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Abstract

In this work we report the characterization of the Rhynchosciara americana histone genes cluster nucleotide se-
quence. It spans 5,131 bp and contains the four core histones and the linker histone H1. Putative control elements
were detected. We also determined the copy number of the tandem repeat unit through quantitative PCR, as well as
the unequivocal chromosome location of this unique locus in chromosome A band 13. The data were compared with
histone clusters from the genus Drosophila, which are the closest known homologues.
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Introduction

Rhynchosciara americana is a dipteran belonging to
the family Sciaridae, commonly known as dark-winged
fungus gnats. These are known for its exuberant polytene
chromosomes and developmentally regulated DNA ampli-
fication loci present in several tissues, the so-called DNA
puffs. R. americana has been the object of research since
the 1950s (Nonato and Pavan, 1951), but besides the well-
known physiology of its polytene chromosomes and their
puffs (Santelli et al., 1991, 2004; Frydman et al., 1993,
Penalva et al., 1997), the underlying overall molecular biol-
ogy and evolution are poorly understood.

In R. americana salivary glands, the last cycle of
DNA replication encompasses a gene amplification phe-
nomenon generating DNA puffs (Breuer and Pavan, 1955;
Ficq and Pavan, 1957; Rudkin and Corlette, 1957). This
well-documented polyteny cycle lasts for 5 or 6 days.
(Machado-Santelli and Basile,1973, 1975). Due to its long
duration, it is possible to precisely follow the replication
and transcription processes. However, several structural
characteristics of these unusual chromosomes present in
Sciaridae are still unknown, such as the amplification con-
trol elements.

We started to focus on the histone class of genes as an
approach to better understand chromatin structure aspects
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in the salivary glands of Rhynchosciara, and to provide mo-
lecular markers for this species. The replication-dependent
histones and their variants are common chromatin compo-
nents of great interest because of their involvement in the
modulation of the chromatin transcriptional status and with
the replication process.

Data from several laboratories have implicated regu-
latory regions of the histone genes as targets for factors act-
ing under the control of the Cdk2/cyclin E complex (Ewen,
2000). In mammals, the factor NPAT, identified as sub-
strate of that complex, is a linker element between cell cy-
cle regulators and histone gene transcriptional activation
(Zhao et al., 2000; Gao et al., 2003). Identification of Cajal
bodies (CB) participating in this process, as well as the
Stem Looping Binding Protein (SLBP), brought new ele-
ments to the understanding of the cell cycle-dependent acti-
vation of the transcriptional program (G1-S transition)
(Marzluff, 2005).

Histones, as the main chromatin organizing proteins,
are extremely conserved among eukaryotes. Due to their
slow rate of modification through evolution they became
landmarks for phylogenetic analysis of distant organisms
(Thatcher and Gorovsky, 1994). Usually, histone genes are
arranged in two forms: (1) in a cluster containing the five
histone genes repeated in tandem several times, such as in
Drosophila and Chironomus, or (2) dispersed in the ge-
nome forming incomplete clusters or as single, isolated
genes, like in humans (Matsuo and Yamazaki, 1989; Nago-
da et al., 2005; Hankeln and Schmidt, 1991).
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Previous studies have identified the R. americana
histone gene cluster using a D. hydei probe, and semi-
quantitative Southern blotting experiments were able to es-
timate its copy number as approximately 150 tandemly
arranged units. Fluorescent in situ hybridization analysis
localized its chromosomal site in region 13 of chromosome
A, near the pericentromeric region (Santelli ef al., 1996).

To advance the study of R. americana histone genes,
we now report the complete sequence of the R. americana
histone gene cluster and the description of its canonical and
putative regulatory elements. The data are also compared
with counterparts in the genus Drosophila genus, due the
phylogenetic proximity between the two genera.

Material and Methods

Library construction

A recombinant phage ADASHII (Stratagene) — RaHis
(Santelli et al., 1996) previously isolated using a
Drosophila hydei histone probe was cut with Notl restric-
tion enzyme and the isolated insert was extracted with phe-
nol. Approximately 50 pg of this DNA was sheared using
the nebulization method (shotgun strategy) and fragments
were separated in low melting point agarose and size se-
lected (1.0 - 1.5 kb). Approximately 2 ug of DNA were then
treated with Klenow/PNK enzyme (Amersham/Pharmacia)
in a blunting reaction and cloned in pUC18 (Sigma) using
T4 DNA Ligase (Gibco).

Sequencing and assembly

Recombinant E. coli DH5a selected by IPTG/XGAL
grown in 1 mL of Circle Grow (USB) medium were
pelleted (2,200 x g for 10 min) in microplates, following
SDS/NaOH (10%/0.2 M) lysis and potassium acetate (3 M)
debris precipitation. The lysate was filtered using a MAGV
N22 filter plate (Millipore). The plasmid solution was pre-
cipitated with isopropanol, washed with ethanol 80% and
finally suspended in 30 uL of 10 mM Tris. Sequencing re-
actions were performed in a PCR GeneAmp 9700 thermo-
cycler (Perkin Elmer), using BigDye terminator technology
(96 °C for 1 min, 35 cycles of 96 °C for 20s, 50 °C for Imin
and- 60 °C for 4 min). The samples were precipitated with
ethanol/Na acetate (3M) supplemented with glycogen
(1g/L) and run in an ABI 377 automatic sequencer (Applied
Biosystems).

The electropherograms were analyzed and assembled
using Phred, Phrap and Consed software packages (Ewing
et al., 1998; Ewing and Green, 1998; Gordon ef al., 1998).
We adopted the standard Phrap assembly parameters and
considered a sequence as of high quality if it had at least
150 contiguous bp with quality > 20 inferred by Phred. The
error estimated by the Phred/Phrap/Consed suite for this as-
sembly was 1/10,000 bp.
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Sequence analysis

The initial analyses were carried out through Genscan
software (Burge and Karlin, 1997), posterior sequence
comparisons, dot-maps and pattern searches were per-
formed with Emboss packages (Rice et al., 2000). ClustalX
was utilized to build alignments (Thompson et al., 1997).

Promoter prediction was made with the Neural Net-

work Promoter Prediction service
(http://www fruitfly.org/seq_tools/promoter.html) (Reese,
2001). CodonW software (Peden, 1999)

(http://codonw.sourceforge.net/) was used to generate
codon usage tables.

The sequences of histone gene -clusters from
Drosophila hydei (X17072), Drosophila melanogaster
(X14215) and Chironomus thummi (X56335) were down-
loaded from NCBI and used for comparisons.

Quantitative PCR

The repeat unit copy number was estimated through
real time PCR. The primers H2Aql (TTTCGGCAAT
AGGACTGCTT) and H2Aq2 (ATTGGAATTGGCTGG
TAACG) were designed to amplify a histone cluster frag-
ment and RaCHAP-Q1 (GCTTAACAAATGAATCA
GTC) and RaCHAP-Q2 (ACTCATTAAACAAAAG
GTCA) to amplify a T-complex Chaperonin 5 fragment
(Rezende-Teixeira, personal communication), a gene pres-
ent in single copy in Drosophila. The SYBR Green reac-
tions were assembled as instructed by the kit manufacturer
(ABgene), with template DNA extracted from testis of
adult flies according to Rezende-Teixeira et al. (2012).
Amplification rates were estimated considering Chapero-
nin as a single copy gene also in Rhynchosciara, using the
mathematical method described by Pfaffl (2001).

RNA extractions from salivary glands were per-
formed as described in Rezende-Teixeira et al. (2009), and
absolute quantitative RT-PCR assays were performed as
described by the kit manufacturer (AgPath-ID One-Step
RT-PCR, Life Technologies)

The primer set used was: RaHlql CGTCCGGTT
CATTCAAACTT; RaH1q2 TCACTGAGCCAGCCTTC
TTT; RaH3ql AATTCGTCGCTACCAAAAGAG;
RaH3q2 CAGAGCCATAACCGCTGAACT; RaH4ql
ATTACGAAACCAGCCATTCG; RaH4q2 ACCTCCGA
AACCGTACAATG; RaH2Aql TTTCGGCAATAGGA
CTGCTT; RaH2Aq2 ATTGGAATTGGCTGGTAACG;
RaH2Bql AGAAACGCAAGCGTAAGGAA; RaH2Bq2
TGGTGATGGTCGATCGTTTA.

The experiments were performed in triplicate and di-
lutions of the cloned histone cluster itself served to estab-
lish the reference curve (all the 5.1 kb cloned in pBluescript
KS, Stratagene). The primers listed above were designed to
produce amplification products containing amplicons of
100-200 bp, all of which were specific products, which was
especially important in the case of histone RaH3, which
shares many similarities with RaH3.3 (Siviero et al., 2006).
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The amplification efficiencies were determined for all pri-
mer pairs (RaH1: 100%; RaH3: 99%; RaH4: 99%; RaH2A:
100%; RaH2B: 99%; RaCHAP: 99%).

In situ hybridization

Salivary gland chromosomes fixed with ethanol-
acetic acid (3:1) were squashed in 45% acetic acid. The
coverslips were removed by freezing the slides on dry ice.
The preparations were then washed in PBS, denatured for
3-5 minutes in NaOH (0.07 M), washed in a series of alco-
hol and dried. Probes were labelled using the dUTP-digo-
xigenin Random-primer kit (Roche) according to
manufacturer instructions and denatured by heating just be-
fore the hybridisation step. The hybridized probes were re-
vealed by fluorescein labelled anti-digoxigenin serum
(Roche) and the chromosomes were counterstained with
propidium iodide. The preparations were analysed in a laser
scanning confocal microscope, LSM-510 (Zeiss), and were
considered positive the regions labelled in most of the chro-
mosome optical sections.

Results and Discussion

General sequencing results

A large insert of the histone gene cluster repeat was
sub-cloned from a previously isolated recombinant phage
and sequenced by shotgun technique. The histone repeat
unit in R. americana has 5,131 bp (GenBank accession
number: AF378198), containing single sites for different
restriction enzymes: for EcoRV in the RaH1-RaH3 spacer;
for HindIll in the RaH3 coding region, and for Pvul in the
RaH2B portion (Figures 1 and 2). As commonly observed
in other histone clusters, the intergenic spacers are AT-rich.
The orientation of the individual histone genes is similar to
those in Drosophila melanogaster and Drosophila hydei,
except for the H1 gene (Figures 1 and 2). The R. americana
cluster also shares other similarities with its D. sydei homo-
logue: like its length, which is only 22 bp shorter, a CG con-
tent, 37% for R. americana and 38% for D. hydei (Table 1),
and a strong nucleotide identity in the coding regions (Ta-
ble 2).

Through quantitative real time PCR it was possible to
obtain an estimate of 159 copies of the histone cluster unit
(£ 24 Median Absolute Deviation) in the haploid genome
of R. americana, which is similar with observations for the
genus Drosophila (110-150 copies).

5 UTR elements

Among the predicted promoter regions, canonical
TATA-boxes were found only upstream of the RaH3,
RaH4 and RaH2B genes, while RaH1 and RaH2A pre-
sumptive promoters have TATA-like sequences. In the pu-
tative leader sequences of the genes RaH1, RaH3, RaH4
and RaH2B, the element AGTGAA (or AGTG-like), was
found near the start codon of RaH3 and RaH2B, and in the

Rhynchosciara histone genes cluster

promoter region of RaH1, RaH4 and RaH2B. As observed
in D. hydei (Kremer and Hennig, 1990), only RaH3 showed
an AGTGA block near the start codon (Figure 1). These
AGTG-like elements were suggested to have a specific
function related to histone expression in the genus
Drosophila (Matsuo and Yamazaki, 1989; Matsuo, 2003).
This hypothesis is now reinforced by the presence of the
same AGTG-like elements in the R. americana histone re-
peat unit. The present data actually suggest that the role of
these elements can be extrapolated for the Sciaridae family
as a whole.

3’ UTR elements

In the 3’ untranslated region (3 UTR) of each histone
gene one palindrome or near-palindrome sequence block
was found. These are the hairpin formers (Figures 1 and 3)
involved with the regulation of mRNA processing of the
cell-cycle dependent histone genes (Birchmeier et al.,
1982). The inverted repeat present in RaH1 gene is more di-
vergent when compared with the palindromes of the other
core histones genes, as was also observed in D.
melanogaster and D. hydei (Kremer and Hennig, 1990).
The RaH1 distance from the stop codon (48 bp) is only
slightly longer than the one observed in the core histones
genes (RaH3: 23 bp; RaH4:40 bp; RaH2A:44 bp; RaH2B:
39bp), and is almost half the distance when compared to the
Drosophila homologs.

Interestingly, with the exception of RaH4, these in-
verted repeats found in R. americana can be grouped by
similarity with their homologs in the Drosophila genus
(Figure 3), indicating a possible common origin of these el-
ements. The palindromes for H3 histones from R.
americana and H3/H4 from D. melanogaster and D. hydei
are a perfect match. The inverted repeat from RaH4 is im-
perfect, it is 1 bp shorter in the 5* extremity and similar to
the palindromes found in the H2B genes of these three in-
sects. Identity between hairpins of the H4 and H2B genes is
also observed in Chironomus thummi, which is only a sin-
gle base different from the correspondent hairpin in
Rhynchosciara.

Interestingly, the element CAA(T/G)GAGA, which
is common in the genus Drosophila and is related to the
binding of snRNA, or other similar consensus blocks were
not found in R. americana (Mowry and Steitz, 1987; Sol-
dati and Schumperli, 1988). Further research will thus be
needed to determine whether R. americana is able to use
another sequence to bind snRNAs, or whether it has a
mechanism for mRNA maintenance which is somewhat
different from the usual one.

Poly-A signals were predicted for the five histone
genes, but the prediction algorithm scores were too low for
RaH1, RaH3 and RaH2A, so they will not be considered
here. The poly-A signals found in RaH4 and RaH2B corre-
sponded to the consensus sequence AATAAA, however no
3’ U-rich regions were observed, even putatively down-
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Figure 2 - Orientation of histone genes in clusters from different organ-
isms.

stream CA poly-adenylation sites being present (Manley
and Takagaki, 1996). In the annelid C. variopedatus, ca-
nonical poly-A signals were found for the five genes in the
histone cluster (del Gaudio et al., 1998). The authors hy-
pothesized that the presence of these termination signals in
present in all ancestral histones was substituted during the
evolution by the hairpin structure, which corresponds to the
observation that these signals are unequally distributed
among the histone genes in the Rhynchosciara cluster.
Double termination signals were reported for the H2B, H3
and H4 genes in D. melanogaster by Akhmanova et al.
(1997). Based on the present data, however, we cannot con-
clude whether these poly-adenylation signals are actually
functional in R. americana.

Other interesting elements

Strikingly, the genes RaH4 and RaH2A share almost
the same 44 bases region in the 5° portion (84% identity),
starting 5 bp upstream of the start codon (GAAAA) and en-
compassing the coding segment for the first 13 amino acids,
which are, as expected, also very similar (Figure 1A). This
identity level is not observed in the same portions of the
clusters from D. melanogaster, D. hydei or C. thummi.

Rhynchosciara histone genes cluster

These 44 bases, including the 5 non-coding base pairs, may
reflect the a common origin of these genes, or at least the
same origin of this initial domain.

Other noteworthy elements are two identical se-
quence blocks in the 3° UTR of RaH2A and RaH2B
(AATAATAATAATACA), and two similar blocks in the
3’ UTR of RaH4 (AAATAAATAATACA) and RaH1
(AATAATATAATACA), all positioned 38-45 bp down-
stream of the palindromes. These elements resemble
A-boxes, and their position suggests that they may play a
role in mRNA termination.

Coding regions

Codon usage determined for the histone genes of R.
americana (Tables S2-S7) shows several points of similar-
ity with the histone codon usage for D. hydei. A few differ-
ences lay on the Rhynchosciara preferential codons: UUG
(Leu), CCA and CCG (for Pro), AAA (Lys), CAA (Gln)
and GGU (Gly). The only stop codon used in these genes is
UAA.

The GC content in the coding regions of the
Rhynchosciara histone gene cluster ranges from 44.2%
(RaH1) to 47.9% (RaH4) with a mean value of 45.9% (Sup-
plementary material, Tables S2-S7). These values are lower
than those observed in D. melanogaster (mean 51.4%) and
D. hydei (mean 48.9%). The GC content at the 3" codon
bases (GC3s) is also much lower than that observed in the
genus Drosophila, 38.4% (average) (Table 3 and Table
S1); the lowest GC3s is 34.6% in the RaH3, lower than the
GC3s from histone H3 of 16 Drosophila species analyzed
by Matsuo (2003). In that study the author proposes that a
reduction in the population size of a common ancestor of D.

Table 1 - Nucleotide frequencies of histone repeat unit of R. americana, D. hydei, D. melanogaster (L unit) and C. thummi.

Nucleotide R. americana D. hydei D. melanogaster C. thummi
(5131bp) (5153bp) (5041bp) (6271bp)
Adenine (A) 32.7% 30.3% 28.4% 35.4%
Cytosine (C) 19.2% 18.9% 20.2% 15.6%
Guanine (G) 19.5% 19.1% 20.1% 16.7%
Thymine (T) 28.6% 31.7% 31.3% 32.3%

Table 2 - Nucleotide identities between R. americana and other Diptera histone coding regions and comparison among histone proteins from these organ-
isms, denoting identity and similarity. (Dm — D. melanogaster, Dh — D. hydei, Ct — C. thummi)

RaH1 x H1 RaH2A x H2A RaH2B x H2B RaH3 x H3 RaH4 x H4
Dm (Nucleotide) 49% 79% 80% 80% 78%
Dh (Nucleotide) 48% 82% 80% 84% 82%
Ct (Nucleotide) 58% 82% 79% 83% 85%
Dm (Protein) 45% (63%) 99% (100%) 98% (99%) 99% (100%) 100%
Dh (Protein) 46% (65%) 100% 98% (99%) 100% 100%
Ct (Protein) 38% (54%) 97% (99%) 93% (96%) 100% 100%
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A) B)
Rhynchosciara: Grouped by similarity:
H4 GGCCCITTICAGGGC- DROME H2A CGTICCTTTITCAGGACG
H2B GGCTCITTICAGAGCC DROHY H2A CGTICCTTTTCAGGACG
H3 GGTCCITTIICAGGACC RHYAM H2RA CGCCCTTTTAAGGGCG
H2A CGCCCTTITAAGGECG HH KHHKKK KHK KK
Hl AGTCCTITATAGGGGCT
*  dkk ok kW DROME H3 GGTCCTTTTCAGGACC
D. melanogaster: RHYAM H3 GGTCCTTITTCAGGACC
DROHY H3 GGTCCTTTITCAGGACC
H3 GGTCCITTICAGGACC DROME H4 GGTCCTTTITCAGGACC
H4 GGTCCITTITICAGGACC DROHY H4 GGTICCTTTITCAGGACC
HZB GG&CITITCAGG@C LA S 2 8 8 2 8 2 3 8 2 2 8 2 81
H2A CGTICCITTICAGGACG
Hi AGTCCTTTTICAGGGCT RHYAM H2B GGCTCTTTTCAGAGCC
Ve Vel v Vel e Ve o DROME H2B GGCCCTTTTCAGGGCC
D. hydei: DROHY H2B GGCCCTTTITCAGGGCC
RHY2ZM H4 GGCCCTTTTCAGGGC-
H4 GGTCCITTITICAGGACC LA IR b d b
H2B GGCCCITTICAGGGCC
H3 GGTCCITTICAGGACC DROHY H1 AGTCCTTTTCAGGACT
Hi AGTCCTTTTICAGGACT DROME H1 AGTCCTTTTCAGGGCT
H2A CGUCCITTICAGGACG RHY2AM Hl AGTCCTTATAGGGGCT
LA A R 2 B 82 8 2 2 LA B 8 5 BN 4 o
Figure 3 - Comparison among hairpins forming inverted repeats from R. americana, D. hydei and D. melanogaster.
Table 3 - Bases distribution in the 3™ codon position and GC content of the coding region and in the 3™ codon base.
T3s C3s A3s G3s GC3s GC
H1 0.3893 0.1946 0.4058 0.2412 0.352 0.442
H3 0.4762 0.2381 0.3136 0.1892 0.346 0.473
H2A 0.3980 0.2449 0.3271 0.2376 0.393 0.468
H2B 0.3556 0.3889 0.2913 0.2447 0.483 0.450
H4 0.4048 0.2619 0.3295 0.1951 0.376 0.479
Average of genes 0.4049 0.2567 0.3451 0.2249 0.384 0.459

hydei and D. americana may have relaxed the selective
pressure, increasing the frequency of substitutions at the 31
codon bases for A and T. However, the intriguingly low
GC3s content in Rhynchosciara suggests two possible ex-
planations: 1) the genera Rhynchosciara and Drosophila
would share a common ancestor, so the same conditions of
selection pressure and relaxation that occurred for D. hydei
and D. americana could affect R. americana; or 2) since
Rhynchosciara belongs to an ancient branch divergence in
Diptera, the common ancestor could already have had a low
GC3s content at this locus.

Histone proteins

In other organisms, several motifs and domains were
identified in histone DNA and protein sequences, such as
promoters, nuclear localization signals (NLS) and func-
tional histone domains. In R. americana, at least for H1, H3
and H2B, we have identified NLS motifs, and the linking
motif of H1 fits all the parameters assumed for others se-
quences. As expected, all the core characteristic domains
for this class of proteins (histone domain/InterPro Search)

are present and are nearly identical when compared to
Drosophila and Chironomus.

Localization of the histone repeat in Rhynchosciara

To determine the possible existence of other histone
clusters spread across the R. americana chromosomes, flu-
orescent in situ hybridization assays were performed.
These assays evidenced a single positive band in region 13
of chromosome A when using the repeat unit as probe. The
same band was seen under a wide range of stringency con-
ditions (Figure 4). This result suggests the inexistence of
other clusters for the replication-dependent histone genes,
as is also the case in D. virilis (Nagel and Grossbach, 2000)
and in D. americana (Nagoda et al., 2005). This puts in evi-
dence a strong synteny for the histone gene cluster in the
genus Rhynchosciara, as the same locus was reported to
contain the histone cluster in R. baschanti and R.
hollaenderi (Stocker and Gorab, 2000). Southern blot anal-
ysis of DNA from salivary glands from a recently discov-
ered species, Rhynchosciara sp., showed a unique HindlIll
5.1 kb band labeling (result not shown) that corresponds to
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Figure 4 - [n situ hybridization using histone gene repeats as probe labeled
with digoxigenin and revealed by a FITC-antidigoxigenin antibody, indi-
cating a single locus in region 13 of chromosome A. A) four chromosomes
from a single salivary gland cell. B) Split image of chromosome A show-
ing labeled region A13. C) Chromosome counterstained with propidium
iodide. D) merged images.

the size of the R. americana repeat. The new
Rhynchosciara species was collected in Ubatuba, SP, and
its proper description is in progress (Machado-Santelli
G.M., unpublished results).

These results indicate that the unique cluster present
in the 13A locus, containing all the replication-dependent
histone genes, may be a common feature among
Rhynchosciara species.

Transcription profile in salivary glands

To analyze the role of these canonical histones during
polytene chromosome development, we determined the
transcriptional profile in salivary glands of each of the
histone genes present in the cluster of Rhynchosciara. The
expression levels were measured by absolute quantification
of the respective transcripts. We believe that this informa-
tion can contribute to a better understanding of chromatin
alterations occurring during the gene amplification or poly-
tenization processes, and to the understanding the role of
histone variants such as RaH3.3 detected in this tissue
(Siviero et al., 2006).

The expression profiles (Figure 5) show that all his-
tones have greatly increased transcription levels from the
moment on when cocoon spinning starts. This was ex-
pected, since this period encompasses the last poly-
tenization cycle and the beginning of gene amplification in
certain puffs.

Interestingly, the RaH4 mRNA levels were much
higher than those for the other histone genes at all stages an-

Rhynchosciara histone genes cluster
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Figure 5 - Transcription profiles of the Rhynchosciara americana canoni-
cal histone genes during larval development through absolute quantifica-
tion. The vertical axis shows transcript numbers for each developmental
period: 2P —second period of the fourth Instar; IR —3" period of the fourth
instar, corresponding to initial cocoon spinning; B — 4™ period of the
fourth instar, corresponding to Puff 2B formation; 5™ period of fourth
instar corresponding to Puff 3C formation; and 6" period of fourth instar
corresponding the prepupal stage. Shown are means and standard errors of
the mean for the triplicate samples.



Siviero et al.

alyzed. This may reflect an increased consumption of pro-
tein due to a higher turnover, or it may be a consequence of
a shorter half-life of this mRNA, since in Rhynchosciara
this gene has an imperfect hairpin in its 3> UTR portion.

The lowest detected mRNA levels were observed for
RaH2A and RaH2B, which may be a direct consequence of
the use of other variants of these proteins (Park and Luger,
2008; Lindner, 2008), very common in other organisms, or
can be caused by a longer half-life of the mRNA.

While the nucleosomal histones (core histones) pre-
sented a transcription peak in the initial cocoon-spinning
period (IR), with a consequent decrease in other stages, the
Histone RaH1 showed a higher level of transcription in the
period of 3C puff expansion. Even in prepupae, the RaH1
levels were higher than during IR. This pattern of transcrip-
tion may be related to chromatin modifications necessary
for gland histolysis and later metamorphosis, such as higher
chromosome condensation (Brandao et al., 2014).

Final remarks

The characterization of the R. americana histone
gene cluster adds new insights to this evolutionarily and
genomically poorly studied system. These data indicate
that R. americana has a single cluster of the five histone
genes repeated approximately 159 times. Sequencing and
analysis of the histone clusters from the other known
Rhynchosciara species (R. baschanti, R. hollaenderi, R.
milleri, R. papaveroi and R. sp) will now be greatly facili-
tated and could introduce important molecular data for an
evolutionarily much more ancient dipteran genus than
Drosophila, possibly providing relevant data on the evolu-
tion of the Diptera branch as a whole.
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