closing would be necessary for this purpose.
To address the problem of genome-scale assembly correc-
tion, Guizelini et al. (2016) have developed the tool
GFinisher, which integrates the detection and correction of
assembly errors with the reference-guided scaffolding and
the gap-closing processes.

GFinisher (Guizelini ef al., 2016): is an assembly cor-
rection tool that also incorporates elements of assembly in-
tegration, reference-based scaffolding, and gap-closing in
its internal pipeline. First, the program performs a refer-
ence-guided scaffolding using the module jContigSort
(https://sourceforge.net/projects/jcontigsort/), which ap-
plies a HashMap-based algorithm using the k-mers from
the draft genome and from a reference. Gaps between the
contigs are then closed using jJFGAP, a Java-implemen-
tation of the FGAP algorithm (Piro et al., 2014), by taking
information form alternative assemblies of the target ge-
nome. To identify misassembled regions, GFinisher uses
an adaptation of the GC-skew metric (Lobry, 1996), which
allows the analysis of fluctuations in the distribution of C
and G along the sequence by using a sliding window. Points
in the sequence where the GC-skew seems to be discrepant
when compared to its context are considered as assembly
errors, and are used to split the contigs. Then, the processes
of reference-guided scaffolding, gap-closing and analysis
of the GC-skew are repeated, and a final assembly is gener-
ated. At the end, all intermediary assemblies and the final
one are analyzed by QUAST (Gurevich et al., 2013).
GFinisher can be obtained from its SourceForge repository
http://gfinisher.sourceforge.net/.

572

a) Mapping reads back to the contigs/scaffolds

|CAGCATCGCGCTACATATCGA

Kremer et al.

(CGATATAGCATCGATCGCGCG

GCGCGATCGA-CAGCTAGCTA

‘ ATCGATCGCGCGATCGA-CA

| TACGATTCAGCATCGCGCTA ‘GATGACTGATCGATCGATATA
‘ ACGCGCTACGATTCAGCATC | CGATGACTGATCGATCGATA
| ATCGACGCGCTACGATTCAG ‘TACATATCGATGACTGATCGA

‘ GCATCGATCGCGCGATCGA

‘ GCATCGACGCGCTACGATTC ‘ TCGCGCTACATATCGATGAC

\ CGATATAGCATCGATCGCGC |CGA-CAGCTAGCTAGCTAGCT

I GCATCGACGCGCTACGATTTAGCATCGCGCTACATATCGATGACTGATCGATC--TATAGCATCGATCGCGCGATGGATCAGCTAGCTAGCTAGCTGC

b) Identify variants (Eg: SNPs, INDELs)

|CAGCATCGCGCTACATATCGA

|CGATATAGCATCGATCGCGCG

| TACGATTCAGCATCGCGCTA

|GCGCGATCGA-CAGCTAGCTA

‘GATGACTGATCGATCGATATA
‘ ACGCGCTACGATTCAGCATC | CGATGACTGATCGATCGATA ‘ ATCGATCGCGCGATCGA-CA
| ATCGACGCGCTACGATTCAG ‘TACATATCGATGACTGATCGA ‘ GCATCGATCGCGCGATCGA

‘ GCATCGACGCGCTACGATTC ‘ TCGCGCTACATATCGATGAC

\ CGATATAGCATCGATCGCGC | CGA-CAGCTAGCTAGCTAGCT

| GCATCGACGCGCTACGATTTAGCATCGCGCTACATATCGATGACTGATCGATC--TATAGCATCGATCGCGGGATCGATCAGCTAGCTAGCTAGCTGC

!

! b

SNP INDEL SNP INDEL
c) Correct reference sequence
[CAGCATCGCGCTACATATCGA |ceaTaTAGCATCGATCGCGEG
| TACGATTCAGCATCGCGCTA ‘GATGACTGATCGATCGATATA bCGCGATCGACAGCTAGCTA
| ACGCGCTACGATTCAGCATC | CGATGACTGATCGATCGATA> | ATCGATCGCGCGATCGACA
| ATCGACGCGCTACGATTCAG [TACATATCGATGACTGATCGA | GCATCGATCGCGCGATCGA

‘ GCATCGACGCGCTACGATTC ‘ TCGCGCTACATATCGATGAC

‘ CGATATAGCATCGATCGCGC |CGACAGCTAGCTAGCTAGCT

I GCATCGACGCGCTACGATTCAGCATCGCGCTACATATCGATGACTGATCGATCGATATAGCATCGATCGCGCGATCGACAGCTAGCTAGCTAGCTGC

Figure 4 - Example of a simplified assembly correction approach for base substitutions and insertion/deletion misassemblies. The process steps are (a)
map the reads to the assembly, (b) identify variants (eg: SNPs and INDELSs) in a similar way to the common variant calling analysis pipelines, and finally,
(c) correct the regions in the assembly that show discrepancies. These steps may be reiterated several times until no further change be able to improve the

assembly.

While base-scale errors may affect the genome anno-
tation by the presence of artificial frameshifts or non-syno-
nymous mutations, the genome-scale misassemblies may
lead to the erroneous identification of genome rearrange-
ments or even the loss of relevant genes in the annotation, if
they are located in the misassembled region. Therefore, the
correction of base-scale errors and genome-scale misas-
semblies are crucial steps in the generation of high-quality
finished assemblies.

Conclusion

NGS platforms have provided new ways to obtain
large amounts of genomics data and reduced expressively
the cost of the sequencing process itself, but also brought
new challenges, especially to the data management and
analysis. In the case of genome sequencing projects, for ex-
ample, depending on the organism and the sequencing plat-

form, the size of the FASTQ files containing the raw reads
may vary from less than 1 gigabyte (Gb) to thousands of
Gbs. Although nowadays it is perfectly possible to perform
the de novo assembly of a microbial genome using a desk-
top computer, or even a notebook, when the volume of data
is relatively low, many NGS analysis still require high-per-
formance computing infrastructures (e.g., clusters, cloud
computing, distributed systems) to be executed. In fact,
even de novo genome assembly, which is in a certain way a
well-established field, has been constantly renewed as
more approaches are being developed to optimize memory
usage (e.g., string-graphs, compressed data structures) and
the assembly process itself, especially due to the limitations
implied by the short reads sequencers and, more recently,
the relatively higher error-rate observed in third-generation
sequencing platforms.

The development of new bioinformatics tools in the
last decade was highly influenced by the new generation of

Finishing microbial genomes

sequencing platforms, and many software offerings were
specifically designed to overcome the limitations of the
NGS platforms and the challenges they have brought. The
use of whole genome shotgun (WGS) sequencing became a
common practice, and the amount of draft genomes avail-
able rose exponentially. However, the process by which a
finished genome is generated, even in the case of bacteria,
is still somewhat flawed and challenging.

The present review aimed to describe some tools that
might be useful for improving genome assembly and facili-
tating the finishing process. For didactical purposes, the
available tools were divided into four main groups. How-
ever, there are many other forms of improvements that can
be used to optimize an assembly. Additionally, in silico
tools can be very helpful and may reduce the need of
re-sequencing. However, they also have some limitations,
and it is important to know that their efficiency is directly
dependent on the quality of the assembly and the reads.

As there are many aspects that may affect the assem-
bly, from the sequence itself (e.g., repetitive DNA, GC-rich
or GC-poor) to technique artifacts (e.g., platform bias, as-
sembler errors), it is very difficult to create a straightfor-
ward method to turn millions of short-reads to close and
error-free chromosome sequences. Therefore, when work-
ing with a newly sequenced organism, it may be useful to
try different strategies for de novo assembly, assembly inte-
gration, scaffolding and gap-closing, and check how they
affect the reliability of the genome assembly to choose the
best parameters. Knowing the characteristics of the ge-
nomic structure of an organism, the sequencing platform
and the library construction may also be very useful when
choosing the tools, as some of them are designed and opti-
mized to deal with certain specific error patterns.

Although not always applicable, there are many ge-
nome finishing tools that are also available as webservers,
what may be very convenient for those researchers that are
not fully confortable with Linux and commandline inter-
faces. Additionally, as most of these tools do not directly
require the sequencing data or mapping files, the uploading
and processing time is usually very fast.

Genome announcement papers that describe sequenc-
ing projects using the same technology may facilitate the
choice, especially when the organism is closely related to
the one you are interested to analyze. As new tools are con-
stantly being developed and released, it may also be useful
to check not only bibliography databases, such as PubMed,
but also bioinformatics software repositories, such as
OMICtools (https://omicstools.com), and web-based dis-
cussion forums, such as Biostars
(https://www.biostarts.org) and SEQanswers
(https://seqanswers.com), to keep updated about new pro-
grams and techniques.

The new generation of DNA sequencing platforms,
such as PacBio RS II and Oxford Nanopore, will certainly
guide the development of new bioinformatics tools and

573

analysis protocols for the next years, and may provide an
easier way to generate high-quality finished genomes.
These sequencing platforms intended to produce reads that
are much longer than the older second-generation plat-
forms, like Illumina, IonTorrent, and SOLiD, and may
overcome most of the limitations associated with short-
reads. One of the most common issues associated with ge-
nome assembly that uses short-reads is that repeated DNA
regions, like simple sequence repetitions (SSRs) that are
longer than the read length, are considered computationally
impossible to assemble “exactly”. However, today, the
throughput of these new long-read sequencers is still low
and has a relatively high error rate compared to alternative
platforms. This indicates that many aspects of genome se-
quencing still require improvement. Additionally, sequenc-
ing by PacBio SMRT still very time consuming and expen-
sive when compared to other platforms, such as IonTorrent
PGM and Illumina MiSeq. Finally, the size of the raw files
generated by PacBio SMRT and Oxford Nanopore are sub-
stantially larger than the ones for second-generation plat-
forms, even for microbial genomes, what reflects the grow-
ing need for computational and storage resources in the
context of NGS.

Fifteen years since the Human Genome Sequencing
Consortium released the first draft, and 10 years after
Roche released its 454 platform, DNA sequencing has un-
dergone many changes, and many technologies have been
released. Furthermore, it is possible that, in the near future,
only a de novo assembly, without any read preprocessing or
post-assembly improvement, will be enough to generate
high-quality finished genomes. However, such procedures
are nowadays still necessary to achieve a reliable result.

References

Alkan C, Sajjadian S and Eichler EE (2011) Limitations of next-
generation genome sequence assembly. Nat Methods
8:61-65.

Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990)
Basic local alignment search tool.] Mol Biol 215:403-410.

Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto
OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO,
Noronha MF, et al. (2009) Genome structure of a Saccha-
romyces cerevisiae strain widely used in bioethanol produc-
tion. Genome Res 19:2258-2270.

Assefa S, Keane TM, Otto TD, Newbold C and Berriman M
(2009) ABACAS: Algorithm-based automatic contiguation
of assembled sequences. Bioinformatics 25:1968-1969.

Au KF, Underwood JG, Lee L and Wong WH (2012) Improving
PacBio long read accuracy by short read alignment. PLoS
One 7:¢46679.

Baker M (2012) De novo genome assembly: What every biologist
should know. Nat Methods 9:333-337.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M,
Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski
AD, et al. (2012) SPAdes: A new genome assembly algo-
rithm and its applications to single-cell sequencing. J
Comput Biol 19:455-477.

574

Barnett DW, Garrison EK, Quinlan AR, Stromberg MP and Marth
GT (2011) BamTools: A C++ API and toolkit for analyzing
and managing BAM files. Bioinformatics 27:1691-1692.

Bashir A, Klammer AA, Robins WP, Chin C-S, Webster D,
Paxinos E, Hsu D, Ashby M, Wang S, Peluso P, et al. (2012)
A hybrid approach for the automated finishing of bacterial
genomes. Nat Biotechnol 30:701-707.

Bodily PM, Fujimoto MS, Snell Q, Ventura D and Clement MJ
(2016) ScaffoldScaffolder: Solving contig orientation via
bidirected to directed graph reduction. Bioinformatics
32:17-24.

Boetzer M and Pirovano W (2012) Toward almost closed ge-
nomes with GapFiller. Genome Biol 13:R56.

Boetzer M, Henkel CV, Jansen HJ, Butler D and Pirovano W
(2011) Scaffolding pre-assembled contigs using SSPACE.
Bioinformatics 27:578-579.

Boetzer M and Pirovano W (2014) SSPACE-LongRead: Scaf-
folding bacterial draft genomes using long read sequence in-
formation. BMC Bioinformatics 15:211.

Boisvert S, Laviolette F and Corbeil J (2010) Ray: Simultaneous
assembly of reads from a mix of high-throughput sequenc-
ing technologies.] Comput Biol 17:1519-1533.

Bosi E, Donati B, Galardini M, Brunetti S, Sagot M-F, Li6 P,
Crescenzi P, Fani R and Fondi M (2015) MeDuSa: A multi-
draft based scaffolder. Bioinformatics 31:2443-2451.

Caboche S, Audebert C, Lemoine Y, Hot D, Soon W, Hariharan
M, Snyder M, Fonseca N, Rung J, Brazma A, et al. (2014)
Comparison of mapping algorithms used in high-throughput
sequencing: Application to Ion Torrent data. BMC Geno-
mics 15:264.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J,
Bealer K and Madden TL (2009) BLAST+: Architecture
and applications. BMC Bioinformatics 10:421

Casagrande A, Del Fabbro C, Scalabrin S and Policriti A (2009)
GAM: Genomic Assemblies Merger: A graph based method
to integrate different assemblies. IEEE Int Conf Bioinform
Biomed 2009:321-326.

Chain PSG, Gratham D V, Fulton RS, Fitzgerald MG, Hostetler J,
Muzny D, Ali J, Birren B, Bruce DC, Buhay C, ef al. (2009)
Genomics. Genome project standards in a new era of se-
quencing. Science 326:236-237.

Chaisson MJ and Tesler G (2012) Mapping single molecule se-
quencing reads using basic local alignment with successive
refinement (BLASR): Application and theory. BMC Bio-
informatics 13:238.

Clark SC, Egan R, Frazier Pl and Wang Z (2013) ALE: A generic
assembly likelihood evaluation framework for assessing the
accuracy of genome and metagenome assemblies. Bioinfor-
matics 29:435-43.

Compeau PEC, Pevzner PA and Tesler G (2011) How to apply de
Bruijn graphs to genome assembly. Nat Biotechnol
29:987-991.

Dark M (2013) Whole-genome sequencing in bacteriology: State
of the art. Infect Drug Resist 6:115-123.

Darling ACE, Mau B, Blattner FR and Perna NT (2004) Mauve:
Multiple alignment of conserved genomic sequence with re-
arrangements. Genome Res 14:1394-1403.

Dayarian A, Michael TP and Sengupta AM (2010) SOPRA: Scaf-
folding algorithm for paired reads via statistical optimiza-
tion. BMC Bioinformatics 11:345.

Kremer et al.

de Sa PHCG, Miranda F, Veras A, de Melo DM, Soares S,
Pinheiro K, Guimaries L, Azevedo V, Silva A and Ramos
RTJ (2016) GapBlaster-A graphical gap filler for prokaryote
genomes. PLoS One 11:¢0155327.

Deschamps S, Mudge J, Cameron C, Ramaraj T, Anand A, Fen-
gler K, Hayes K, Llaca V, Jones TJ, May G, et al. (2016)
Characterization, correction and de novo assembly of an Ox-
ford Nanopore genomic dataset from Agrobacterium
tumefaciens. Sci Rep 6:28625.

Dias Z, Dias U and Setubal JC (2012) SIS: A program to generate
draft genome sequence scaffolds for prokaryotes. BMC Bio-
informatics 13:96.

Donmez N and Brudno M (2013) SCARPA: Scaffolding reads
with practical algorithms. Bioinformatics 29:428-434.
Edwards DJ and Holt KE (2013) Beginner’s guide to comparative
bacterial genome analysis using next-generation sequence

data. Microb Inform Exp 3:2.

Farrant GK, Hoebeke M, Partensky F, Andres G, Corre E and
Garczarek L (2015) WiseScaffolder: An algorithm for the
semi-automatic scaffolding of Next Generation Sequencing
data. BMC Bioinformatics 16:281.

Fondi M, Orlandini V, Corti G, Severgnini M, Galardini M,
Pietrelli A, Fuligni F, lacono M, Rizzi E, De Bellis G, et al.
(2014) Enly: Improving draft genomes through reads recy-
cling. J Genomics 2:89-93.

Galardini M, Biondi EG, Bazzicalupo M and Mengoni A (2011)
CONTIGuator: A bacterial genomes finishing tool for struc-
tural insights on draft genomes. Source Code Biol Med 6:11.

Gao S, Sung W-K and Nagarajan N (2011) Opera: Reconstructing
optimal genomic scaffolds with high-throughput paired-end
sequences. J Comput Biol 18:1681-1691.

Guizelini D, Raittz RT, Cruz LM, Souza EM, Steffens MBR and
Pedrosa FO (2016) Gfinisher: A new strategy to refine and
finish bacterial genome assemblies. Sci Rep 6:34963.

Gurevich A, Saveliev V, Vyahhi N and Tesler G (2013) QUAST:
Quality assessment tool for genome assemblies. Bioinfor-
matics 29:1072-1075.

Hatem A, Bozdag D, Toland AE, Catalyiirek UV, Flicek P, Birney
E, Cokus S, Feng S, Sultan M, Schulz M, et al. (2013)
Benchmarking short sequence mapping tools. BMC Bio-
informatics 14:184.

Huang X and Madan A (1999) CAP3: A DNA sequence assembly
program. Genome Res 9:868-877.

Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M and Otto
TD (2013) REAPR: A universal tool for genome assembly
evaluation. Genome Biol 14:R47.

Hunt M, Newbold C, Berriman M and Otto TD (2014) A compre-
hensive evaluation of assembly scaffolding tools. Genome
Biol 15:R42.

Huson DH, Reinert K and Myers EW (2002) The greedy path-
merging algorithm for contig scaffolding. J ACM
49:603-615.

Kent WJ (2002) BLAT: The BLAST-like alignment tool. Genome
Res 12:656-664.

Kim J, Larkin DM, Cai Q, Asan, Zhang Y, Ge R-L, Auvil L,
Capitanu B, Zhang G, Lewin HA, et al. (2013) Reference-
assisted chromosome assembly. Proc Natl Acad Sci U S A
110:1785-1790.

Klassen JL and Currie CR (2012) Gene fragmentation in bacterial
draft genomes: Extent, consequences and mitigation. BMC
Genomics 13:14.

Finishing microbial genomes

Kolmogorov M, Raney B, Paten B and Pham S (2014) Ragout - a
reference-assisted assembly tool for bacterial genomes. Bio-
informatics 30:1302-1309.

Koren S and Phillippy AM (2015) One chromosome, one contig:
Complete microbial genomes from long-read sequencing
and assembly. Curr Opin Microbiol 23:110-120.

Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Gana-
pathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, et
al. (2012) Hybrid error correction and de novo assembly of
single-molecule sequencing reads. Nat Biotech 30:693-700.

Koren S, Treangen TJ and Pop M (2011) Bambus 2: Scaffolding
metagenomes. Bioinformatics 27:2964-2971.

Koressaar T and Remm M (2007) Enhancements and modifica-
tions of primer design program Primer3. Bioinformatics
23:1289-1291.

Kosugi S, Hirakawa H and Tabata S (2015) GMcloser: Closing
gaps in assemblies accurately with a likelihood-based selec-
tion of contig or long-read alignments. Bioinformatics
31:3733-3741.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Anto-
nescu C and Salzberg SL (2004) Versatile and open software
for comparing large genomes. Genome Biol 5:R12.

Land M, Hauser L, Jun S-R, Nookaew I, Leuze MR, Ahn T-H,
Karpinets T, Lund O, Kora G, Wassenaar T, et al. (2015) In-
sights from 20 years of bacterial genome sequencing. Funct
Integr Genomics 15:141-161.

Langmead B, Trapnell C, Pop M and Salzberg SL (2009) Ultrafast
and memory-efficient alignment of short DNA sequences to
the human genome. Genome Biol 10:R25.

Latreille P, Norton S, Goldman BS, Henkhaus J, Miller N, Barba-
zuk B, Bode HB, Darby C, Du Z, Forst S, et al. (2007) Opti-
cal mapping as a routine tool for bacterial genome sequence
finishing. BMC Genomics 8:321.

Li C-L, Chen K-T and Lu CL (2013) Assembling contigs in draft
genomes using reversals and block-interchanges. BMC Bio-
informatics 14 Suppl 5:S9.

Li H and Durbin R (2009) Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics
25:1754-1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N,
Marth G, Abecasis G and Durbin R (2009) The Sequence
Alignment/Map format and SAMtools. Bioinformatics
25:2078-2079.

Li R, Li Y, Kristiansen K and Wang J (2008) SOAP: Short
oligonucleotide alignment program. Bioinformatics
24:713-714.

LiR, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G,
Kristiansen K, et al. (2010) De novo assembly of human
genomes with massively parallel short read sequencing. Ge-
nome Res 20:265-272.

Lin S-H and Liao Y-C (2013) CISA: Contig integrator for se-
quence assembly of bacterial genomes. PLoS One 8:¢60843.

LiuL,LiY,LiS,HuN, He Y, Pong R, Lin D, Lu L and Law M
(2012) Comparison of next-generation sequencing systems.
J Biomed Biotechnol 2012:251364.

Lobry JR (1996) Asymmetric substituion patterns in the two DNA
strands of bacteria. Mol Biol Evol 13:660-665.

Lu C, Chen K-T, Huang S-Y and Chiu H-T (2014) CAR: Contig
assembly of prokaryotic draft genomes using rearrange-
ments. BMC Bioinformatics 15:381.

575

Lunter G and Goodson M (2011) Stampy: A statistical algorithm
for sensitive and fast mapping of Illumina sequence reads.
Genome Res 21:936-939.

LuoR, LiuB, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan
Q, Liu Y, et al. (2012) SOAPdenovo2: An empirically im-
proved memory-efficient short-read de novo assembler.
Gigascience 1:18.

Maikinen V, Viliméki N, Laaksonen A and Katainen R (2010)
Unified view of backward backtracking in short read map-
ping. In: Elomaa T, Mannila H and Orponen P (eds) Algo-
rithms and Applications. Springer-Verlag, Berlin,
pp 182-195.

Manske HM and Kwiatkowski DP (2009) SNP-o-matic. Bioin-
formatics 25:2434-2435.

Mardis E, McPherson J, Martienssen R, Wilson RK and McCom-
bie WR (2002) What is finished, and why does it matter. Ge-
nome Res 12:669-671.

Mariano DC, Pereira FL, Ghosh P, Barh D, Figueiredo HC, Silva
A, Ramos RT and Azevedo VA (2015) MapRepeat: An ap-
proach for effective assembly of repetitive regions in pro-
karyotic genomes. Bioinformation 11:276-9.

Minkin I, Patel A, Kolmogorov M, Vyahhi N and Pham S (2013)
Algorithms in Bioinformatics. In: Darling A and Stoye J
(eds) Proc. 13th International Workshop, WABI. Springer,
Berlin, pp 215-229.

Mufioz A, Zheng C, Zhu Q, Albert VA, Rounsley S and Sankoff D
(2010) Scaffold filling, contig fusion and comparative gene
order inference. BMC Bioinformatics 11:304.

Myers EW (1995) Toward simplifying and accurately formulat-
ing fragment assembly. J Comput Biol 2:275-290.

Myers EW (2005) The fragment assembly string graph. Bioin-
formatics 21 Suppl 2:179-i85.

Nagarajan N, Cook C, Di Bonaventura M, Ge H, Richards A,
Bishop-Lilly KA, DeSalle R, Read TD and Pop M (2010)
Finishing genomes with limited resources: Lessons from an
ensemble of microbial genomes. BMC Genomics 11:242.

Nijkamp J, Winterbach W, van den Broek M, Daran J-M, Rein-
ders M and de Ridder D (2010) Integrating genome assem-
blies with MAIA. Bioinformatics 26:433-439.

Ning Z, Cox AJ and Mullikin JC (2001) SSAHA: A fast search
method for large DNA databases. Genome Res
11:1725-1729.

Noé¢ L and Kucherov G (2005) YASS: Enhancing the sensitivity
of DNA similarity search. Nucleic Acids Res
33:W540-W543.

Otto TD, Sanders M, Berriman M and Newbold C (2010) Iterative
Correction of Reference Nucleotides (ICORN) using second
generation sequencing technology. Bioinformatics
26:1704-1707.

Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD
and Birol [(2015) Sealer: A scalable gap-closing application
for finishing draft genomes. BMC Bioinformatics 16:230.

Peltola H, Séderlund H and Ukkonen E (1984) SEQAID: A DNA
sequence assembling program based on a mathematical
model. Nucleic Acids Res 12:307-321.

Peng Y, Leung HCM, Yiu SM and Chin FYL (2010) Research in
Computational Molecular Biology. In: Berger B (ed) Proc.
14th Annual International Conference, RECOMB 2010.
Springer Berlin, Heidelberg, pp 426-440.

576

Pevzner PA, Tang H and Waterman MS (2001) An Eulerian path
approach to DNA fragment assembly. Proc Natl Acad Sci U
S A 98:9748-9753.

Piro VC, Faoro H, Weiss VA, Steffens MBR, Pedrosa FO, Souza
EM and Raittz RT (2014) FGAP: An automated gap closing
tool. BMC Res Notes 7:371.

Pop M, Kosack DS and Salzberg SL (2004) Hierarchical scaffold-
ing with Bambus. Genome Res 14:149-159.

Rahman A and Pachter L (2013) CGAL: Computing genome as-
sembly likelihoods. Genome Biol 14:R8.

Ramos RTJ, Carneiro AR, Soares S de C, Santos AR dos, Almeida
S, Guimares L, Figueira F, Barbosa E, Tauch A, Azevedo
V, etal. (2013) Tips and tricks for the assembly of a Coryne-
bacterium pseudotuberculosis genome using a semiconduc-
tor sequencer. Microb Biotechnol 6:150-156.

Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil
A, Berlin AM, Montmayeur A, Shea TP, Walker BJ, et al.
(2012) Finished bacterial genomes from shotgun sequence
data. Genome Res 22:2270-2277.

Ricker N, Qian H and Fulthorpe RR (2012) The limitations of
draft assemblies for understanding prokaryotic adaptation
and evolution. Genomics 100:167-175.

Rissman Al, Mau B, Biehl BS, Darling AE, Glasner JD and Perna
NT (2009) Reordering contigs of draft genomes using the
Mauve aligner. Bioinformatics 25:2071-2073.

Ronen R, Boucher C, Chitsaz H and Pevzner P (2012) SEQuel:
Improving the accuracy of genome assemblies. Bioinfor-
matics 28:188-196.

Roy RS, Chen KC, Sengupta AM and Schliep A (2012) SLIQ:
Simple linear inequalities for efficient contig scaffolding. J
Comput Biol 19:1162-1175.

Salmela L, Mékinen V, Viliméki N, Ylinen J and Ukkonen E
(2011) Fast scaffolding with small independent mixed inte-
ger programs. Bioinformatics 27:3259-3265.

Salmela L and Rivals E (2014) LoRDEC: Accurate and efficient
long read error correction. Bioinformatics 30:3506-3514.

Sanger F, Nicklen S and Coulson AR (1977) DNA sequencing
with chain-terminating inhibitors. Proc Natl Acad SciU S A
74:5463-5467.

Simpson JT and Durbin R (2012) Efficient de novo assembly of
large genomes using compressed data structures. Genome
Res 22:549-556.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM and
Birol I (2009) ABySS: A parallel assembler for short read
sequence data. Genome Res 19:1117-23.

Sommer DD, Delcher AL, Salzberg SL and Pop M (2007) Mini-
mus: A fast, lightweight genome assembler. BMC Bioinfo-
rmatics 8:64.

Soueidan H, Maurier F, Groppi A, Sirand-Pugnet P, Tardy F, Citti
C, Dupuy V and Nikolski M (2013) Finishing bacterial ge-
nome assemblies with Mix. BMC Bioinformatics 14 Suppl
1:S16.

Staden R (1979) A strategy of DNA sequencing employing com-
puter programs. Nucleic Acids Res 6:2601-2610.

Kremer et al.

Swain MT, Tsai IJ, Assefa SA, Newbold C, Berriman M and Otto
TD (2012) A post-assembly genome-improvement toolkit
(PAGIT) to obtain annotated genomes from contigs. Nat
Protoc 7:1260-1284.

Tettelin H, Radune D, Kasif S, Khouri H and Salzberg SL (1999)
Optimized multiplex PCR: Efficiently closing a whole-ge-
nome shotgun sequencing project. Genomics 62:500-507.

Treangen TJ, Sommer DD, Angly FE, Koren S and Pop M (2011)
Next generation sequence assembly with AMOS. Curr
Protoc Bioinformatics 33:11.8.1-11.8.18.

Tritt A, Eisen JA, Facciotti MT and Darling AE (2012) An inte-
grated pipeline for de novo assembly of microbial genomes.
PLoS One 7:e42304.

Tsai 1J, Otto TD and Berriman M (2010) Improving draft assem-
blies by iterative mapping and assembly of short reads to
eliminate gaps. Genome Biol 11:R41.

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC,
Remm M and Rozen SG (2012) Primer3 - new capabilities
and interfaces. Nucleic Acids Res 40:e115.

Vandervalk BP, Jackman SD, Raymond A, Mohamadi H, Yang
C, Attali DA, Chu J, Warren RL and Birol 1 (2014)
Konnector: Connecting paired-end reads using a bloom fil-
ter de Bruijn graph. 2014 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM) 2014:51-58.

Vicedomini R, Vezzi F, Scalabrin S, Arvestad L and Policriti A
(2013) GAM-NGS: Genomic assemblies merger for next
generation sequencing. BMC Bioinformatics 14 Suppl 7:S6.

Vincent AT, Derome N, Boyle B, Culley Al and Charette SJ
(2016) Next-generation sequencing (NGS) in the microbio-
logical world: How to make the most of your money. J
Microbiol Methods 138:60-71.

Warren RL, Sutton GG, Jones SJM and Holt RA (2007) Assem-
bling millions of short DNA sequences using SSAKE. Bio-
informatics 23:500-501.

Yao G, Ye L, Gao H, Minx P, Warren WC and Weinstock GM
(2012) Graph accordance of next-generation sequence as-
semblies. Bioinformatics 28:13-16.

Zerbino DR and Birney E (2008) Velvet: Algorithms for de novo
short read assembly using de Bruijn graphs. Genome Res
18:821-829.

Zimin AV, Smith DR, Sutton G and Yorke JA (2008) Assembly
reconciliation. Bioinformatics 24:42-45.

Supplementary material

The following online material is available for this ar-
ticle:

Table S1 - Examples of sequenced microbial ge-
nomes for which the tools discussed in the present review
were used.

Associate Editor: Guilherme Corréa de Oliveira

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License (type CC-BY), which permits unrestricted use,
distribution and reproduction in any medium, provided the original article is properly cited.

http://www.scielo.br/pdf/gmb/v40n3/1415-4757-gmb-40-03-0553-Suppl01.pdf

