Analysis of 31 STR loci in the genetic isolate of Carloforte (Sardinia, Italy)

Renato Robledo ${ }^{1}$, Ignazio Piras ${ }^{2}$, William Beggs ${ }^{3}$ and Carla Calo ${ }^{2}$
${ }^{l}$ Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, Monserrato, Cagliari, Italy.
${ }^{2}$ Dipartimento di Biologia Sperimentale, Università di Cagliari, Monserrato, Cagliari, Italy.
${ }^{3}$ Department of Molecular Biology, Coriell Institute for Medical Research, Camden, New Jersey, U.S.A.

Abstract

The genotypes of 31 autosomal short tandem repeat loci in the population of Carloforte were analyzed, these representing a linguistic and genetic isolate located on the island of Sardinia (Italy). The markers span the entire length of chromosomes 19, 20, 21 and 22 . Allele frequencies and statistical parameters were presented for all loci. Observed heterozygosity ranged from 0.279 to 0.884 , and polymorphism information content from 0.552 to 0.886 . All but two loci showed Hardy-Weinberg equilibrium after Bonferroni correction. The 31 short tandem repeat loci examined in the present work provide additional data on the genetic structure of the Carloforte population.

Key words: autosomal STRs, population data, genotyping, Carloforte, Sardinia.
Received: November 25, 2008; Accepted: March 11, 2009.

Carloforte is the only village located on the small island of San Pietro, off the southwestern coast of Sardinia. The history of the Carloforte population dates back to the $16^{\text {th }}$ century, when a number of families emigrated from Pegli, a small village in Liguria (Italy), now part of the city of Genova, to Tabarka, an island off the coast of Tunisia. During their time in Tabarka, a period of about two centuries, the Pegli community developed a successful business in tuna and coral fishing. At the beginning of the $18^{\text {th }}$ century, due to a decline in business and worsening relationship with the Bey of Tunis and Algiers, the community migrated to Sardinia and settled on the deserted island of San Pietro, where they founded Carloforte in 1738 (Vallebona, 1974). For about 10 generations, these Genovese migrants had very little contact with the mainland populations of both Tunisia and Sardinia, maintaining a separate cultural as well as genetic identity. The cultural aspect is evident in the Pegli dialect, which is still spoken nowadays, making the Carloforte population a linguistic isolate (Vona et al., 1996). Earlier studies based on matrimonial structure, classical genetic markers and the incidence of a specific disease provided evidence that Carloforte is also a genetic isolate (Vona et al., 1996; Heath et al., 2001). In this paper, we present further data on the genetic structure of the Carloforte population by reporting on the distribution of 31 micro-satellite DNA loci. The markers employed were CA di-nucleotide repeats clustered in four linkage groups, representing chromosomes 19, 20, 21 and 22.

Send correspondence to Renato Robledo. Dipartimento di Scienze e Tecnologie Biomediche, SS 554 km 4,500, Università di Cagliari, 09042 Monserrato, Cagliari, Italy. E-mail: rrobledo@unica.it.

Historical documents list the names of the first settlers. Individuals selected for the present study were proven to be descendants of the village founders. Moreover, the participants were chosen for not having ancestors in common, at least up to the grandparental generation. Both criteria were ascertained by a complete genealogical search through the detailed family information available from City Hall records (Siniscalco et al., 1999; Heath et al., 2001).

About 10 mL of peripheral blood were collected from 50 voluntary participants, in vacuum tubes containing EDTA as anticoagulant. Permanent cultures of EBV-transformed B-lymphocytes were prepared and stored anonymously in the Coriell Repository. DNA was extracted by standard laboratory procedures. The study was approved by local ethics committees and all voluntary participants read and signed an informed consent form, in accordance with Declaration of Helsinki guidelines.

Individuals were genotyped using the ABI Prism Linkage Mapping Panel, version 2. The markers were amplified as single reactions and products pooled for analysis. About 50 ng of genomic DNA were amplified in a final PCR volume of $15 \mu \mathrm{~L}$ containing $1.5 \mu \mathrm{~L} 10 \mathrm{x}$ GeneAmp PCR buffer II, $1.5 \mu \mathrm{~L} 25 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 1.5 \mu \mathrm{~L}$ 2.5 mM dNTP mix, $1.0 \mu \mathrm{~L}$ Primer Mix and $0.12 \mu \mathrm{~L}$ AmpliTaq Gold DNA Polymerase, with an ABI GeneAmp PCR System 9700 Thermal Cycler. PCR reactions were amplified by using the following PCR conditions: a 12 min hold at $95^{\circ} \mathrm{C}$ was followed by 10 cycles of 15 s at $94^{\circ} \mathrm{C}, 15 \mathrm{~s}$ at $55^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $72^{\circ} \mathrm{C}$ and 20 additional cycles of 15 s at $89^{\circ} \mathrm{C}, 15 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 30 s at $72^{\circ} \mathrm{C}$, with a final extension of 10 min at $72{ }^{\circ} \mathrm{C}$.

The amplified PCR products were pooled at a ratio of $5 \mu \mathrm{~L}$ of each FAM labeled product and $10 \mu \mathrm{~L}$ of each HEX and NED labeled one. D.I. water was added to a final volume of 100 ul . The pooled PCR product was mixed with loading buffer at a $2: 3$ ratio for a $5 \mu \mathrm{~L}$ final volume (loading buffer contained $4.5 \mu \mathrm{~L}$ formamide, $1.0 \mu \mathrm{~L}$ blue dextran and $1.5 \mu \mathrm{~L}$ of S400HD-ROX as an internal size standard). The mixture was heated at $95^{\circ} \mathrm{C}$ for 3 min and cooled on ice for 3 min , before being separated on an ABI 377 Se quencer, using a 36 cm denaturing polyacrylamide gel for resolution of di-nucleotide repeat products. Separated allele fragments were analyzed using ABI GeneScan and Genotyper software and genotypes scored.

Allele frequencies were estimated by gene counting. Both observed and expected heterozygosity were calculated with the GENETIX program (v. 4.0). Deviation from Hardy-Weinberg equilibrium (HWE) was tested by the Markov chain, using the GENEPOP program (v. 4.0). Statistical parameters of population genetics and forensic interest, namely polymorphism information content (PIC), power of discrimination (PD), and power of exclusion (PE), were calculated using Power Stats package v. 1.2 (Promega Corporation, USA).

To verify whether the population had incurred a recent bottleneck, data were analysed using the BOTTLENECK program, v 1.2 (Cornuet and Luikart, 1996). This program allows for the evaluation of observed and expected heterozygosity, and determines statistical difference based on equilibrium mutation/genetic drift. This was obtained through simulating the coalescent process of n genes under the two-phase mutation model (TPM), which was proved to better fit micro-satellite analysis (Di Rienzo et al., 1994). The TPM mainly consists of one-step mutations, with a small percentage ($5 \%-10 \%$) of multi-step changes.

Allelic frequencies of the 31 STR loci tested in the population of Carloforte are reported in Table S1. Hardy-Weinberg equilibrium (HWE) and population parameters are shown in Table 1.

The 31 loci showed a high degree of heterozygosity, varying from 27.9% for marker D21S1256 to 88.4% for marker D22S283. The exact test based on Markov chain analysis revealed that 6 out of 31 markers did not meet Hardy-Weinberg equilibrium, whereas after Bonferroni correction, only two of these, D20S173 and D21S1256, showed an excess of observed homozygotes. The high degree of isolation of the Carloforte population, together with the reported deviation from Hardy Weinberg expectation, prompted us to verify the possibility of a recent bottleneck in Carloforte through the BOTTLENECK program. Under the assumption of the two-phase model of mutation (TMP), the Wilcoxon test revealed non-significant heterozygosity ($\mathrm{p}=0.459$), thereby indicating that, following initial colonization events, there were no further contractions in the size of the Carloforte population, this being in agreement

Table 1 - Heterozygosity, number of alleles detected and HWE evaluation (indicated as probability values) of 31 investigated markers in the Carloforte population.

Locus	Observed heteroz.	Expected heteroz.	N. of alleles	HWE
D19S216	0.619	0.671	8	0.722
D19S884	0.683	0.867	10	0.020
D19S226	0.829	0.828	14	0.909
D19S414	0.750	0.759	8	0.551
D19S220	0.750	0.798	10	0.197
D19S420	0.727	0.741	9	0.154
D19S902	0.810	0.759	8	0.865
D19S571	0.738	0.798	8	0.009
D19S418	0.727	0.697	7	0.124
D19S210	0.641	0.707	5	0.149
D20S889	0.769	0.825	14	0.742
D20S115	0.614	0.646	4	0.249
D20S186	0.864	0.840	10	0.325
D20S112	0.714	0.753	11	0.338
D20S195	0.725	0.843	11	0.116
D20S107	0.841	0.829	9	0.840
D20S119	0.698	0.764	6	0.337
D20S178	0.878	0.851	8	0.862
D20S196	0.744	0.819	10	0.622
D20S100	0.698	0.768	10	0.220
D20S173	0.316	0.581	6	0.000
D21S1256	0.279	0.736	7	0.000
D21S1914	0.618	0.865	8	0.001
D21S1252	0.864	0.842	8	0.568
D21S266	0.698	0.727	10	0.720
D22S420	0.590	0.733	7	0.069
D22S315	0.738	0.743	10	0.943
D22S280	0.837	0.800	8	0.308
D22S283	0.884	0.895	11	0.828
D22S423	0.864	0.823	11	0.705
D22S274	0.860	0.773	7	0.125

with historical records. Moreover, the mode shape test showed an L-shaped distribution, which is also consistent with the absence of a recent bottleneck (data not shown).

The high level of heterozygosity in a genetic isolate like Carloforte, with a long history of endogamous and consanguineous marriages, may at first be surprising. We believe that the sampling strategy accounts for the findings: differences among individuals were maximized by selecting participants with no ancestor in common, at least up to the grandparental generation. This could be very important in association studies, where it is necessary to analyze large numbers of individuals in order to detect statistically significant deviations in allelic distribution between cases and matched controls. In a previous study, on applying the sampling strategy as described above, we genotyped 55 indi-
viduals from the Carloforte population at 5 unlinked micro-satellite loci in order to obtain an accurate description of their genomic profile. We showed that allele frequencies at all loci were practically the same down to a subset of 20 individuals (Siniscalco et al., 1999). Therefore, once a breeding unit is identified through the recording of marriage patterns over the last five generations, a small sampling of contemporary descendants is still representative of its founder group, provided that the individuals selected had their ancestors all born in the same breeding unit, but unrelated for, at least, the last two generations. An obvious consequence of the proposed sampling strategy is a reduction in the cost of association studies, due to a lower number of individuals having to be genotyped.

Finally, Table 2 shows parameters of forensic interest. The combined power of both discrimination and exclu-

Table 2 - Statistical relevant data for 31 investigated markers in the Carloforte population. MP: matching probability, PD: power of discrimination, PIC: polymorphism information content, PE: power of exclusion.

Locus	MP	PD	PIC	PE
D19S216	0.162	0.838	0.616	0.314
D19S884	0.049	0.951	0.852	0.402
D19S226	0.053	0.947	0.810	0.654
D19S414	0.112	0.888	0.723	0.510
D19S220	0.081	0.919	0.774	0.510
D19S420	0.120	0.880	0.714	0.472
D19S902	0.092	0.908	0.735	0.617
D19S571	0.099	0.901	0.768	0.490
D19S418	0.146	0.854	0.669	0.472
D19S210	0.143	0.857	0.666	0.343
D20S889	0.055	0.945	0.809	0.543
D20S115	0.204	0.796	0.577	0.308
D20S186	0.069	0.931	0.820	0.722
D20S112	0.101	0.899	0.724	0.451
D20S195	0.060	0.940	0.826	0.468
D20S107	0.063	0.937	0.806	0.677
D20S119	0.100	0.900	0.726	0.425
D20S178	0.055	0.945	0.833	0.751
D20S196	0.062	0.938	0.795	0.500
D20S100	0.094	0.906	0.740	0.425
D20S173	0.259	0.741	0.552	0.070
D21S1256	0.158	0.842	0.692	0.055
D21S1914	0.057	0.943	0.849	0.313
D21S1252	0.062	0.938	0.822	0.722
D21S266	0.095	0.905	0.705	0.425
D22S420	0.122	0.878	0.690	0.279
D22S315	0.095	0.905	0.714	0.490
D22S280	0.097	0.903	0.773	0.670
D22S283	0.035	0.965	0.886	0.762
D22S423	0.063	0.937	0.801	0.722
D22S274	0.120	0.880	0.739	0.716

sion were absolutely discriminating, their values being, respectively, 7.7×10^{-33} and 0.999999999918 . It has been reported that genetic isolation could reduce the capacity for paternity exclusion, without significantly affecting the power of discrimination (de Pancorbo et al., 2000). This could be a critical issue in forensics, for example when setting up a database from a small village or population. In our case, the power of exclusion was still very high, again probably as a result of the sampling strategy. The combined matching probability for the 31 STRs was 0.9999999999923 . Therefore, the 31 STR loci examined in the present work, specifically designed for population genetics studies, also turned out to be suitable for general forensic applications.

Acknowledgments

We thank all the participants who made this study possible. We are also thankful to Mary Ann Groeneweg for revising the manuscript and to Ernesto D'Aloja, Roberto Mezzanotte and Giuseppe Vona for helpful discussions and criticism. This work was supported by grants from the Coriell Institute for Medical Research and from the Italian Ministry of Research, MIUR (funds ex 60% to R.R. and C.C.).

References

Cornuet JM and Luikart G (1996) Description and power analysis of two tests for detecting recent bottlenecks from allele frequency data. Genetics 144:2001-2014.
de Pancorbo M, Cuevas N, Bujan M, Martinez-Bouzas C, Alvarez-Alvarez M, Rodriguez-Tojo M, Sanchez P and Leiva F (2000) Micro-satellite DNA and forensic parameters in isolated populations. Progr Forensic Genet 8:181-183.
Di Rienzo A, Peterson AC, Garza JC, Valdes AM and Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166-3170.
Heath S, Robledo R, Beggs W, Feola G, Parodo C, Rinaldi A, Contu L, Dana D, Stambolian D and Siniscalco M (2001) A novel approach to search for Identity by Descent in small samplings of patients and controls from the same Mendelian Breeding Unit. A pilot study on miopia. Hum Hered 52:183-190.
Siniscalco M, Robledo R, Bender P, Carcassi C, Contu L and Beck J (1999) Population genomics in Sardinia: A novel approach to hunt for genomic combinations underlying complex traits and diseases. Cytogenet Cell Genet 86:148-152 and 87:296.
Vallebona G (1974) Storia di una Colonizzazione. Edizioni Della Torre, Cagliari, 178 pp .
Vona G, Calò CM, Lucia G, Mameli GE, Succa V, Esteban E and Moral P (1996) Genetics, geography, and culture: The population of S. Pietro Island (Sardinia, Italy). Am J Phys Anthropol 100:461-471.

Supplementary Material

The following online material is available for this article:

Table S1: Allele frequencies of the 31 STR loci in the population of Carloforte

This material is available as part of the online article from http://www.scielo.br/gmb.

Associate Editor: Francisco Mauro Salzano

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table S1 - Allele frequencies of the 31 STR loci in the population of Carloforte. Alleles are reported on the basis of their fragment length.

179	0.115	237	0.012
181	0.244	D20S195	
183	0.449	131	0.038
187	0.090	139	0.188
189	0.103	141	0.025
D20S889		143	0.050
93	0.026	145	0.263
95	0.180	147	0.075
97	0.026	149	0.163
99	0.013	151	0.013
101	0.333	153	0.075
103	0.090	155	0.100
105	0.026	161	0.013
107	0.051	D20S107	
109	0.115	202	0.011
111	0.039	208	0.193
113	0.026	210	0.034
115	0.013	212	0.205
117	0.051	214	0.125
119	0.013	216	0.239
D20S115		218	0.125
238	0.011	220	0.046
240	0.261	222	0.023
242	0.466	D20S119	
244	0.261	109	0.012
D20S186		113	0.163
119	0.136	115	0.058
125	0.125	117	0.256
127	0.011	121	0.186
129	0.034	123	0.326
131	0.216	D20S178	
133	0.023	182	0.134
135	0.239	184	0.110
137	0.125	186	0.183
139	0.023	188	0.049
141	0.068	190	0.195
D20S112		192	0.183
211	0.048	194	0.098
215	0.095	196	0.049
219	0.024	D20S196	
223	0.024	265	0.198
225	0.417	273	0.012
227	0.191	277	0.023
229	0.155	279	0.035
231	0.012	285	0.047
233	0.012	287	0.151
235	0.012	289	0.279

291	0.186	159	0.163
293	0.047	161	0.081
295	0.023	163	0.477
D20S100		165	0.047
217	0.035	167	0.035
219	0.012	171	0.035
223	0.198	175	0.047
225	0.395	177	0.047
227	0.151	179	0.012
229	0.012	181	0.058
231	0.081	D22S	
233	0.023	154	0.103
235	0.070	156	0.013
239	0.023	158	0.333
D20S173		160	0.346
129	0.145	162	0.154
173	0.079	164	0.026
175	0.066	168	0.026
177	0.618	D22S	
179	0.066	178	0.024
183	0.026	184	0.024
D21S1256		186	0.012
107	0.163	190	0.012
109	0.349	196	0.083
111	0.093	198	0.095
113	0.023	200	0.429
115	0.326	202	0.226
117	0.023	204	0.048
121	0.023	206	0.048
D21S1914		D22S	
264	0.103	214	0.105
266	0.132	216	0.163
268	0.132	218	0.105
270	0.177	220	0.221
272	0.162	222	0.314
274	0.147	224	0.023
276	0.074	226	0.058
278	0.074	228	0.012
D21S1252		D22S	
148	0.011	139	0.105
150	0.171	141	0.105
156	0.205	143	0.151
158	0.182	145	0.128
162	0.046	147	0.047
164	0.148	149	0.116
166	0.091	151	0.081
168	0.148	153	0.070
D21S266		155	0.105

157	0.070	308	0.250
161	0.023	310	0.080
22 S 423	0.023	316	0.011
288	0.023	D 22 S 274	
294	0.273	284	0.047
296	0.148	286	0.291
298	0.023	288	0.302
300	0.080	290	0.035
302	0.057	292	0.174
304	0.034	294	0.128
306		296	0.023

