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Abstract

Swertia L. is a large genus in Swertiinae (Gentianaceae). In China, many Swertia species are used as traditional 
Tibetan medicines, known as “Zangyinchen” or “Dida”. However, the phylogenetic relationships among Swertia 
medicinal plants and their wild relatives have remained unclear. In this study, we sequenced and assembled 16 
complete chloroplast (cp) genomes of 10 Swertia species, mainly distributed in Qinghai Province, China. The results 
showed that these species have typical structures and characteristics of plant cp genomes. The sizes of Swertia cp 
genomes are ranging from 149,488 bp to 154,097 bp. Most Swertia cp genomes presented 134 genes, including 85 
protein coding genes, eight rRNA genes, 37 tRNA genes, and four pseudogenes. Furthermore, the GC contents and 
boundaries of cp genomes are similar among Swertia species. The phylogenetic analyses indicated that Swertia is a 
complex polyphyletic group. In addition, positive selection was found in psaI and petL genes, indicating the possible 
adaptation of Qinghai Swertia species to the light environment of the Qinghai-Tibet plateau. These new cp genome 
data could be further investigated to develop DNA barcodes for Swertia medicinal plants and for additional systematic 
studies of Swertia and Swertiinae species.
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Swertia L., a large genus of plants in Swertiinae 
(Gentianaceae) with about 170 species, are mainly distributed 
in Asia, Africa, North America and Europe (Ho et al., 1994). 
In China, around 79 Swertia species are mostly distributed 
in mountainous areas of the southwest, especially in the 
Himalayas (Ho and James, 1995; Joshi and Joshi, 2008). 
Some Swertia species are often used as Tibetan medicines, 
known as ‘Zangyinchen’ or ‘Dida’ to treat hepatobiliary 
diseases (Zhong et al., 2009). Although Swertia species 
have a long history of medicinal use, the systematics of the 
genus and regional groups remain obscure (von Hagen and 
Kadereit, 2001, 2002; Kadereit and von Hagen, 2003; Xi et 
al., 2014). In the present study, we assembled and annotated 
the complete chloroplast (cp) genomes of 16 Swertia taxa 
(10 Swertia species) mainly distributed in Qinghai province, 
China. The chloroplast genomes of these Swertia species were 
compared and used to study the phylogenetic relationships 
and selection pressure.

Fresh leaves of the plants were collected mainly in  the 
Qinghai area (Table S1). Total genomic DNA was extracted 
using a modified CTAB method (Wei et al., 2017) and then 
purified with a Wizard® DNA Clean-Up System (Promega, 
Beijing, China). The DNA samples were sequenced using 

Illumina HiSeq Xten Platforms. Cp genomes were assembled 
using NOVOPlasty v4.0 (Dierckxsens et al., 2016), annotated 
and manually corrected in Geneious Prime 2020.1.2 (Kearse 
et al., 2012). The structures and genes of the cp genomes 
were visualized by OrganellarGenomeDRAW (Lohse et al., 
2013). All sequenced cp genomes were submitted to GenBank 
(Table S2).

All Swertia cp genomes have typical cp genome 
structures, including a large single copy region (LSC), a 
small single copy region (SSC), and two inverted repeat 
regions (IRs). A gene map of Swertia bimaculata Hook.f. 
& Thomson ex C.B. Clarke (MW344293) was shown as an 
example (Figure 1), and other new cp genomes are shown in 
supplementary figures (Figure S1-S9). The length, GC content, 
and gene number of 15 Swertia species and seven relatives 
in Swertiinae were determined and compared (Table S3). 
The total length of Swertia cp genomes range from 149,488 
bp to 154,097 bp. The total GC content of the cp genomes 
are relatively stable (38.0%–38.2%), while the GC content 
of the IRs are higher than that of single copy regions. The cp 
genomes of other related species did not show any distinct 
differences from Swertia species. Most Swertia cp genomes 
contain 134 genes, including 85 protein coding genes, eight 
rRNA genes, 37 tRNA genes, and four pseudogenes (rps16, 
infA, ycf1 and rps19 genes) (Table S4). Gene deletion and 
additional pseudogenes were found in some Swertia cp 
genomes, as results of additional termination codons, complete 
or partial gene loss (Table S5). Previous studies have shown 
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that some genes with defects or loss in cp genomes may have 
other copies with normal function in nuclear genomes, which 
could help avoid death or damage during plant growth (Martin 
et al., 1998; Sugiura et al., 2003).

The mVISTA software was used to evaluate the sequence 
conservations among genomes (https://genome.lbl.gov/vista/
index.shtml). The structures and sequences of Swertia cp 
genomes are conserved, especially in the IR regions (Figure 
S10), probably due to the existence of rRNA genes and gene 
conversion (Khakhlova and Bock, 2006). Variation rates of 
coding and noncoding regions were calculated using Geneious 
Prime 2020.1.2. The results showed the variation rates of 
coding regions are generally lower than those of noncoding 
regions (Figure 2), and the variation rates of noncoding regions 
in the IR are lower than those in other regions. These regions 
of high variations could be used to develop new DNA barcodes 

of Swertia species and two pairs of newly designed primers 
were provided in the supplements (Table S6). Differences in 
the four boundaries of the LSC, SSC, and IRs were illustrated 
using the IRscope online website (https://irscope.shinyapps.
io/irapp/). Boundary comparisons in Swertia species found 
that the structures of boundaries are conservative with slight 
differences among taxa (Figure 3). The boundaries of the four 
regions between Swertia and its relatives showed expansion 
and contraction to some extent.

Phylogenetic trees were constructed based on 54 complete 
cp genomes of Gentianeae species and an Apocynaceae 
species as outgroup. Additional cp genomes used in the 
phylogenetic analysis were downloaded from the National 
Center for Biotechnology Information database (https://
www.ncbi.nlm.nih.gov/) (Table S2). We applied Bayesian 
inference (BI), maximum likelihood (ML), and maximum 

Figure 1 – Gene map of the Swertia bimaculata (MW344293) chloroplast genome. The translation of genes outside the outer circle occurs in a counter-
clockwise direction, while the translation of genes inside occurs in a clockwise direction. The dark and light gray colors in the inner circle represent GC 
and AT content, respectively. Different functional gene groups are highlighted by different colors.
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Figure 2 – Variation rates of coding and noncoding regions in the chloroplast genomes of 15 Swertia species. A: Variation rates of 78 protein coding genes; 
the y-axis represents protein coding genes. B: Variation rates of noncoding regions; the y-axis represents intergenic spacers or introns. Abbreviations: 
LSC- large single copy region; SSC- small single copy region; IR- inverted repeat region.

parsimony (MP) methods to construct phylogenetic trees. 
The ML tree and BI tree were constructed in CIPRES Science 
Gateway (https://www.phylo.org/portal2/login!input.action) 
using RAxML-HPC2 on XSEDE and MrBayes on XSEDE. 
For ML tree, GTR+GAMMA was chosen as the model for 
the bootstrapping phase. The bootstrap replicates were 5000, 
and “print branch lengths (-k)” was chosen under “Configure 
Bootstrapping”. Other parameters were default settings. For 
BI analyses, the parameters were: lset nst = 6 rates = gamma; 
unlink statefreq = ( all ) revmat = ( all ) shape = ( all ) pinvar 
= ( all ); prset applyto = ( all ) ratepr = variable; mcmcp ngen 
= 5000000, relburnin = yes, burninfrac = 0.25, printfreq = 
1000, samplefreq = 5000, nchains = 4 temp = 0.05. Other 
parameters were default settings. The MP tree was structured 
using PAUP v4.0a with bootstrap 3000 and default parameters. 
The output tree files were modified in TreeGraph 2 (http://
treegraph.bioinfweb.info/) and Figtree v1.4.3 (http://tree.bio.
ed.ac.uk/software/figtree/).

Phylogenetic trees based on three methods had the same 
topologies (Figure 4). All Gentianeae species formed two 
monophyletic clades: Gentianinae and Swertiinae. Swertia 
formed a large clade with Comastoma Toyokuni, Halenia 
Borkh., Lomatogoniopsis T.N. Ho & S.W. Liu, Lomatogonium 
A. Braun and Veratrilla Franch, indicating that Swertia is a 
complex polyphyletic group. Swertia, Comastoma, Halenia, 
Lomatogoniopsis, Lomatogonium and Veratrilla were 
traditionally thought to be independent taxonomic units based 
on morphology (Ho and James, 1995), though many of the 
species were used as ‘Zangyinchen’ or ‘Dida’ medicines to 
treat hepatobiliary diseases. Similar results of polyphyletic 
relationships were reported previously in studies of Swertiinae 
species based on fragments of cp and nuclear genomes. 
One possible explanation for such discrepancies is that 
morphological features are plastic (Kadereit and von Hagen, 
2003); they may be affected by many factors, such as heredity 
and environment, and character changes may not always be 
revealed by molecular data. Additionally, S. hispidicalyx 

and S. dilatata are sister groups and their rpl33 genes were 
completely lost in the cp genomes. This gene loss might have 
contributed to their close relationships in the phylogenetic tree. 
To maintain the stability of concept, Swertia species should 
be divided into smaller genera or merged with Comastoma, 
Halenia, Lomatogoniopsis, Lomatogonium and Veratrilla into 
larger genera. A combination of morphological data and nuclear 
genome data will be required in future research to resolve the 
phylogenetic relationships among genera in Swertiinae.

Selection pressure was analyzed in Datamonkey (http://
www.datamonkey.org/) using the Fixed Effects Likelihood 
Method. The values of non-synonymous/synonymous rate 
ratios (dn/ds) were calculated based on the 78 protein coding 
genes of 15 Swertia species, ranging from 0 to 1.65 (Figure 
S11). The ratios of petL (1.34) and psaI (1.65) were greater than 
one, meaning the two genes are under the influence of positive 
selection. Most genes with dn/ds values between zero and one 
are under purifying selection. A few genes have dn/ds values 
close to one, including atpF, cemA, psbN, ycf2, ycf15, and ycf1 
genes. These genes may be subject to weak positive selection. 
The Swertia plants studied here are mainly distributed across 
the Qinghai-Tibet plateau and other high-altitude areas, which 
are subject to large temperature differences between day and 
night, low overall temperatures, and high levels of ultraviolet 
radiation (Körner, 2003). When non-synonymous mutations 
can provide more survival opportunities for species, their rates 
can exceed that of synonymous mutations over a long period 
and be preserved in the population (Wolfe and ó’hUigín, 2016). 
The psaI gene codes for the psaI subunit of photosystem I 
(PSI) in plants and plays a role in the trimerization of PSI by 
stabilizing the combination of psaL to the light-harvesting 
complex (Plöchinger et al., 2016). The petL gene codes for 
subunits of the cytochrome b6f complex, involved in electron 
transport from photosystem II (PSII) to PSI (Schwenkert et 
al., 2007). The positive selection on psaI and petL genes may 
reflect the adaptation of Swertia to the light environment of 
the Qinghai-Tibet plateau.
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Figure 3 – Boundaries of the LSC, SSC, and IRs in chloroplast genomes of 15 Swertia and four related species. LSC: large single copy region; SSC: 
small single copy region; IRa and IRb: two inverted repeat regions; JLB: junction between the LSC and IRb; JSB: junction between the SSC and IRb; 
JSA: junction between the SSC and IRa; JLA: junction between the LSC and IRa.
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Figure 4 – Phylogenetic tree of 54 Gentianeae species and one outgroup based on the complete chloroplast genomes. A: tree with branch lengths; B: 
tree without branch lengths. Supporting values are shown in the form of BI/ML/MP. The symbol * indicates full support. Abbreviations: BI: Bayesian 
inference; ML: maximum likelihood; MP: maximum parsimony.



Xu et al.6

 

Overall, we described here 16 newly sequenced cp 
genomes (10 species) of Swertia, and made comparative, 
phylogenetic and selection pressure analyses of them and 
other related species. Our results indicated that Qinghai 
Swertia species form a polyphyletic group and have similar 
structures and characteristics in cp genomes. Two genes were 
clearly under positive selection in Swertia cp genomes (psaI 
and petL genes), while some other genes were likely subject 
to weak selection. The results in this study could be utilized 
for developing DNA barcodes for medicinal Swertia plants 
and further phylogenetic study in Swertia and Swertiinae.
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