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Abstract

Comparisons of covariance patterns are becoming more common as interest in the evolution of relationships be-
tween traits and in the evolutionary phenotypic diversification of clades have grown. We present parallel analyses of
covariance matrix similarity for cranial traits in 14 New World Monkey genera using the Random Skewers (RS),
T-statistics, and Common Principal Components (CPC) approaches. We find that the CPC approach is very powerful
in that with adequate sample sizes, it can be used to detect significant differences in matrix structure, even between
matrices that are virtually identical in their evolutionary properties, as indicated by the RS results. We suggest that in
many instances the assumption that population covariance matrices are identical be rejected out of hand. The more
interesting and relevant question is, How similar are two covariance matrices with respect to their predicted evolu-
tionary responses? This issue is addressed by the random skewers method described here.

Key words: covariance matrix, common principal components, random skewers, New World monkeys, quantitative genetics.

Received: July 11, 2006; Accepted: January 31, 2007.

Introduction

The evolution of phenotypic and genetic variance/

covariance matrices, referred to as simply covariance ma-

trices throughout this paper, is a crucial subject in evolu-

tionary biology (Steppan et al. 2002). In a pivotal paper

Lande (1979) showed that, under certain assumptions, esti-

mation of the additive genetic variance-covariance matrix

(G) enables us to predict how a set of quantitative traits will

evolve under conjoint operation of mutation and genetic

drift or in response to natural selection (Lande and Arnold

1983; Turelli 1988). The pattern and level of additive inher-

itance described by G-matrices is also crucial to the “evolu-

tionary constraints” approach, which seeks to understand

the existing diversity of life forms from comparisons of pat-

terns of phenotypic, and ideally genetic, interrelationships

among continuous distributed traits (Cheverud 1984, 1996;

Steppan 1997; Arnold and Phillips 1999). Both, phenotypic

(P) and genetic (G) matrices are important for understand-

ing the evolution of complex morphologies for several rea-

sons. First, genetic correlations and variance/covariance

parameters are estimated from phenotypic attributes, prop-

erly weighted by genealogical information. Second, al-

though the G matrix helps determine the rate and direction

of evolutionary response to natural selection, phenotypic

covariance patterns give us direct information about the

pattern and level of variation available for selection and are

the ultimate target of selection. Phenotypic matrices also

play a role in the multivariate evolutionary response equa-

tion for natural selection

(Δz = Gβ)

because the gradient selection vector β, which summarizes

the directional selection force operating on each individual

character independently of other traits, is calculated as the

inverse of the phenotypic matrix times the selection differ-

ential (S) (β = P -1 S), where Δz is the evolutionary change

in a vector of trait means. Third, there is increasing evi-

dence that phenotypic and genetic variance/covariance ma-

trices are quite similar, especially for morphological traits,

in many diverse organisms (Cheverud 1988, 1995, 1996;

Roff 1995, 1996; Steppan 1997; Waitt and Levin 1998; Ar-

nold and Phillips 1999; Marroig and Cheverud 2001), al-

lowing P matrices to be substituted for G matrices in

evolutionary studies.
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The comparison of P and G matrices within and

across taxa, while crucial for evolutionary biology, is de-

pendent on reliable statistical methods, a research area that

has been growing during the last two decades. Several

methods have been proposed and used for comparing

covariance and correlation matrices (Lovsfold 1986; Shaw

et al., 1995; Cheverud 1988, 1995, 1996), from vector cor-

relation among principal components to matrix correlation

and a maximum-likelihood test for matrix equality. Re-

cently, Roff and colleagues (Begin and Roff 2001, 2003,

2004; Roff 2002; Begin et al. 2004) have introduced a se-

ries of new matrix comparison methods, including the

T-method, an element by element approach, using percent

reduction in Mean Square Error, and the Jackknife-

MANOVA method. The T-method (Roff et al. 1999) in-

volves the calculation of the overall sum of the absolute

values of differences between the elements of two symmet-

rical matrices, in other words:
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where Aij is the covariance between traits i and j in matrix A

and Bij is the corresponding covariance in matrix B, the

summation being extended to all diagonal and off diagonal

elements in the two matrices (sum of the number of diago-

nal elements plus the number above or below the diagonal).

Similarly, T2 statistics can be calculated which are basically

the sum of the squared differences between corresponding

matrix elements (instead of the module). Both statistics can

be extended to three or more populations by computing all

pairwise comparisons. To test the null hypothesis that the

elements in one matrix from one population do not differ

from the corresponding elements in the other population

matrix, we estimate the probability associated with each T

value observed via randomizations. Hypothesis testing is

conducted by permuting individuals between data arrays

and calculating pseudovalues of T or T2 from the random-

ization procedure (Tr and T2
r). Significance is evaluated as

the fraction of times Tobs > Tr (or T2
obs > T2

r). Steppan et al.

(2002) have recently reviewed many of these methods.

Common principal component analysis (CPC) has

been suggested as a potentially useful tool for simulta-

neously comparing covariance matrices among two or

more taxa (Flury 1988; Steppan 1997; Phillips and Arnold

1999; Arnold and Phillips 1999). CPC analysis is particu-

larly well suited for covariance matrix comparisons be-

cause it allows a diversity of hypotheses of relationships

among matrices (from unrelated structure to proportional-

ity and equality) to be tested in a hierarchical fashion using

any number of matrices (Flury 1988; Phillips and Arnold

1999; Arnold and Phillips 1999). This analysis is based on

the description and comparisons of matrices using their de-

composition into eigenvalues and eigenvectors (principal

components). Flury’s model (1988) allows covariance ma-

trices to share more complex relationships than just being

equal or unequal, providing a test of several other hypothe-

ses (proportionality, common principal components, partial

common principal components) besides matrix equality or

unrelated structure (Phillips and Arnold 1999). In this way,

CPC analysis builds and tests a hierarchy of relationships

among two or more covariance matrices, from unrelated

structure to PCPC1, sharing the first PC, PCPC2, sharing

the first two PCs,and so on until CPC, sharing all PCs, pro-

portionality and finally equality, each step up in the hierar-

chy being more inclusive and only being true if the lower

levels also holds (see Phillips and Arnold 1999). For each

hypothesis in the hierarchy a new set of matrices based on

the sample (original) matrices is constructed by maxi-

mum-likelihood methods that are constrained so that the

hypothesis in question is true. The relative degree of differ-

ence between the original and constrained matrices deter-

mines the likelihood that the particular hypothesis is true.

The difference between the likelihood function values of

two steps in the hierarchy is distributed as a chi-square and

therefore a standard χ2 test could be used to detect signifi-

cant differences in matrix structure. The CPC test does not

have an associated parameter designating the strength of

similarity among matrices, relying only on significance

testing. We propose a metric described below based on the

extent of shared PC structure.

Alternatively, Cheverud (1996) compared the corre-

lation of selection response between two matrices using a

series of random selection vectors as a measure of matrix

similarity. This “Random Skewers” procedure was derived

from ecological methods (Manly 1991) and is a direct ap-

plication of Lande’s (1979) multivariate response to selec-

tion equation (equation 1). Some number of random selec-

tion vectors (~1,000 to 10,000) are applied to both matrices

and their responses compared using the vector correlation.

Elements of the selection vectors are drawn from a uniform

distribution of values between 0.0 and 1.0 and randomly as-

signed positive or negative signs at 50% probability. The

total length of the vector is then standardized to 1.0 (sum of

the squared vector elements equals 1.0). This random selec-

tion vector (or skewer) is applied to each of the covariance

matrices of interest and the response vectors recorded.

Since the selection vector is always of unit length, the

length of a response vector is given as the sum of the

squared response vector elements and can be compared be-

tween two matrices by taking their ratio. This is a measure

of the relative levels of variance in the two matrices along

this dimension of multivariate space. However, when com-

paring covariance matrices we are often primarily con-

cerned with the pattern of response, rather than its magni-

tude. The vector correlation measures the co-linearity of the

selection responses in multivariate morphometric space. It

is equal to the cosine of the angle between the vectors (Fig-

ure 1). Of course, the same random selection vector is

applied to each matrix so that their simulated evolutionary

responses can be compared. The results of these vector
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comparisons will differ depending on the specific multi-

variate dimension tested, so we use the average vector cor-

relation between matrix responses to as many as 10,000

random selection vectors as an overall measure of matrix

similarity. If two matrices are equal, the average response

to random selection vectors is expected to be co-linear or

equals one and contrarily, if two matrices are completely

unrelated with no shared structure, the average response is

expected to be perpendicular or equal to zero (Figure 1).

The statistical significance of a random skewers set

can be evaluated against the null hypothesis of no shared

structure by using the distribution of vector correlations

among ‘k’ element random, unit-length vectors, where ‘k’

is the number of traits in the analysis. If the observed vector

correlation exceeds 95% of the vector correlations found

among the random vectors, there is significant structural

similarity between the covariance matrices. In practice, the

null hypothesis of no structural similarity is nearly always

rejected. Alternatively, a bootstrap approach can be used to

measure variation in matrices drawn from population sam-

ples. Cheverud et al. (1989; Cheverud, 1996) used a boot-

strap test of self-matrix correlation to evaluate matrix re-

peatability. A bootstrap sample of N individuals is

produced by randomly sampling N individuals, with re-

placement, from the population. A covariance matrix is

generated from this sample and compared to the original

observed covariance matrix using the random skewers pro-

cedure. Covariance matrix repeatability is given by the av-

erage squared vector correlation between predicted selec-

tion responses of the observed and bootstrap matrices. This

approach can also be used to test the null hypothesis of no

difference between two covariance matrices by comparing

the bootstrap sample matrices from one species with the ob-

served covariance matrix of the other species (see below).

This paper has three goals: first, present a distribution

free method for comparing pairs of covariance matrices

based on the expected similarity among responses to ran-

dom selection vectors; second, evaluate these results in re-

lation to Roff’s T-test; third, discuss some possible

problems in interpreting results from the CPC analysis

associated with sample sizes of the matrices compared,

problems that one should be aware of in order for the full

potential of CPC as a tool in evolutionary studies to be real-

ized.

Materials and Methods

Thirty-nine skull measurements were taken on 5,222

Neotropical primate specimens deposited in several natural

history museums (a complete list of material with specimen

numbers, museum and taxonomy used can be obtained

upon request from the authors). This data set is the same as

used by Marroig and Cheverud (2001). Of the sixteen

Platyrrhine (Strepserrhini, Primates) genera, two

(Brachyteles and Callimico) were excluded because their

small sample sizes preclude the proper application of the

CPC program (Phillips 1998). Pooled within-groups

phenotypic variance/covariance matrices were obtained for

each genus following procedures outlined in Marroig and

Cheverud (2001) by correcting for sex and taxonomic vari-

ation within genus (specific or sub-specific rank depending

on the taxonomic arrangement employed for each genus).

Both, T- and T2 statistics (Roff et al. 1999) were ap-

plied to test whether or not each pair of NWM covariance

matrices were statistically different. The software to imple-

ment both T- statistics was kindly provided by L.J. Revell

(http://iguana.wustl.edu/~liam/programs/index.htm). Be-

cause the T-method relies on bootstrapping the data, recal-

culating each covariance matrix in every step of the 1,000

samplings, specimen values should be used as a input for

the program, not the covariance matrices. Because nearly

all of our matrices are pooled-within groups matrices al-

ready accounting for other sources of variation (such as sex,

species, or sex by species interaction), we used the residu-

als of the appropriate general linear model for each genus as

the data input for the T-method. Variance/ covariance ma-

trices were also analyzed using the CPC software (Phillips

1998) in a pairwise fashion for each possible combination

of the 14 South American primate genera. We use both the

step-up and the model building approaches (Arnold and

Phillips 1999; Phillips and Arnold 1999) to interpret CPC

results. The number of partial common principal compo-

nents analyzed was limited to seven, since for this data set

few loadings beyond the fifth principal component are sig-

nificantly different from zero. The results from CPC analy-

ses were transformed into scores in order to be able to

correlate those results with the harmonic or geometric

mean of the sample sizes of the matrices involved in each

comparison. The full CPC hierarchy comprises 10 catego-

ries, from unrelated structure to equality and therefore

equality was considered as one and unrelated as zero. Any

result between these extreme possibilities was considered

as a proportion of the total number of categories. For exam-

ple, if two matrices had 7 principal components in com-

mon, the similarity between those 2 matrices is 0.7

Comparing covariance matrices 463

Figure 1 - Illustration of Random Skewers (RS) method for variance/

covariance matrix (G) comparison. Random selection vectors (ß) are ap-

plied to matrices (A, B, C) using the multivariate evolution equation and

the results (?z) compared using vector correlations. Matrices A and B are

quite similar to each other and both very different from matrix C.



(7 common components divided by total number of catego-

ries 10). After this transformation of the CPC results to a

“similarity matrix”, this matrix was correlated with the ma-

trix of harmonic and geometric means of the sample sizes

using matrix correlation and the Mantel’s test. The signifi-

cance of the observed matrix correlation was calculated us-

ing 10,000 permutations of the columns and associated

rows and by comparing the observed matrix correlation to

the distribution of randomized matrix correlations.

Phillips and Arnold (1999) suggested that when con-

sidering CPC results and differences in the results among

the approaches used to build the CPC hierarchy (Step-up,

Jump-up and Model-Building approaches) the biological

reality of the situation can be gleaned by looking at how

well the matrices constructed using the constrained model

match the actual matrices from the populations. Therefore,

we select four cases to further examine the possible influ-

ence of the sample sizes upon the CPC results. These four

cases correspond to the following situations: full CPC re-

sult with low average sample size; full CPC result with high

average sample size; unrelated structure with high average

sample size; and unrelated structure with low average sam-

ple size. For each of these four examples the original matri-

ces were compared to several reconstructed matrices con-

strained by the PCPC or CPC models, from PCPC1 to

proportionality. The comparisons were made using the

Random Skewers procedure with the VCVCOMP pro-

gram, which is available from the authors upon request. Al-

though matrix correlation followed by Mantel’s test be-

tween paired matrices has been used for comparing

variance/covariance matrices matrix (Lovsfold 1986; Ar-

nold and Phillips 1999) this approach is not suitable for

comparing this kind of matrix. Columns and rows of vari-

ance/covariance matrices usually differ in scale because

larger measurements tend to have larger variances and the

reverse is true for smaller measurements. This scaling prob-

lem means that the randomized columns and associated

rows of the variance/covariance matrix are not strictly com-

parable to one another.

The Random Skewers (RS) procedure does not have

this scale problem because the columns and rows of both

matrices are not randomized. Instead, the randomization is

obtained by repeatedly varying the selection vector applied

to both matrices in each round. We compare the same 14

variance/covariance matrices used in the T-method and

CPC analyses using the RS method (for a complete analy-

ses of this data set see Marroig and Cheverud 2001). The re-

sulting similarity matrix among the 14 Neotropical primate

genera was also compared to CPC results and sample sizes

using matrix correlation followed by Mantel’s test. In order

to better understand the properties of the RS method, we

use a Monte Carlo approach to look at pairwise similarity

between any two matrices. Since samples used to estimate

pooled-within groups covariance matrices have a structure,

which controls for variation associated with sex and taxo-

nomic differences, a bootstrap procedure is difficult to ap-

ply. Instead we used a Monte Carlo approach by generating

m data sets, each composed of n individuals with 39 mea-

surements randomly drawn from a population having the

observed covariance structure, where n stands for the num-

ber of specimens in the original sample. This is performed

using the Cholesky decomposition. The covariance matrix

specified by each of these m data sets is calculated and then

compared to the observed matrix of the other genus in-

volved in the pairwise comparison using the average vector

correlation between simulated selection responses. In this

way, the distribution of correlations around the observed

random skewer can be observed.

Results

Table 1 presents the CPC results for each pairwise

comparison among the 14 New World Monkey generic

covariance matrices and their sample sizes. Table 1 also

presents the Random Skewers results above the diagonal.

There is a negative and significant correlation between the

CPC results transformed to a similarity matrix and both the

harmonic (r = -0.374, p = 0.0065) and geometric means

(r = -0.410, p = 0.0012) of the sample sizes. This indicates

that increasing the average sample sizes of the matrices de-

creases the apparent similarity of the matrices. It is more

difficult to reject the hypothesis of common structure with

smaller samples. This is reinforced by the comparison of

the observed matrices of the four selected cases (with com-

binations of high or low sample sizes and unrelated or CPC

structure) to the matrices constructed using the constrained

models of the CPC hierarchy (Table 2). All pairwise com-

parisons show high similarity between the reconstructed

matrices and the original ones at all levels in Flury’s hierar-

chy, except for a few matrices in the Cacajao x Cebuella

comparison (a combination of low sample sizes and unre-

lated structure in the CPC result). In this comparison at all

steps in the hierarchy one of the original matrices presents a

stronger fit to the reconstructed matrices than the other, re-

sulting in an overall lower fit than the other comparisons.

Even so, most of these correlations are above 0.9, a value

usually associated with quite strong similarity (see Table

2). The comparison between tamarins (Saguinus) and mar-

mosets (Callithrix) is particularly interesting because the

two matrices are based on the highest sample sizes in our

data set (N = 1135 and 504 respectively). For both genera,

the similarity between the original matrix and the recon-

structed ones is nearly one at all steps in the hierarchy, from

unrelated to equality, a result that suggest that the original

matrices are in fact nearly identical to one another. How-

ever, all three approaches (Step-up, Jump-up and Model

building) suggested by Flury (1988) and Phillips and Ar-

nold (1999) indicate that the hypothesis of shared structure

between these two genera should be rejected quite confi-

dently (see Table 3). Perhaps the structures are significantly

different but that difference is extremely small. Moreover,
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if the same two matrices (Callithrix and Saguinus) are com-

pared again using the CPC, but using a 10 times smaller

sample size as input, the result for all 3 approaches indicate

a full proportional relationship between them.

There is a low, non-significant correlation between

RS results and CPC results (r = 0.163, p = 0.18) indicating

that the techniques are giving different answers to the ques-

tion of matrix similarity. This is because RS uses a quanti-

tative measure of association, not based on sample sizes,

while CPC results are largely determined, in our data set, by

sample size considerations. There is also a positive and sig-

nificant correlation between the RS results and both, har-

monic mean (r = 0.453, p = 0.0198) and geometric mean

(r = 0.413, p = 0.0286) of the matrix sample sizes. This re-

sult indicates that matrices with higher sample sizes appear

to be more similar than matrices with lower sample sizes.

This probably results from the fact that matrices with high

sample sizes are estimated with more confidence than ma-

trices with lower sample sizes. Note that this is in opposi-

tion to the association between CPC interpretations and

sample sizes.

Tables 4 and 5 present the results of the T- and T2-sta-

tistics, with observed values below the diagonal and associ-

ated probabilities above the diagonal. Notice that among all
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Table 1 - CPC results between each pairwise comparison of the fourteen Neotropical primate covariance matrices shown below the diagonal.

Comparisons are rated as equal (EQ), proportional (PROP), sharing all principal components (CPC), sharing the first X principal components (CPCX),

and unrelated (UN). The Random Skewers results are presented above the diagonal. Sample sizes are shown in the second row.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

226 387 92 79 231 154 391 181 263 396 59 1135 504 89

1. Ateles X 0.78 0.86 0.79 0.84 0.88 0.84 0.8 0.84 0.91 0.66 0.81 0.87 0.72

2. Alouatta UN X 0.84 0.81 0.89 0.82 0.87 0.72 0.82 0.81 0.69 0.78 0.73 0.72

3. Lagothrix CPC CPC7 X 0.81 0.86 0.83 0.86 0.76 0.82 0.85 0.68 0.8 0.8 0.75

4. Cacajao CPC UN CPC X 0.88 0.84 0.88 0.79 0.86 0.83 0.7 0.79 0.78 0.72

5. Pithecia UN UN CPC CPC X 0.87 0.92 0.83 0.87 0.88 0.73 0.86 0.83 0.77

6. Chiropotes CPC UN CPC CPC CPC X 0.88 0.82 0.85 0.88 0.71 0.84 0.85 0.75

7. Callicebus UN UN UN CPC UN UN X 0.87 0.86 0.89 0.72 0.87 0.84 0.8

8. Aotus UN UN CRASH CPC UN CPC6 CPC6 X 0.78 0.83 0.7 0.85 0.84 0.76

9. Saimiri UN UN UN CPC UN CPC UN UN X 0.86 0.73 0.82 0.83 0.72

10. Cebus CPC1 UN CPC CPC UN CPC1 UN UN UN X 0.7 0.81 0.85 0.73

11. Leontopithecus CPC1 UN UN CPC CPC3 CPC3 UN CPC2 UN UN X 0.79 0.75 0.7

12. Saguinus UN UN UN UN UN UN UN UN UN UN UN X 0.89 0.8

13. Callithrix UN UN CPC1 UN UN CPC1 UN CPC1 UN UN UN UN X 0.76

14. Cebuella CPC2 UN UN UN UN UN UN UN CRASH UN CPC UN UN X

Table 2 - Random skewers results for the comparison between original and reconstructed covariance matrices at each step in the CPC hierarchy for the

four selected pairwise comparisons of high or low sample sizes with unrelated or CPC structural similarity. For each genus, we present the average RS

vector correlation between reconstructed matrices at each step in the hierarchy. The average RS vector correlation between each pair of genera is also

shown. Sample size for each matrix is presented at the bottom of the table as well as the harmonic and geometric means of the sample sizes.

High n x Unrelated Low n x Unrelated High n x CPC Low n x CPC

Callithrix Saguinus Average Cacajao Cebuella Average Saimiri Chiropotes Average Cacajao Lagothrix Average

Equality 0.952 0.992 0.972 0.894 0.788 0.841 0.966 0.955 0.961 0.923 0.971 0.947

Proportionality 0.958 0.989 0.974 0.647 0.968 0.808 0.990 0.915 0.952 0.943 0.966 0.954

CPC 0.979 0.993 0.986 0.946 0.869 0.908 0.987 0.949 0.968 0.955 0.970 0.962

CPC7 0.978 0.991 0.985 0.948 0.872 0.910 0.987 0.952 0.969 0.925 0.965 0.945

CPC6 0.979 0.992 0.985 0.955 0.872 0.913 0.987 0.953 0.970 0.926 0.961 0.944

CPC5 0.984 0.988 0.986 0.951 0.871 0.911 0.986 0.951 0.969 0.925 0.961 0.943

CPC4 0.985 0.988 0.987 0.954 0.869 0.911 0.988 0.958 0.973 0.937 0.970 0.953

CPC3 0.985 0.988 0.987 0.951 0.853 0.902 0.989 0.959 0.974 0.932 0.963 0.948

CPC2 0.986 0.989 0.987 0.962 0.855 0.908 0.990 0.961 0.976 0.931 0.988 0.960

CPC1 0.986 0.991 0.988 0.956 0.869 0.913 0.995 0.961 0.978 0.991 0.988 0.990

n 504 1135 79 89 263 154 79 92

Harmonic mean 698 83 194 85

Geometric mean 756 83 201 85
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Table 3 - CPC hypothesis testing results for Saguinus-Callithrix comparison.

Step-up & model building approaches Jump-up approach

Model Model

Higher Lower Chi df p-val CS/df AIC chi df p

Equality Proportionality 333.501 1 0.0000 333.501 3622.36 Equality Unrelated 3622.364 780 0.0000

Proportionality CPC 761.802 38 0.0000 20.047 3290.86 Proportionality Unrelated 3288.863 779 0.0000

CPC CPC(7) 1476.217 496 0.0000 2.976 2605.06 CPC Unrelated 2527.061 741 0.0000

CPC(7) CPC(6) 253.216 32 0.0000 7.913 2120.84 CPC(7) Unrelated 1050.844 245 0.0000

CPC(6) CPC(5) 242.094 33 0.0000 7.336 1931.63 CPC(6) Unrelated 797.628 213 0.0000

CPC(5) CPC(4) 128.331 34 0.0000 3.774 1755.53 CPC(5) Unrelated 555.534 180 0.0000

CPC(4) CPC(3) 75.224 35 0.0001 2.149 1695.20 CPC(4) Unrelated 427.203 146 0.0000

CPC(3) CPC(2) 104.246 36 0.0000 2.896 1689.98 CPC(3) Unrelated 351.979 111 0.0000

CPC(2) CPC(1) 82.824 37 0.0000 2.238 1657.73 CPC(2) Unrelated 247.733 75 0.0000

CPC(1) Unrelated 164.909 38 0.0000 4.34 1648.91 CPC(1) Unrelated 164.909 38 0.0000

Unrelated - 1560.00

Table 4 - T-statistics results are show. Below the diagonal the observed T values and above the diagonal corresponding probabilities that the elements of

the two matrices does not differ significantly.

T-statistics 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ateles 1 0.999 0.869 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999

Alouatta 770.1 1 0.627 0.992 0.999 0.999 0.999 0.999 0.999 0.999 0.971 0.999 0.999 1.000

Lagothrix 100.4 120.8 1 0.999 0.999 0.999 0.999 0.999 0.999 0.987 0.999 0.999 0.999 0.999

Cacajao 432.8 940.9 370.3 1 0.835 0.994 0.999 0.999 0.999 0.997 0.998 0.999 0.999 0.999

Pithecia 421.2 914.1 337.5 178.1 1 0.996 0.999 0.999 0.999 0.999 0.971 0.999 0.999 0.999

Chiropotes 482.5 1010.9 389.5 209.4 181.0 1 0.999 0.999 0.999 0.999 0.994 0.999 0.999 0.999

Callicebus 564.3 1098.8 462.5 240.8 209.2 151.4 1 0.997 0.999 0.999 0.943 0.999 0.999 0.999

Aotus 617.5 1154.8 522.2 292.6 265.3 200.2 111.7 1 0.999 0.999 0.995 0.999 0.999 0.999

Saimiri 524.6 1037.1 428.8 224.0 184.7 163.9 114.4 165.9 1 0.999 0.998 0.999 0.999 0.999

Cebus 316.7 705.2 387.1 437.0 438.8 516.1 599.7 648.7 554.4 1 0.997 0.999 0.999 0.999

Leontopithecus 623.9 1134.8 515.5 312.7 282.0 230.0 162.8 168.0 179.2 649.5 1 0.999 0.999 0.999

Saguinus 657.4 1192.1 551.1 335.9 299.1 227.2 124.4 110.5 171.4 697.8 128.7 1 0.999 0.999

Callithrix 671.0 1207.0 563.3 344.9 312.5 237.1 134.1 114.4 182.2 708.5 136.2 47.3 1 0.996

Cebuella 715.2 1255.3 606.1 384.3 359.0 278.7 169.4 146.7 228.2 754.4 168.1 81.5 67.9 1

Table 5 - T2-statistics results are show. Below the diagonal the observed T2 values and above the diagonal corresponding probabilities that the elements of

the two matrices does not differ significantly.

T-squared 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ateles 1 0.999 0.79 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Alouatta 1587.3 1 0.644 0.991 0.999 0.999 0.999 0.999 0.999 0.999 0.964 0.999 0.999 1.000

Lagothrix 29.2 35.2 1 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999

Cacajao 1105.9 1881.0 337.7 1 0.893 0.996 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Pithecia 1097.4 1832.8 305.1 81.7 1 0.997 0.999 0.999 0.999 0.999 0.973 0.999 0.999 0.999

Chiropotes 1091.1 2180.8 385.1 115.8 82.5 1 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999

Callicebus 1493.7 2569.7 548.3 153.5 104.7 76.1 1 0.996 0.999 0.999 0.928 0.999 0.999 0.999

Aotus 1552.4 2833.8 644.5 206.4 155.7 100.2 28.3 1 0.999 0.999 0.994 0.999 0.999 0.999

Saimiri 1432.3 2492.8 528.7 139.2 101.5 83.9 37.0 61.4 1 0.999 0.998 0.999 0.999 0.999

Cebus 331.5 1241.6 556.6 922.9 919.7 1008.5 1343.0 1440.8 1316.4 1 0.998 0.999 0.999 0.999

Leontopithecus 1740.0 2875.8 710.6 251.9 189.9 150.7 60.6 63.9 70.3 1625.8 1 0.998 0.999 0.999

Saguinus 1840.0 3106.9 791.4 292.5 223.2 159.7 46.2 37.9 70.2 1755.7 37.7 1 0.999 0.998

Callithrix 1811.7 3175.7 805.0 301.9 238.2 162.7 53.4 40.6 73.8 1751.2 44.3 7.8 1 0.999

Cebuella 2085.5 3411.6 947.8 386.6 317.8 237.4 85.6 73.4 119.1 1993.8 68.4 17.5 17.3 1



91 pairwise comparisons of covariance matrices none pres-

ent significant differences among them.

Discussion

Results of the two T-statistics and the random skew-

ers are basically in agreement. Random Skewers results in-

dicate that covariance matrices are basically very similar in

NWM, while not strictly constant or equal. The T-method

results do not reject the null hypothesis that the elements in

one covariance matrix are the same as the corresponding el-

ements in the second matrix. This congruence of results be-

tween RS and T-statistics is in marked contrast to the CPC

results.

Matrix sample sizes affect the RS and the CPC meth-

ods in opposite ways (Figure 2). Pairwise matrix compari-

sons estimated with low sample sizes are generally less

similar to one another than matrices estimated with high

sample sizes using the RS method. This relationship is a re-

sult of the sampling error associated with any matrix esti-

mation and results in greater random error in the estimates

of matrix elements in comparisons made using smaller

samples. This is the same pattern was found by Steppan

(1997) in his rarefaction analysis of the matrix correlation

using Mantel’s test and also discussed by Cheverud (1996)

in the context of matrix estimation reliability.

Conversely, for the CPC method, matrices estimated

with higher sample sizes reject the null hypothesis of simi-

larity more frequently than matrices with relatively lower

sample sizes. Because the CPC model takes into account

sample size in deriving the χ2 probabilities, the main effect

of increasing sample size is to increase the power of the

method to reject common structure. This is apparent in the

Saguinus x Callithrix case analyzed in detail here. In this

case, even if the maximum likelihood matrices recon-

structed under the equality and all steps below in Flury’s hi-

erarchy are nearly identical to the original matrices, all

three approaches for choosing an appropriate model in CPC

analysis indicate that those matrices are unrelated in their

structure. Conversely, the RS method indicates that

covariance structure is really quite similar. With large sam-

ple sizes even small differences in the variance/covariance

structure of the matrices leads to statistically significant

CPC tests, even when the differences are biologically triv-

ial. Unlike the usual null hypothesis of no structure, CPC

procedure has as its null, identical structure. The surest way

to avoid obtaining significant structural diversity is to use

inadequate sample sizes. With large sample sizes, it is quite

possible for matrices that are indeed very similar, to be

found significantly different from each other. Both meth-

ods behave as expected statistically, but it is clear that a

CPC result of “unrelated” matrix structures can be obtained

even in situations in which the matrices are nearly identical

(r > 0.9). A similar conclusion concerning CPC was

reached by Houle et al. (2002) on the basis of simulation re-

sults.

The above discussion suggests that future applica-

tions of CPC to studies of matrix evolution face something

of a dilemma. To what extent are statistically significant

differences between the matrices compared biologically

meaningful? For example, at first sight the comparison us-

ing the CPC technique suggests that in general there is very

little shared covariance structure among Neotropical pri-

mate genera. This result indicates that attempts to recon-

struct past evolutionary forces operating to differentiate

phenotypic means of populations will be questionable

given the violation of the basic assumption of constant or

proportional within-group variance/covariance structures.

However, while statistically significant differences among

Platyrrhine covariance matrices are detected by CPC, a

closer examination suggests that those differences are triv-

ial or insignificant from a biological point of view as dem-

onstrated by the Saguinus-Callithrix comparison. In two

previous studies comparing variance/covariance and corre-

lation patterns using CPC and matrix correlation this con-

flict between statistical and biological significance was

apparent (Steppan 1997, Ackermann and Cheverud 2000).

Steppan (1997) found that while matrix correlation results

indicate a high similarity among covariance structures for

skull traits of several populations and species of the rodent

genus Phyllotys, CPC analyses indicates that there is very

little shared structure. Ackermann and Cheverud (2000)

also employed matrix correlation and CPC for comparing

tamarin (Saguinus) species and found discrepancies be-

tween the results of both techniques.

We stress here that researchers should follow Phillips

and Arnold’s (1999) suggestion to inspect closely the CPC

model reconstructed matrices at each step in the hierarchy

to confirm how well those matrices fit the original ones.
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Figure 2 - Bivariate distribution of CPC and RS matrix similarity results.

Note that matrices deemed very similar by random skewers (RS) are found

to be unrelated using the Common Principal Components (CPC) method.



This seems to be particularly material if the sample sizes

and number of traits of the matrices compared is high. Oth-

erwise, one could be misled into thinking that rejection of a

common covariance structure among populations using

CPC means that the covariance patterns are indeed unre-

lated. While significantly different statistically, this differ-

ence may not be biologically meaningful in the evolution-

ary context. The influence of sample size and number of

traits on hypothesis testing in CPC analysis should be ad-

dressed by a power analysis (Patrick Phillips personal com-

munication). Power is the probability of rejecting the null

hypothesis when it is false and the alternative hypothesis is

correct (Sokal and Rohlf 1995). However, even when

power curves become available for CPC tests (Phillips

1998) the careful inspection of original and reconstructed

matrices seems to be prudent in judging CPC results.

The Random Skewers method presented here could

be a useful method for comparing variance/covariance ma-

trices. First, the RS method, like matrix correlation, gave an

easily interpretable statistic that is also continuously dis-

tributed and approximately normal and reflects the overall

similarity in covariance structure (Figure 3). While in the-

ory the value of the vector correlation ranges from zero

(orthogonality) to one (collinearity) in practice matrix ele-

ments are estimated with some degree of error because they

are only estimates, not population values. This limits the

maximum observable correlation between estimated matri-

ces. Matrix repeatability, which is the proportion of the

variance in the observed elements due to variation in the

true population values, can be used to set upper limits for

the maximum average correlation which can be expected

between estimated matrices (see Cheverud 1996). Second,

the RS method is a direct extension of the multivariate evo-

lutionary response equation for natural selection and there-

fore is particularly attractive for evaluating whether or not

two variance/covariance matrices are similar enough to al-

low selection gradients to be reconstructed. This is because

given any fixed selection vector, if two matrices are similar,

the direction of evolution specified by each matrix in re-

sponse to this vector should also be similar. Third, unlike

CPC, which is strongly influenced by the number of traits

in the matrices, the RS method like matrix correlation is

not. The only influence is that, as already noted, with more

traits included the accuracy of the matrix, as an overall

structure description should also increase, which is a bio-

logically attractive perspective.

Finally, RS is appropriate for comparing vari-

ance/covariance matrices, where matrix correlations fol-

lowed by Mantel’s test is not. Although matrix correlation

has been used for comparing variance/covariance matrices

(Lovsfold 1986, Arnold and Phillips 1999) they are not

suited for randomization tests where the matrix elements

are shuffled because patterns of covariance are measured

on a different scale for each row (and associated column).

Usually larger traits will also present larger variances

where the reverse is true for traits with smaller absolute val-

ues. This scale dependency of variances and consequently

the associated covariances mean that variance/covariance

matrix elements are not interchangeable. While RS still has

the advantage of being a distribution free method, based on

extensive re-sampling, matrix elements are not exchanged.

Instead, re-sampling is accomplished by applying random

selection vectors upon the matrices compared and then

measuring their expected evolutionary responses.
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