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INTRODUCTION

Terminal association of non-homologous bivalents
at first meiosis has been described in many organisms. In
some cases, such meiotic configurations arise from non-
chiasmate interactions between C-band positive ends and
either euchromatic ends or other heterochromatic blocks
of non-homologues (Drets and Stoll, 1974; John and King,
1982, 1985). On the other hand, several studies have
shown multivalent configurations at first meiosis as a re-
sult of heterozygosity for either interchange or Robert-
sonian fusion or fission (John, 1987; Bidau and Mirol,
1988; Haaf et al., 1989; Moss and Murray, 1990; Mirol
and Bidau, 1991, 1992, 1994; Reed et al., 1992). In all
these cases, the associations between non-homologues
were chiasmate. Meiotic configurations formed in this way
can lead to irregular segregation and a high rate of non-
disjunction, with a consequent reduction in reproductive
potential (Eichenlaub-Ritter and Winking, 1990), although
sometimes there may be no apparent negative influence
on fertility (Mirol and Bidau, 1994).

In Anura, multivalent meiotic configurations formed
by homologous chromosomes have been described in some
polyploid species (Beçak et al., 1966, 1967, 1970; Schmid
et al., 1985), but terminal association of non-homologous
bivalents in meiosis was observed only in the leptodactylids
Eleutherodactylus binotatus (2n = 22) (Beçak and Beçak,
1974) and Odontophrynus americanus (4n = 44) (Beçak
and Beçak, 1998). In E. binotatus, such configurations
were considered to be indicative of multiple transloca-
tions and/or centric fusions, important mechanisms pos-
sibly related to the diploidization of an ancestral polyploid
karyotype, giving rise to the diploid karyotype of this spe-
cies (Beçak and Beçak, 1974). In the polyploid O. ame-
ricanus, the multivalent configurations involving non-ho-
mologous chromosomes were attributed to a 4/11 trans-
location (Beçak and Beçak, 1998).

We have previously reported two distinct karyotypes
(I and II), as well as C-band and NOR polymorphisms in
the anuran Physalaemus petersi (Jiménez de la Espada,
1872) (Lourenço et al., 1998, 1999). The multiple NOR
sites and non-centromeric C-bands detected could have
resulted from translocation events. In the present work,
we describe multivalent configurations in both karyologi-
cal groups of P. petersi from the Brazilian Amazon and
suggest that these arrangements provide cytological evi-
dence for translocation events during the evolution of the
two karyotypes.

MATERIAL  AND METHODS

The meiotic chromosomes of 13 P. petersi males
belonging to karyological group I (ZUEC 9584, 9586,
9588, 9589, 9593, 9595, 9596, 9597, 9598, 9613, 9632,
9633, 9625) and two males belonging to karyological
group II (ZUEC 9584, 9654) were examined. The group II
specimens were collected in the Alto Juruá Reserve (Acre
State, Brazil) in February, 1994, and January, 1996. Five
group I animals were also collected in this region at the
same time; the other eight specimens of this group were
obtained from the Humaitá Reserve (Acre State, Brazil)
in December, 1994, and April, 1995. All of the specimens
were deposited in the Museum of Zoology at the State
University of Campinas (ZUEC). Cytological preparations
were obtained from cell suspensions of testes removed
from animals treated with colchicine for 4 h (Schmid,
1978). Conventional staining with Giemsa and C-banding
were done as described elsewhere (King, 1980).

RESULTS

In addition to 11 isolated bivalents (Figures 1a and
2a), multivalent rings and chains formed by the associa-
tion of bivalent chromosomes were observed in diakinetic
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spermatocytes from eight group I and two group II speci-
mens of P. petersi (Figures 1b-g and 2b). In two speci-
mens (ZUEC 9588 and 9589) there were multivalent con-
figurations that appeared to involve most of the chromo-
some pairs of the karyotypes (Figure 1d-f).

Both alternate and adjacent multivalents were seen
in group I specimens (Figure 1b-d and 1g, respectively)
whereas in group II animals only open chains were ob-
served. The association between bivalents involved ter-
minal regions and the C-banded figures showed no par-
ticipation of heterochromatic regions in these interactions
(Figure 1g).

DISCUSSION

As previously reported (Lourenço et al., 1999), non-
centromeric C-bands interfered with homologous chro-
mosome behavior in meiosis. The heterozygosity of the
telomeric and interstitial heterochromatic blocks seen in
karyological group I specimens of P. petersi probably pre-
vented pairing and/or crossing-over between homologous
chromosome arms. Nevertheless, there was no evidence
to support the involvement of non-centromeric hetero-
chromatic blocks in the formation of multivalent configu-
rations at first meiosis in this karyological group. The C-
banding technique showed no heterochromatin in the re-
gion of the bivalent associations. Generally, in cases where
C-bands play a role in the origin of multivalent meiotic
arrangements, the associations between two non-homolo-
gous chromosome pairs involve at least one terminal C-
band (John and King, 1985). Although we did not conclu-
sively determine the C-banding pattern of all the speci-
mens examined here, the haploid karyotype of group I P.
petersi usually showed a maximum of four telomeric C-
bands (Lourenço et al., 1999). This suggests that there
are probably not enough C-blocks to support heterochro-
matic associations that can give rise to configurations such
as that shown in Figure 1d, for example.

One possible explanation for these meiotic associa-
tions could be the existence of limited homology between
non-homologous chromosomes in the group I karyotype.
The pairing of such segments and the formation of chi-
asma between them would arrange the chromosomes in
multiple configurations in the first meiosis. We hypoth-
esize that multiple translocations could have been involved
in the origin of such homologous segments in non-ho-
mologous chromosomes, as also suggested for the
leptodactylid Eleutherodactylus binotatus (Beçak and
Beçak, 1974). The variable relative size and arm ratio of
the different morphs of chromosomes 6 and 8 (Lourenço
et al., 1998, 1999) agree with this hypothesis since mul-
tiple translocations are expected to change the morphol-
ogy of the chromosomes involved. Such multiple translo-
cations probably played an important role in the karyo-
typic evolution of this species and could provide a mecha-
nism for the appearance of multiple NOR and C-bands in

Figure 1 - Meiotic chromosomes of specimens of Physalaemus petersi be-
longing to karyological group I, stained with Giemsa (a-f) (bar = 10 µm) or C-
banded (g) (bar = 10.3 µm). In a, the 11 bivalents from one spermatocyte of
specimen ZUEC 9595 showing no association between them; the sex chro-
mosomes XY are indicated. In b, another spermatocyte from the same speci-
men showing three associated bivalents. In c, two alternate quadrivalents
(arrows) from specimen ZUEC 9588. In d-f, multivalents involving a great
number of bivalents from specimens ZUEC 9588 (d, f) and ZUEC 9589 (e). In
g, C-banded chromosomes from specimen ZUEC 9586. The adjacent quadriva-
lent (large arrow) and the linear chain (small arrow) are shown. Note also the
absence of heterochromatin in the regions of association.

P. petersi, particularly in the group I karyotype. Although
the occurrence of heterozygotes for translocations could
also account for the multivalent chains observed in group
II specimens, the absence of C-banded configurations pre-
cludes a reliable interpretation of this event. In any case,
these unusual meiotic configurations make this group an
interesting model for future cytological investigations.
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RESUMO

Nós analisamos os cromossomos meióticos de espécimes
dos dois grupos cariotípicos de Physalaemus petersi (Jiménez
de la Espada, 1872) descritos na literatura. Configurações
multivalentes (anéis e cadeias) foram descritas em ambos os
grupos. Essa organização meiótica resultou da associação termi-
nal de cromossomos não-homólogos e a análise de preparações
meióticas submetidas ao bandamento C não indicou o envolvimento
de regiões heterocromáticas nessas associações. Uma possível
explicação para tais configurações meióticas consiste na presença
de translocações heterozigotas. Nesse caso, os multivalentes
observados evidenciariam o envolvimento de eventos de trans-
locação na evolução cariotípica em P. petersi.
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