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INTRODUCTION

The importance of quantitative genetic analysis for
breeders is reflected by the large number of publications in
which this approach is used. The diallel genetic design and
its various modifications have been used by breeders to evalu-
ate the potential of populations for intrapopulational im-
provement and the usefulness of parents in interpopulational
breeding programs, and to select inbred lines in hybrid de-
velopment programs. Although several strategies for diallelic
analysis have been proposed, few of them are commonly
applied. The best-known methods are those developed by
Jinks and Hayman (1953) and Hayman (1954a,b, 1958), both
exclusively for homozygous parents, that by Griffing
(1956a,b), valid for any species, that by Kempthorne and
Curnow (1961), for circulant diallel cross, that by Gardner
and Eberhart (1966), normally used when the parents are
open-pollinated populations, and those by Miranda Filho and
Geraldi (1984) and Geraldi and Miranda Filho (1988), which
are adaptations of the Gardner and Eberhart and the Griffing
methods, respectively, for partial diallels. Of these, the
Griffing (1956b) and Gardner and Eberhart (1966) methods
are doubtless the most frequently applied.

The main reasons that justify the widespread use of the
Griffing (1956b) method are its generality, since the par-
ents can be clones, pure lines, inbred lines, or populations
of a self-pollinated, cross-pollinated or intermediate spe-
cies, and the ease of analysis and interpretation; the latter
also characterizes the method developed by Gardner and
Eberhart (1966). The genetic interpretation of parameters
in the Gardner and Eberhart and the Griffing models and the

relationship between them have been discussed by Vencovsky
(1970) and Cruz and Vencovsky (1989), thereby making the
methods more accessible to breeders. However, the para-
metric restrictions associated with these statistical models
have not yet been examined in depth. Does the model neces-
sarily have to be restricted? Do the restrictions satisfy the
genetic parameters? Do the restrictions help to make the
analysis and interpretation easier? The objective of this study
was to answer these and other related questions.

MATERIAL  AND METHODS

The same diallel analyzed by Gardner and Eberhart
(1966) was considered here (Table I), although it is not an
ideal database because the tests on variety heterosis and
specific heterosis are not significant at the 5% level.

Parametric values of the components of the
Gardner and Eberhart (1966) model

We consider a polygenic system, with k genes, each
with two allelic forms and no epistasis, and N non-
endogamic populations in Hardy-Weinberg equilibrium
involved in a diallel. The genotypic mean of population j (j
= 1, 2 , ... , N) is

Mj =  Σ  mi +  Σ  [(2pij - 1)ai + 2(pij - p2
ij)di] = m + vj

where mi is the mean of the genotypic values of the ho-
mozygotes relative to locus i, pij is the frequency in popu-
lation j of the locus i gene that increases trait expression,
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ai is the difference between the genotypic value of the ho-
mozygote with highest expression and mi, di is the devia-
tion due to dominance relative to locus i, and vj is the ef-
fect of population j.

Interpreting Mj is the same as interpreting vj because
m is a constant. The mean or the effect of a population is
an indicator of its superiority relative to other populations
in terms of the frequency of the favorable genes. If there is
no predominant overdominance, the higher the genotypic
mean or the effect of a population, the greater the frequen-
cies of the genes that increase trait expression.

The average of the genotypic means of the diallel’s
parents is

E(Mj) = M. =  Σ  mi +  Σ  [(2pi - 1)ai + 2(pi - p2
i)di] = m + v.

where pi is the average frequency of the locus i gene that
increases trait expression, p2

i is the average genotypic fre-
quency of the homozygote of greatest expression relative
to locus i, and v. is the average of the population effects.

The genotypic mean of the hybrid between popula-
tions j and j’ is

Mjj’ =  Σ  mi +  Σ  [(pij +pij’ - 1)ai + (pij + pij’ - 2pij pij’)di]

And the heterosis expressed in the hybrid is

If there is dominance, the heterosis in the hybrid of
parents j and j’ indicates the degree of divergence between
them. The higher the value of a heterosis, the greater the
differences in gene frequency between the populations.

The mean of the heteroses expressed in the hybrids
of the genitor j (variety heterosis of parent j) is

Hj = E(Hjj’) =  Σ  (p2
ij - 2pij pi.(j) + p2

i.(j))di

where pi.(j) is the average frequency of the locus i gene that
increases trait expression in the diallel’s parents, except
the genitor j, and p2

i.(j) is the average genotypic frequency
of the homozygote with highest expression relative to lo-
cus i in the diallel’s parents, except the genitor j.

The heterosis of a population is null when the gene
frequencies in the population are equal to the average fre-
quencies in the other diallel’s parents. Therefore, the higher
the absolute value of the heterosis of a population, the
greater the differences between the gene frequencies in
the population and the average frequencies in the other
diallel’s parents, i.e., the higher the divergence compared
to the other genitors.

The average heterosis is

H = E(Hjj’) = E(Hj) = M.. - M. =  Σ   2p2
i -      Σ  pij pi.(j)  di

where

M.. = E(Mjj’) =  Σ  mi +  Σ   (2pi - 1)ai +

is the genotypic mean of the hybrids.
If there are differences in the gene frequencies be-

tween the diallel’s parents, the average heterosis should be
used to evaluate the existence and predominant direction
of deviations due to dominance. If the null hypothesis is
confirmed, this proves to be the absence of dominance or
bidirectional dominance. A value above zero means that the
dominance effects are predominantly positive (the genes
with some degree of dominance are those that increase trait
expression). Unidirectional negative dominance is indi-
cated if H is less than 0.

The genotypic mean of the hybrid between genitors j
and j’ can be expressed as

Mjj’ =  Σ  mi +      Σ  [(2pij - 1)ai + 2(pij - p2
ij)di] +

+      Σ  [(2pij’ - 1)ai + 2(pij’ - p2
ij’) di]

+  Σ  (pij - pij’)2di = m +     vj +     vj’ + Hjj’

But,

H + Hj + Hj’ =  Σ  (pij - pij’)2di -  Σ    -2p2
i +

+                    Σ    Σ  2pij pij’ + 2pij pi.(j) - p2
i.(j) +

where Sjj’ is the specific heterosis of populations j and j’,
as defined by Gardner and Eberhart (1966).

Finally,

Mjj’ = m +      vj +      vj’ + Hjj’ = m +      vj +      vj’ +

+ H + Hj + Hj’ + Sjj’

The discussion about specific heteroses is redundant
for heterosis analysis involving the assessment of divergence
between genitor pairs, although it provides more informa-
tion than the Hjj’ values. For one gene and populations with
pij values of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1,
the correlation between Hjj’ and Sjj’ is approximately 0.84
for any degree of dominance (d/a ≠ 0). If there is unidirec-
tional negative dominance, the lowest Sjj’ values identify the
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populations with the greatest gene frequency differences
between themselves and in relation to the average frequen-
cies in the diallel’s parents. The highest values identify popu-
lations with the smallest gene frequency differences, but with
gene frequencies different from the average frequencies in
the diallel’s parents. When there is unidirectional positive
dominance, the lowest Sjj’ values are associated with popu-
lations having the smallest differences in gene frequencies,
but which show differences in their gene frequencies rela-
tive to the average frequencies in the diallel’s parents. The
highest values indicate populations with the greatest differ-
ences in gene frequencies between themselves and in rela-
tion to the parental group. Independent of the direction of
the dominance effects, specific heterosis values close to
the average value (S.. = -2H) or near zero, when expressed as
deviations from the average effect, indicate populations with
small gene frequency differences between themselves and
in relation to the average frequencies in the parental group.
The specific heterosis of populations j and j’ is therefore an
indicator of the divergence between them (as Hjj’) and of
their divergence in relation to the diallel’s genitors.

The analysis of heteroses, variety heteroses or spe-
cific heteroses is also redundant when assessing the aver-
age heterosis for the predominant direction of deviations
due to dominance. If genes with some degree of dominance
increase trait expression, the heteroses and variety het-
eroses are predominantly positive and the specific het-
eroses are all or nearly all negative. Negative heteroses,
variety heteroses and positive specific heteroses indicate
unidirectional negative dominance.

Based on the previous results, the phenotypic means
of population j and the hybrid from populations j and j’ are

Yj = m + vj + ej

and

Yjj’ = m +      vj +      vj’ + Hjj’ + ejj’ = m +      vj +      vj’ +

+ H + Hj + Hj’ + Sjj’ + ejj’

where ej and ejj’ are the average errors associated with the
phenotypic means of parent j and the hybrid between popu-
lations j and j’.

The statistical models above are not those defined by
Gardner and Eberhart (1966) because there are no restric-
tions associated with them. These equations therefore de-
fine an unrestricted model. Normally, the unrestricted
model is used to provide estimates of population genotypic
means, of heteroses, of average heterosis, and of variety
and specific heteroses, while the restricted model of
Gardner and Eberhart (1966) is used to estimate popula-
tion effects expressed as deviations from the mean effect,
heteroses, average heterosis, as well as the effects of vari-
ety and specific heteroses. Nevertheless, the interpreta-
tions are absolutely equivalent, as will be shown.

The genotypic means of a population and a hybrid can
be defined as shown below since E(Sjj’) = S.. = -2H:

Mj = m + vj ± v. = (m + v.) + (vj - v.) = M. + v*
j

Mjj’ = m +      vj +     vj’ + H + Hj + Hj’ + Sjj’ ± v. ± S..

= (m + v.) +     (vj - v.) +     (vj’ - v.) + H + (Hj - H) +

+ (Hj’ - H) + (Sjj’ - S..) = M. +      v*
j +      v*

j’ +

+ H + H*
j + H*

j’ + S*
jj’

where v*
j = Mj - M. is the effect of population j expressed

as deviation from the average population effects, H*
j is the

effect of the heterosis of population j, and S*
jj’ is the effect

of the specific heterosis of populations j and j’.
Since M., H and S.. are constants, there is no differ-

ence at all between the interpretation of the estimates of
the population genotypic means, the variety heteroses and
the specific heteroses in the unrestricted model, and the
interpretation of the estimates of the population effects
expressed as deviations from the average, the variety het-
erosis effects and the specific heterosis effects in the re-
stricted model.

Thus, the statistical models that describe the pheno-
typic means in the diallel table can be expressed as

Yj = M. + v*
j + ej

and

Yjj’ = M. +      v*
j +      v*

j’ + Hjj’ + ejj’ = M. +      v*
j +      v*

j’ +

+ H + H*
j + H*

j’ + S*
jj’ + ejj’

The restricted model defined by these equations is
not the same as that proposed by Gardner and Eberhart
(1966) since the parametric restrictions are different. The
restrictions necessarily associated with the restricted
model described here are

(i)  Σ  v*
j = 0, (ii)  Σ  H*

j = 0, and (iii)  Σ    Σ  S*
jj’ = 0

since E(v*
j) = E (H*

j) = E(S*
jj’) = 0, yielding three restric-

tions.
The restrictions of the Gardner and Eberhart (1966)

model are

(i)  Σ  v*
j = 0, (ii)  Σ  H*

j = 0, (iii)  Σ    Σ S*
jj’ = 0,

giving N + 2 linearly independent restrictions.
The difference between the two restricted models lies
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in the restrictions shown in item (iv), which do not satisfy

the parametric values of S*
jj’, since  Σ  S*

jj’ = H*
j (j’ ≠ j), for

all j. If the restrictions in (iv), of which N - 1 is linearly
independent relative to the first three, are not coherent to
the parametric values of the effects of specific heterosis,
why were they considered by Gardner and Eberhart (1966)?
The answer is that without them, the normal equation sys-
tem X’Xβ° = X’Y is, as in the unrestricted model, consis-
tent and undetermined, which makes it impossible to de-
fine formulas for estimating the variances of the effects
and the contrasts of effects and for calculating the sums of
squares. If the formulas could not be defined, the method-
ology would have a more limited use, especially for soft-
ware developers who are normally not specialists in quan-
titative genetics and linear models. The problem of miss-
ing formulas in the original paper, another fact that cer-
tainly limited its use, was corrected in a later article
(Gardner, 1967).

Since the restricted and unrestricted models de-
scribed here are the same, the estimable functions in one
are the estimable functions in the other. This means that in
the unrestricted model, the population effects expressed
as deviations from the mean effect can be analyzed, as can
be the effects of variety and specific heteroses. In the re-
stricted model, population genotypic means and variety and
specific heteroses can be analyzed. However, there are dif-
ferences between these models and that proposed by Gardner
and Eberhart (1966), not in relation to the analysis of vari-
ance nor to the testable hypotheses or to the estimable func-
tions, but related to the estimators of several estimable
functions and their variances. In any applied model, the
tested hypotheses in the analysis of variance are:
1. H0(1): equality of the treatment means (parents and hy-

brids); testing this hypothesis implies testing that there
are no differences in the gene frequencies between
genitors (pij = pi for all i and j).

2. H0(2): equality of the population means (Mj = M. for all
j) or equality of the population effects (vj = v. for all j)
or nullity of the population effects expressed as devia-
tions from the average effect (v*

j = 0 for all j); if the
hypothesis H0(1) was rejected, testing this hypothesis
implies testing the equality of the effects of populations
with different genetic structures. The rejection of H0(2)

indicates gene frequency differences between the
diallel’s parents, but its acceptance does not indicate the
contrary.

3. H0(3): nullity of the heteroses; if there are differences in
the gene frequencies between populations, testing this
hypothesis is equivalent to testing that there is no domi-
nance (di = 0 for any i).

4. H0(4): nullity of the average heterosis; a redundant test in
relation to H0(3) although the statistics are associated with
different degrees of freedom for the numerator.

5. H0(5): equality of the variety heteroses (Hj = H for all j)

or nullity of the variety heterosis effects (H*
j = 0 for all

j); if there are differences between the gene frequen-
cies of the parents and if there is dominance, testing
this hypothesis is to test that the degree of divergence
of each population in relation to the other diallel’s par-
ents is a constant.

6. H0(6): equality of the specific heteroses (Sjj’ = S.. = -2H
for all j and j’) or nullity of the specific heterosis ef-
fects (S*

jj’ = 0 for all j and j’); if there are differences
between the gene frequencies of the parents and if there
is dominance, testing this hypothesis is to test that for
all pairs of populations the magnitude of the divergence
between themselves and between them and the diallel’s
parents is a constant.

In relation to the estimable functions, the following
must be emphasized: all the estimable functions in the unre-
stricted model are also estimable in the Gardner and Eberhart
(1966) model, even though the reciprocal is not true. Since
in the latter the normal equation system is consistent and
determined, the elements of the estimator of the parameter
vector which are the estimators of the variety and specific
heterosis effects are exclusive of this model.

RESULTS AND DISCUSSION

The analysis of variance of the diallel table (Table I)
is valid for the unrestricted and the Gardner and Eberhart
(analysis II) models (Table II). At the 5% level of signifi-

N

j’ = l

Table I - Mean grain yield (bushels/acre) of six corn
populations and their hybrids1.

1 - M 2 - HG 3 - GR 4 - BR 5 - K 6 - KII

1 - M 91.0 98.8 91.1 95.3 93.5 100.7
2 - HG 91.7 92.7 97.1 94.1 105.4
3 - GR 87.9 101.3 91.6 103.3
4 - BR 96.6 95.4 102.7
5 - K 91.3 101.6
6 - KII 96.2

1From Gardner and Eberhart (1966).

Table II - Diallel analysis of grain yield (bushels/acre) of six
corn populations and their hybrids, based on the

unrestricted and Gardner and Eberhart (1966) models.

Source of Degrees of Sum of Mean    F Probability
variation freedom squares square

Treatments 20 473.17 23.66 3.33 0.0002
Varieties 5 234.23 46.85 6.60 0.0001
Heterosis 15 238.94 15.93 2.24 0.0141
Average 1 115.44 115.44 16.26 0.0002
Variety 5 59.72 11.94 1.68 0.1527
Specific 9 63.78 7.09 1.00 0.4515
Error1 60 426.00 7.10

1The degrees of freedom and the mean square are provided by Gardner
and Eberhart (1966).
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cance, the tests showed that i) there are differences in the
gene frequencies between the populations, which justifies
the inequality between their effects, ii) the deviations due
to dominance contribute to the individual genotypic values
for yield, iii) there are no differences between the variet-
ies in their degree of divergence relative to the other
diallel’s parents, and iv) there are no differences in the de-
gree of divergence between population pairs and between
the pairs and the diallel’s genitors. These results indicate
that the populations chosen for an interpopulational im-
provement program should be those with higher frequen-
cies of the genes that increase yield.

In the analysis according to the Gardner and Eberhart
(1966) model, the variety sum of squares is the sum of
squares attributable to the hypothesis of equality of the
population effects, allowing for an absence of dominance
or the presence of only average heterosis. Consequently, it
is only possible to use the quotient between the variety
mean square and the error mean square to test the H0(2) hy-
pothesis if there is no dominance or if there is only aver-
age heterosis. Indeed this was the situation described by
Gardner and Eberhart (1966). Therefore, the test is adequate
and has also been considered in the unrestricted model. If
there were evidence of differences between the variety
heteroses and/or the specific heteroses, the correct statis-
tic for the test of the hypothesis of equality for the popula-
tion effects would be F = 11.195/7.1 = 1.58 (probability =
0.18). The problem in this case is to obtain the adequate
variety sum of squares (55.975 in the example given) since
the latter is not orthogonal relative to the heterosis sum of
squares, and it is therefore not possible to define an ex-
pression for its calculation.

The estimates of the main estimable functions in the
unrestricted model, which are also estimable, as mentioned
before, in the Gardner and Eberhart (1966) model, their
variances and the variances of the contrasts between them
are shown in Tables III and IV. As stated above, analyzing
the estimates of the population genotypic means, and of
the variety and specific heteroses is equivalent to analyz-
ing the estimates of the population effects expressed as
deviations relative to the average effect, the variety het-
erosis effects and the specific heterosis effects, because
the correlation between the function estimates is 1.

These results showed that the populations 4 and 6 are
superior to the others in terms of frequency of favorable
genes and can be used in intrapopulational improvement
programs, and that the dominance effects are predominantly
positive. As there are no significant differences between
the variety heteroses and the specific heteroses, both can
also be used in a reciprocal recurrent selection program.
The heterosis estimates show that the populations with the
greatest gene frequency differences are 2 and 6, and 3 and
6. If the hypotheses of equality of the variety and specific
heteroses were rejected, the following inferences would
still hold: i) population 6 is the most divergent from the
other parents, and would necessarily be chosen for an

Table III - Estimates of the population genotypic means (Mj), variety
heteroses (Hj), population effects expressed as deviations from
the average effect (v*

j), variety heterosis effects (H*
j) and the

variances of these and other linear combinations of the parameters,
relative to grain yield (bushels/acre), in the unrestricted model.

Population Mj Hj v*
j H*

j

1 91.0 4.01 -1.45 -1.18
2 91.7 5.47 -0.75 0.28
3 87.9 5.37 -4.55 0.18
4 96.6 4.25 4.15 -0.94
5 91.3 3.25 -1.15 -1.94
6 96.2 8.79 3.75 3.60

V(Mj) = 7.10

V(Hj) = 3.55

V(v*
j) = 5.92

V(H*
j) = 1.89

V(vj - vj’) = V(Mj - Mj’) = V(v*
j - v*

j’) = 14.20

V(Hj - Hj’) = V(H*
j - H*

j’) = 4.54

^

^

^ ^

^ ^ ^ ^

^ ^

^ ^

^ ^

^ ^

^

^

^ ^ ^ ^

^ ^ ^ ^ ^

^ ^^ ^

interpopulational improvement program, ii) the populations
which diverge most between themselves and in relation to
the parental group are 3 and 4, and 1 and 2, iii) populations
1 and 3, and 2 and 3 diverge at a small rate, but have differ-
ent gene frequencies relative to the average frequencies in

Table IV - Estimates of the heteroses (Hjj’), average heterosis (H),
specific heteroses (Sjj’), specific heterosis effects (S*

jj’) and the
variances of these and other linear combinations of the parameters,

relative to grain yield (bushels/acre), in the unrestricted model.

Parents Hjj’ Sjj’ S*
jj’

1 x 2 7.45 -7.22 3.16
1 x 3 1.65 -12.92 -2.54
1 x 4 1.50 -11.95 -1.57
1 x 5 2.35 -10.10 0.28
1 x 6 7.10 -10.89 -0.51
2 x 3 2.90 -13.13 -2.75
2 x 4 2.95 -11.96 -1.58
2 x 5 2.60 -11.31 -0.93
2 x 6 11.45 -8.00 2.38
3 x 4 9.05 -5.76 4.62
3 x 5 2.00 -11.81 -1.43
3 x 6 11.25 -8.10 2.28
4 x 5 1.45 -11.24 -0.86
4 x 6 6.30 -11.93 -1.55
5 x 6 7.85 -9.38 1.00

H 5.19

V(H) = 1.66

V(Hjj’) = 10.65

V(Hjj’ - Hjj”) = 17.75

V(Hjj’ - Hj”j’”) = 21.30

V(Sjj’) = 11.08

V(S*
jj’) = 4.45

V(Sjj’ - Sjj”) = V(S*
jj’ - S*

jj”) = 10.93

V(Sjj’ - Sj”j’”) = V (S*
jj’ - S*

j”j’”) = 7.67

^

^

^
^

^ ^ ^

^

^

^

^ ^

^ ^ ^

^ ^ ^

^ ^
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the parental group, and iv) the gene frequencies in popula-
tions 1 and 5, and 1 and 6 come close to the average values
for the diallel’s parents.

Tables V and VI show the estimates of the parameters
for the model developed by Gardner and Eberhart (1966).
The differences in adjustment relative to the unrestricted
model are limited to the estimates of the variety and spe-
cific heterosis effects and their variances. The variances
associated with the estimates of variety heterosis and their
contrasts are considerably smaller for the functions ob-
tained by adjusting the unrestricted model. On the other
hand, the estimates of the variances of the specific hetero-
sis effects and their contrasts are smaller for the functions

normally estimated by the Gardner and Eberhart (1966)
model. However, the correlation between the estimated
values of H*

j and S*
jj’ are of high magnitude (1 and 0.96,

respectively). Hence, the inferences that can be established
tend to be the same as those obtained previously. If there
were any statistical difference between the specific het-
eroses, only one inference would not conform with the
results of the unrestricted model: the estimates of S*

jj’ in-
dicate that populations 4 and 5, and 2 and 5 are the least
divergent between themselves and in relation to the paren-
tal group.

CONCLUSIONS

Gardner and Eberhart (1966) model do not satisfy the para-
metric values of the specific heterosis effects. Conse-
quently, the estimators of the effects of variety heterosis,
specific heterosis and their variances differ from those of
the unrestricted model. Analyses using the unrestricted and
the Gardner and Eberhart (1966) models should lead to the
same inferences, at least in the assessment of population
effects expressed as deviations from the average effect,
the heteroses, the average heterosis and the variety het-
eroses (the correlation between the estimates of the two
models is 1). The use of the unrestricted model is limited
by the lack of formulas for calculating the sums of squares
and the variance estimates for estimable functions, although
this does not exclude the possibility of developing the ap-
propriate software for analysis. In conclusion, it is gener-
ally quite safe to use the Gardner and Eberhart model.

RESUMO

O objetivo deste trabalho foi discutir as restrições
paramétricas do modelo de análise dialélica de Gardner & Eberhart
(análise II), visando responder às seguintes questões, entre outras:
i) o modelo estatístico tem que ser restrito?; ii) as restrições
satisfazem os valores dos parâmetros genéticos?, e iii) elas tornam
a análise e a interpretação mais fáceis? Objetivamente, estas
questões podem ser assim respondidas: i) não; ii) nem todas, e iii)
a análise sim, mas a interpretação é a mesma do modelo irrestrito.

As principais conclusões são: as restrições  Σ  S*
jj’ = 0 (j’ ≠ j),

para todo j, do modelo de Gardner & Eberhart não satisfazem os
valores paramétricos dos efeitos de heterose específica; em
conseqüência, os estimadores dos efeitos de heterose de
população, dos efeitos de heterose específica e de suas variâncias
diferem daqueles do modelo irrestrito; as análises considerando
os modelos irrestrito e de Gardner & Eberhart devem conduzir às
mesmas inferências, pelo menos em relação às decorrentes da
avaliação dos efeitos de população expressos como desvios em
torno do efeito médio, das heteroses, da heterose média e das
heteroses varietais (a correlação entre as estimativas dos dois
modelos é 1); o fator que limita o uso do modelo irrestrito é a
inexistência de fórmulas para o cálculo das somas de quadrados e

Table VI - Estimates of the heteroses (Hjj’; values below the diagonal),
specific heterosis effects (S*

jj’; values above the diagonal), average
heterosis (H) and the variances of these and other linear combinations

of the parameters, relative to grain yield (bushels/acre),
based on the Gardner and Eberhart (1966) model.

Parents 1 2 3 4 5 6

1 3.385 -2.290 -1.040 1.060 -1.115
2 7.45 -2.865 -1.415 -0.515 1.410
3 1.65 2.90 4.810 -0.990 1.335
4 1.50 2.95 9.05 -0.140 -2.215
5 2.35 2.60 2.00 1.45 0.585
6 7.10 11.45 11.25 6.30 7.85

H = 5.19

V(H) = 1.66

V(Hjj’) = 10.65

V(Hjj’ - Hjj”) = 17.75

V(Hjj’ - Hj”j’”) = 21.30

V(S*
jj’) = 4.26

V(S*
jj’ - S*
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jj’ - S*

j”j’”) = 7.01
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Table V - Estimates of the population effects expressed as
deviations from the average effect (v*

j), variety heterosis
effects (H*

j) and the variances of these and other linear combinations
of the parameters, relative to grain yield (bushels/acre), based

on the Gardner and Eberhart (1966) model.

Population v*
j H*

j

1 -1.45 -1.475
2 -0.75 0.350
3 -4.55 0.225
4 4.15 -1.175
5 -1.15 -2.425
6 3.75 4.500

V(v*
j) = 5.92

V(H*
j) = 2.96

V(v*
j - v*

j’) = 14.20

V(H*
j - H*

j’) = 7.10

^
^

^ ^

^ ^

^ ^

^ ^ ^

^ ^ ^

N

j’ = l

N

j’ = l
The restrictions  Σ  S*

jj’ = 0 (j’ ≠ j), for all j, of the
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das estimativas das variâncias das funções estimáveis, embora isto
não impossibilite o desenvolvimento de ‘software’ para automa-
tização da análise.
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