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Abstract

RNA-binding proteins (RBPs) have important functions in the regulation of gene expression. RBPs play key roles in
post-transcriptional processes in all eukaryotes, such as splicing regulation, mRNA transport and modulation of
mRNA translation and decay. RBPs assemble into different mRNA-protein complexes, which form messenger
ribonucleoprotein complexes (mRNPs). Gene expression regulation in trypanosomatids occurs mainly at the
post-transcriptional level and RBPs play a key role in all processes. However, the functional characterization of
RBPs in Trypanosoma cruzi has been impaired due to the lack of reliable reverse genetic manipulation tools. The
comparison of RBPs from Saccharomyces cerevisiae and T. cruzi might allow inferring on the function of these pro-
teins based on the information available for the orthologous RNA-binding proteins from the S. cerevisiae model or-
ganism. In this review, we discuss the role of some RBPs from T. cruzi and their homologues in regulating gene
expression in yeast.
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Introduction

Gene expression involves several events that occur at

the transcriptional and post-transcriptional levels. The

transcriptional control of gene expression has been exten-

sively influenced by early work on bacterial transcription.

However, in recent years, post-transcriptional events have

gained much more attention. The pre-RNA undergoes ex-

tensive processing before the mRNA reaches its final desti-

nation and RNA-binding proteins (RBPs) associated to the

RNA during its life-time play a key role in determining its

fate in the cell. (Kishore et al., 2010). The association of

proteins with mRNAs is very dynamic and prone to

changes according to the environment. Consequently RBPs

are involved in the stabilization or destabilization of

mRNAs in response to stress or extracellular signals (Alves

and Goldenberg, 2016).

The availability of high-throughput analysis tech-

niques, such as proteomics, has enabled the characteriza-

tion of several RBPs. Nevertheless, the RBP network as-

sembly and the mechanism of the RNA regulon are still

poorly explored, and further work is required to determine

the identity of all of the proteins and their respective roles in

post-transcriptional events (Lunde et al., 2007).

RBPs have one or multiple RNA-binding protein do-

mains. The following are the best characterized RNA-

binding domains: RNA Recognition Motif (RRM), K-

homology domain (KH), RGG (Arg-Gly-Gly) box, zinc

finger, double stranded RNA-binding domain (dsRBD),

Pumilio/PUF domain and Piwi/Argonaute/Zwille (PAZ)

domain (Finn et al., 2010).

The RRM is the most abundant domain and also the

most studied in RBPs (Afroz et al., 2015). The information

obtained from genome sequencing studies shows that

RRM-containing proteins are present in all forms of life

(Mari et al., 2005). RRMs typically comprise approxi-

mately 90 amino acids and consist of four antiparallel

�-strands (eventually they can have one or two short addi-

tional strands), which form a �-sheet that is packed against

two �-helices, adopting the typical �1�1�2�3�2�4 confor-

mation. The �3 and �1 strands of the RRM contain the

RNP1 and RNP2 signature sequences, respectively (Cléry

and Allain, 2012). Additionally, two or more RRMs can be

combined in the same molecule to recognize longer

stretches of RNA, with increased sequence affinity and

specificity (Cléry and Allain, 2012).

The hnRNP K-homology (KH) domain comprises

three �-helices around the surface of a central antiparallel

�-sheet. Eukaryotic type I and prokaryotic type II KH do-

mains share a minimal ���� core, with two additional �

and � elements positioned either in C-terminal (type I,

eukaryotes) or N-terminal (type II, prokaryotes) orientation
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to this core motif (Grishin, 2001). This structure directs

four nucleic acid bases towards a groove inside the protein

structure where hydrophobic interactions and a network of

main chain and side chain hydrogen bonds mediate nucleo-

base recognition. So far, protein domains with a classical

KH fold but lacking a conserved GxxG motif have shown

no nucleic acid-binding activity, although they interact

with other nucleic acid binding domains and can modulate

their RNA binding activity (Valverde et al., 2008).

The RGG motif is an evolutionarily conserved se-

quence. In addition to the arginine and glycine repeats, aro-

matic residues are frequently observed in-between these

sequences, and these residues may contribute to hydropho-

bic stacking within RNA bases. RGG/RG motives include

RGG and RG repeats of varied lengths interspersed with

spacers of different amino acids (Corley and Gready,

2008), and predicting the spacing that defines a functional

RGG/RG motive is difficult. The structure of the RGG/RG

has not been clearly defined due to its low sequence com-

plexity.

Classical C2H2 ‘zinc finger’ proteins were identified

as modular nucleic acid recognition elements, with two

cysteine and two histidine residues that coordinate a zinc

ion. Although mostly noted for their role as DNA-binding

transcription factors, C2H2 zinc fingers were identified in

the transcription factor IIIA (TFIIIA) (Vincent, 1986).

TFIIIA contains nine C2H2 zinc fingers, which are used to

recognize RNA and DNA targets. The zinc finger folds into

a small domain comprising two � strands followed by one �

helix. More recently, the C2H2 class of zinc finger protein

has been shown to bind preferentially to RNA targets.

These zinc fingers are characterized by three cysteine resi-

dues and one histidine residue that coordinate the zinc ion

and form the Cys-X7-8-Cys-X5-Cys-X3-His sequence

(Hall, 2005).

The dsRBD is a conserved protein domain of approx-

imately 65–70 amino acids which binds to double-stranded

or highly structured RNAs (Finn et al., 2010). The dsRBD

was first recognized as a conserved protein domain based

on the similarities between Drosophila Staufen, human

TAR-RNA binding protein (TRBP) and Xenopus laevis

RNA-binding protein A (XlrbpA). The central function of

dsRBDs is to bind to dsRNA regions, which is primarily

achieved by recognizing specific RNA shapes. In addition

to this major function, dsRBDs with protein-protein inter-

action properties have been reported to participate in the

regulation of protein subcellular localization, suggesting

that the participation of dsRBDs in nucleocytoplasmic traf-

ficking is likely to represent a widespread auxiliary func-

tion of this type of RNA-binding domain (Banerjee and

Barraud, 2014).

Pumilio is a family of sequence-specific RNA-

binding proteins that regulate translation of the mRNA tar-

gets and also appear to interact with mRNA regulatory sys-

tems (Edwards, 2015). RNA recognition by Pumilio occurs

through the PUF domain, named after its members Pumilio

and FBF. Full-length Pumilio is a relatively large protein

(156 kDa in Drosophila); however, only a fraction of the

Pumilio protein (a 37 kDa fragment close to the protein

C-terminus) is required for RNA binding, translational re-

pression, and recruitment of other proteins. The PUF do-

main contains multiple tandem repeats of 35–39 amino

acids which recognize specific RNA bases (Abbasi et al.,

2011).

The PAZ domain is found in Dicer and Argonaute

proteins, two protein families with key roles in RNAi

mechanisms. The PAZ domain consists of two subdo-

mains, one of which displays OB-like folding (oligonucleo-

tide/oligosaccharide binding). Hence, the PAZ motif might

bind to single-stranded nucleic acids (Yan et al., 2003).

Crystallographic studies combined with biochemical ap-

proaches showed that the PAZ domain binds to ssRNAs

with low affinity in a sequence-independent manner. A re-

markable feature of the PAZ domain is that it can recognize

the 3’-ends of ssRNAs. Both miRNAs and distinct types of

small interfering RNAs (siRNA) are processed by the se-

quential action of RNase III enzymes (Drosha and Dicer in

mammals, or Dicer alone in yeast and plants), which char-

acteristically leave two 3’-overhangs on the processed

products (Hutvagner and Simard, 2008).

RNA-binding proteins in Trypanosomatids

The regulation of gene expression in trypanosomatids

occurs mainly by post-transcriptional mechanisms. These

protozoans present several peculiarities, such as a less con-

densed chromatin structure, polycistronic transcription, a

trans-splicing mechanism, and the absence of canonical

RNA polymerase II promoters. Genome analysis of the

TriTryp database (containing genome sequences of the

pathogenic T. cruzi, Leishmania major and Trypanosoma

brucei) shows several RNA-binding proteins. Nonetheless,

a comprehensive characterization of RNA-protein interac-

tions remains elusive (Clayton and Shapira, 2007).

In 2005, De Gaudenzi and co-workers described ap-

proximately 80 proteins with RRM domains in T. cruzi, but

few were functionally characterized (Table 1) (De Gauden-

zi et al., 2005). Another comprehensive study was con-

ducted to characterize ribonucleoprotein complexes

(mRNPs) in T. cruzi (Alves et al., 2010). In this study, sev-

eral RBPs were identified by proteomics, using polysomal

and polysome-free fractions of exponentially growing epi-

mastigotes and epimastigotes under conditions of nutri-

tional stress.

The life cycle of T. cruzi involves two hosts (tria-

tomine insects and mammals) and comprises four morpho-

logical stages, two replicative (epimastigotes in the insects

and amastigotes in the mammalian cells) and two infective

forms (metacyclic trypomastigotes in the insects and
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bloodstream trypomastigotes in mammals). The epimas-

tigotes differentiate in the midgut of the insect host and be-

come metacyclic trypomastigotes, which are released in the

excreta when the triatomine feeds on blood. The parasites

penetrate the body of the mammalian host through the dam-

aged skin or mucosa and invade different cell types. Within

the cells, the parasites differentiate into amastigotes)De

Souza, 2002).

RNAi in T. cruzi and yeast

The canonical RNAi machinery comprises three main

components: Dicer, Argonaute, and RNA-dependent RNA

polymerase. Argonaute proteins contain two conserved do-

mains, the PAZ and Piwi domains. These proteins are com-

ponents of the RNA-induced silencing complex (RISC)

(Liu et al., 2004). Fungi, such as Ascomycetes, Basidio-

mycetyes, and Zygomycetes present the RNA silencing

components in the genome, while few ascomycete and

basidiomycete fungi apparently lost these components

(Nakayashiki et al., 2006).

Saccharomyces cerevisiae, T.a cruzi, L. major and

Plasmodium falciparum do not have the RNAi machinery,

which seems to have been lost or excessively simplified.

However, an ORF encoding for an AGO/PIWI protein ex-

pressed in all stages of the life cycle of T. cruzi was recently

described (Garcia-Silva et al., 2010). The results showed

that the TcPIWI-tryp is a canonical Argonaute in its domain

architecture (Garcia-Silva et al., 2010). Moreover, it was

shown that the most represented sRNAs interacting with

TcPIWI-tryp derived from rRNAs, which corresponded to

known miRNAs of higher eukaryotes, indicating a possible

evolutionary pathway of known canonical sncRNAs from

structural RNAs (Garcia-Silva et al., 2014).

RBPs with RRM domain in T. cruzi

Some RBPs play an important role during the differ-

entiation of the parasite by regulating the expression of spe-

cific transcripts. TcUBP-1 recognizes the AU-rich instabil-

ity element located in the 3’-untranslated region (UTR) of

mucin SMUG mRNAs (D’Orso and Frasch, 2002).

TcUBP-2 binds to poly(U)-RNA and is differentially ex-

pressed during parasite development. Both proteins interact

in the same complex and are implicated in controlling T.

cruzi SMUG mucin mRNA levels. In addition, they are lo-

cated preferentially in the polysomal fraction (D’Orso and

Frasch, 2002).

TcRBP40 binds to AG-rich regions in the 3’-UTR of

target mRNAs. Microarray data indicate that this protein

binds to mRNAs encoding various transmembrane pro-

teins. The TcRBP40 protein location varies throughout the

parasite’s life cycle. In the epimastigote stage It is localized

in reservosomes, which are trypanosomatid organelles as-

sociated to protein and lipid storage, and in amastigotes and

trypomastigotes it is dispersed in the cytoplasm, suggesting

a potential gene regulatory function (Guerra-Slompo et al.,

2012).

TcRBP19 is differentially expressed during the life

cycle of T. cruzi and is not detected only in the amastigote

stage. Regulation of TcRBP19 is mediated by the 3’-UTR

region, and the overexpression of TcRBP19 affects the T.

cruzi life cycle and ability for infection (Pérez-Díaz et al.,

2012, 2013). Recently, De Gaudenzi et al. (2016), showed

that TcDRBD4/PTB2 is an essential multifunctional RBP,

involved in regulation of splicing, preventing trans-splicing

and decreasing both UBP1 and UBP2 proteins expression

TcPABP1 was first characterized in 1994 by Batista

et al. (1994), showing that this protein has been conserved

throughout eukaryotic evolution. This Poly (A) binding

protein has been more extensively described in T. brucei

than in T. cruzi. PABP1 and PABP2 are localized in differ-

ent sets of granules in response to inhibition of either trans-

lation or trans-splicing. PABP2 co-localized with the

marker DHH1 into RNP granules, which are similar to

P-bodies, and in nuclear periphery granules, whereas

24 RNA-binding proteins

Table 1 - RNA binding proteins characterized in Trypanosoma cruzi.

Protein Function Ref. Domain

SR62 mRNA processing/stability Názer et al. (2011) SR-related

ZC3H39 Regulator of a specific subset of mRNAs Alves et al., 2014 CCCH

UBP1 mRNA destabilizing factor D’Orso and Frasch (2002) RRM

UBP2 mRNA destabilizing factor D’Orso and Frasch (2002) RRM

PUF6 mRNA destabilizing factor Dallagiovanna et al. (2008) Pumilio

ZFP1 Involved in differentiation Mörking et al. (2004) CCCH

ZFP2 Involved in differentiation Mörking et al. (2004, 2012) CCCH

ZFP3 Involved in differentiation, translation regulator Mörking et al. (2004) CCCH

RBP40 Regulator of a specific subset of mRNAs Guerra-Slompo et al. (2012) RRM

RBP19 Involved in differentiation Pérez-Díaz et al. (2012, 2013) RRM

DRBD4/PTB2 Involved regulation of splicing De Gaudenzi et al., (2016) RRM

PABP1 Involved in translation Batista et al. (1994) RRM



PABP1 is localized in heat shock induced stress granules

(Kramer et al., 2013).

RBPs with PUF domains in T. cruzi

The PUF family of RNA-binding proteins regulates

their target mRNAs by binding to their 3’-UTR. In T. cruzi,

the TcPUF6 protein is involved in the degradation of spe-

cific mRNAs, especially those that are upregulated in the

infective trypomastigote form (Dallagiovanna et al., 2008).

RBPs with the CCCH zinc finger domain in T. cruzi

The T. cruzi proteins TcZFP1 and TcZFP2 have been

characterized and contain the C2H2 domain. TcZFP1 binds

specifically to oligoribonucleotides containing cytosine-

rich sequences. This type of repetitive sequence is present

in untranslated regions of many mRNAs in trypanoso-

matids (Mörking et al., 2004). Ribonomic analysis showed

that the targets of the protein TcZFP2 are associated with

parasite-host interactions, for which expression is down-

regulated in the replicative forms, indicating that TcZFP2

protein might act by destabilizing its targets (Mörking et

al., 2012). The protein TcZC3H39 sequesters highly ex-

pressed mRNAs and their associated ribosomes, slowing

translation under stress conditions. In addition, the tran-

script content is changed in normal and stressful conditions,

and most of its targets code for cytochrome c oxidase en-

zymes (COX) and ribosomal proteins, presenting evidence

for the RNA regulon theory (Alves et al., 2014).

Other RBP domains in T. cruzi

Some RBPs involved in mRNA metabolism can be

relocalized to the nucleolus in T. cruzi as a specific stress

response. TcSR62 is an RBP that belongs to the SR-related

protein family, which is implicated in several functions re-

lated to mRNA metabolism. TcSR62 is involved in mRNA

processing/stability, since its overexpression in T. brucei

affects the mRNA trans-splicing process and leads to a de-

creased abundance of several mRNAs (Názer et al., 2011).

When mRNAs are not translated, they are compart-

mentalized into cytoplasmic structures named RNA gran-

ules. These RNA granules comprise the ‘processing

bodies’ (‘P-bodies’) and the stress granules. Several RBPs

have been implicated in the assembly and/or maintenance

of these structures. TcDHH1, a putative DEAD-box RNA

helicase, is involved in multiple RNA-related processes in

various eukaryotes and accumulates in stress granules and

P-bodies of yeast, animal cells and T. brucei (Kramer et al.,

2010). In T. cruzi, DHH1 is present in heavy protein com-

plexes, which are not associated with the polysome com-

plexes, and is located diffusely in the cytoplasm under

normal conditions. However, DHH1 forms cytoplasmic

granules upon nutritional stress or treatment with drugs that

dissociate the polysomes (Holetz et al., 2010).

RNA-binding proteins in yeast

The RNA-RBP complexes can be identified by RBP

immunoaffinity purification (RIP), where the proteins are

purified together with the bound RNAs, and the associated

RNAs can then be identified. CLIP (cross-linking and im-

muno-precipitation) is a method that can directly determine

the binding sites of RBPs onto mRNA. A substantial num-

ber of mRNA-binding proteins from yeast were identified

from studies on the mechanisms of biogenesis, localization,

translation and degradation of mRNAs (Mitchell et al.,

2013).

RBPs with an RRM domain in S. cerevisiae

RBPs with RRM domains are well characterized in S.

cerevisiae. This is the case of PABP1 (Poly-A binding pro-

tein), which contains four RRM domains (Figure 1), and is

found in the cytoplasm, where it is associated with mRNA

poly-A tails, stimulating translation initiation and regulat-

ing mRNA stability (Amrani et al., 1997).

The second best studied protein in yeast is PUB1,

which has three RRMs and can be located both in the nu-

cleus and the cytoplasm, and is associated with poly(U) se-

quences (Anderson et al., 1993). PUB1 is involved in the

stabilization of mRNAs containing ARE (“AU-rich ele-

ments”), and it is also involved in the process of non-

sense-mediated mRNA decay (NMD) (Ruiz-Echevarría

and Peltz, 2000).

The ScPRP24 protein also contains three RRM do-

mains and is involved in the formation and organization of

the spliceosome complex (Shannon and Guthrie, 1991).

Moreover, the RRM domains 2 and 3 of ScPRP24 stabilize

the U6 RNA and allow it to complete the U4/U6 RNA inter-

action, thereby influencing the association and dissociation

of U4 and U6 RNAs with ScPRP24 (Vidaver et al., 1999).

RBPs with PUF domain in S. cerevisiae

Yeast possesses six PUF proteins (named

PUF1–PUF6), and these proteins modulate mRNA stability

through association with the 3’-UTR of their target

mRNAs. For example, PUF1p activity involves recognition

of UGUA sequences and surrounding sequences by PUF

proteins. PUF also regulates several mitochondrial pro-

teins, such as PMP1, PMP2, PMP3, and AST1. These

mRNAs have been associated with PUF1p and/or PUF2p

and encode membrane-associated proteins involved in pro-

ton transport (Ulbricht and Olivas, 2008). PUF3 promotes

the deadenylation of Cox17 (Olivas and Parker, 2000),

while PUF4 and PUF5 act on the deadenylation and decay

of HO, a specific endonuclease that stimulates mating-type

switching in budding yeast (Tadauchi et al., 2001). Interest-

ingly, PUF6 (Figure 2) acts on the regulation of Ash1,

which represses HO in cells to block mating-type switching

(Gu et al., 2004).
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RBPs with zinc finger CCCH domains in S.

cerevisiae

CTH1 (Figure 3) and CTH2 were first described in

yeast. Both proteins can play a role in mRNA activation or

degradation of mRNA targets involved in iron homeostasis

(Thompson et al., 1996).

Two zinc finger proteins, MSN2 and MSN4, func-

tion as transcriptional activators (Estruch and Carlson

1993), and under stress conditions both proteins can acti-

vate one or more genes involved in the protective response

following different types of stress (Martínez-Pastor et al.,

1996).

26 RNA-binding proteins

Figure 1 - Structural prediction of ScPab1 (A) and TcPabp1 (B) proteins (Phyre2 program).

Figure 2 - Structural prediction of ScPuf6 (A) and TcPuf6 (B) proteins (Phyre2 program).



Other RBP domains in S. cerevisiae

There are many other RBPs that have been character-

ized. For example, SCP160 is a protein that has 14 repeats

of the KH domain (Figure 4) and is associated with poly-

ribosome bound mRNPs (Lang and Fridovich-Keil, 2000).

Interestingly, this protein also participates in the formation

of P-bodies, since it appears to prevent P-bodies formation

under normal conditions (Weidner et al., 2014).

RBPs orthology between T. cruzi and S. cerevisiae

To investigate if the RBP proteins of T. cruzi are pres-

ent in S. cerevisiae we performed an orthology analysis.

The RBP amino acid sequences from T. brucei (De Gau-

denzi et al., 2005) were used to identify RBPs in T. cruzi

through best reciprocal Blast hit analysis, resulting in 61

proteins with identity ranging from 87.04 to 30.38%. The

identified proteins were then compared to all encoded pro-

teins of S. cerevisiae genome using the same approach. A

total of 20 T. cruzi proteins were found orthologous in S.

cerevisiae, but the overall identity was lower, ranging from

44.44 to 22.17% (Table 2). Despite the low identity be-

tween T. cruzi and S. cerevisiae proteins, domain analysis

showed that the proteins had related RBP domains, sug-

gesting that these proteins are indeed orthologous between

these two organisms.

Concluding remarks

RBPs are key players in gene expression regulation in

all organisms. They allow the cells to change their expres-

sion profile very rapidly to respond to different types of

stimuli. The fast response is particularly important in the

case of unicellular organisms, such as trypanosomatids and

yeast, that rapidly need to adapt to environmental changes

to survive.

Despite the phylogenetic distance, in some cases, the

function of a protein of interest is conserved. S cerevisiae is
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a powerful biological model because it is a simple euka-

ryote whose genome is easily manipulated and, therefore,

can be used to obtain hints about the function of genes in

another organism (Table 2). For example, the T. cruzi TcJ6

protein is a homologue of the Sis1 protein from S.

cerevisiae, and these proteins are involved in translation

initiation in both organisms (Salmon et al., 2001). For in-

stance, Mantilla et al. (2015) used S. cerevisiae to comple-

ment mutants for the T. cruzi protein TcP5CDH to study the

proline metabolic pathway of the parasite.

The study of RBPs proteins and their function in uni-

cellular eukaryotes should pave the way to enlighten the

regulatory role of these proteins in higher eukaryotes.
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