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INTRODUCTION

A diallel is a mating system that involves all pos-
sible crosses among a group of parents. This genetic design
is used to study polygenic systems that determine quantita-
tive traits. Depending on the nature of the parents, individu-
als from an open pollinated variety or an F

2
 generation, or

selected open pollinated varieties or line cultivars, inferences
based on diallel results are useful in planning base popula-
tions for intra and/or interpopulation improvement or par-
ents for hybridization. The partial diallel is one of many
variations of the diallel (Griffing, 1956; Kempthorne and
Curnow, 1961; Gardner and Eberhart, 1966) and consists
of crosses among two parent groups. This mating system,
also called experiment II, design II and factorial design, was
proposed by Comstock and Robinson (1948, 1952). It is
adequate when there are distinct groups of populations, for
example one group of dent inbred lines and the other of flint
inbred lines, derived from a reciprocal recurrent selection pro-
gram, and the breeder is not interested in evaluating the crosses
between parents of the same group. The two parent groups
can involve adapted or commercial populations and exotic
germplasm or plant introductions, for example, dwarf cashew
tree and normal clones, small and large seeded cultivated com-
mon beans, among many others. As generally the parents are
open-pollinated populations or pure lines defined by the
breeder, there is no base population for inferences. The infer-
ences must be established in relation to the set of parents.

Jinks and Hayman (1953) and Hayman (1954, 1958)

presented methods for diallel analysis, with a firm and re-
fined theoretical basis, using data from parents and their
F

1
 progeny or parents, F

1
 and F

2
 generations. These meth-

ods have been used ever since (Jinks, 1954; Dickson, 1967;
Chung and Stevenson, 1973; Kornegay and Temple, 1986;
Nishimura and Hamamura, 1993), although the method-
ologies proposed by Griffing (1956) and Gardner and
Eberhart (1966) are the most frequently employed. Limi-
tations of these methods are discussed by Gilbert (1958),
Nassar (1965), Coughtrey and Mather (1970), and Sokol
and Baker (1977).

As Hayman’s proposals (1954, 1958) are not valid
for partial diallels, a separate theory is required. The theory
and analysis of partial diallel crosses presented are a gen-
eralization of the methodology of Hayman (1954). If gene
frequencies are the same for the two parent groups, results
are equal to those presented by Hayman.

METHODOLOGY

General theoretical considerations

Consider a polygenic system with k genes con-
trolling a quantitative trait in a diploid species and the
following conditions: a) Mendelian inheritance; b) ab-
sence of reciprocal effects; c) absence of non-allelic in-
teraction; d) no multiple allelism; e) no correlation in the
distribution of non-allelic genes in the parents, and f)
homozygous parents. If N parents (N ≥ 6) are divided
into two groups, one with n and the other with n’ parents
(n + n’ = N, n and n’ ≥ 3), three polygenic systems are
defined: one related to the group with n parents, one as-
sociated to n’ parents and the last related to N parents.
Let pr be the genotypic value of the rth parent of the n
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parental group and p
s
 the genotypic value of the sth par-

ent of the n’ parental group. Thus:

pr = m + Σ  da 
θra 

(r = 1, …, n)

ps = m + Σ  da 
θsa 

(s = 1, …, n’), m = Σ  ma

If p
t
 is the genotypic value of the tth parental in the

N parental group, then:

pt = m + Σ  da 
θta 

(t = 1, …, N)

For all loci in the polygenic system under study, the
parameter da is the difference between the genotypic value
of the homozygote of largest expression and the genotypic
mean of the homozygotes (ma). The θ variable assumes the
value -1 or 1 depending on if the parent is homozygous for
a gene which diminishes or increases trait expression, re-
spectively. If ua and va are frequencies of alleles that in-
crease and reduce trait expression, respectively, the follow-
ing expectation and variance apply to the n parental group:

E(θra) = ua - va = wa

V(θra) = 1 - w2

In relation to the n’ parental group:

E(θsa) = u’ - v’ = w’

V(θsa) = 1 - w’2

In the group formed by N parents:

E(θta) = ua - va = wa = pwa + qw’,

with ua = pua 
+ qu’ , va = pva + qv’, p = n / N, and q = n’ / N, and

V(θta) = 1 - w2 = 1 - p2w2 - q2w’ 2 - 2pqw
  
w’ = 4uava

Genotypic mean of the n parental group is:

E(pr) = mL0 = m + Σ da wa

Genotypic mean of the n’ parental group is:

E(ps) = m’  = m + Σ da w’

Genotypic mean of N parents is:

E(pt) = mL0 = m + Σ da wa = pmL0 + qm’

Diallel analysis of parents and their F1 hybrids

The genotypic mean of the hybrid derived from the
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rth and sth parents is:

frs = m +     Σ [da (θra + θsa) + ha 
(1 - θraθsa)] =

=    (pr + ps) +    Σ ha (1 - θraθsa),

with  Σ  ha (1 - θraθsa) = hrs being the specific heterosis of

the rth and sth parents. The parameter ha is the difference
between the genotypic value of the heterozygote and ma.

The genotypic mean of the hybrids from the rth
parent or mean of the rth array is:

E(frs) = fr = m +     Σ [da (θra + w’) + ha (1 - w’θra)] =

=    (pr + m’
 
 ) +     Σ  ha (1 - w’θra),

where Σ  ha (1 - w’θra) = hr is the varietal heterosis of the

rth parent.
The genotypic mean of the hybrids from the sth

parent or mean of the sth array is:

E(frs) = fs = m +     Σ [da (θsa + wa) + ha (1 - waθsa)] =

=   (ps + mL0) +     Σ ha (1 - waθsa),

where   Σ  ha (1 - waθsa) = hs is the varietal heterosis of the

sth parent.

The genotypic mean of the F1 
hybrids is:

E(frs) = E(fr) = E(fs) = mL1 = m +     Σ  [da (wa + w’) +

+ ha (1 - waw’)] =    (mL0 + m’
   
) +     Σ  ha (1 - waw’),

where Σ  ha (1 - waw’) = h is the average heterosis.

Thus,

mL0 - m’
 
  = Σ 2da (ua - u’)

mL1 -    (mL0 + m’  ) =    h

In the presence of dominance, specific heterosis of
the rth and sth parents is nil if the parents have the same
genotype (θraθsa = 1, for every a) and greatest when the
parents are carriers of distinct alleles at the k loci (θraθsa =
-1, for every a). Varietal heterosis of a parent is least when
it carries the most frequent genes in the group of parents
to which it does not belong and greatest if it is the carrier
of the least frequent genes. If deviations due to dominance
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are of the same magnitude and the varietal heterosis in a
group is constant, the allelic genes in the other parental
group have the same frequency (wa or w’ equal to zero, for
every a). Since (1 - wa w’) ≥ 0, if h > 0, positive unidirec-
tional dominance is established. In other words, the devia-
tions due to dominance should be predominantly positive.
If h = 0 and there is dominance, positive and negative de-
viations are present (bi-directional dominance). Dominance
is negatively unidirectional when h < 0.

If mL0 - m’  is greater than zero, there is evidence
that genes which increase trait expression are more fre-
quent in the n parental group. If this difference is nega-
tive, genes which increase trait expression should be more
frequent in the n’ parental group. When the difference is
nil, genes are equally frequent in the two parental groups
(wa = w’, for every a) or, alternatively, some genes which
increase trait expression are more frequent in one group
of parents, while others are more frequent in the other
group.

Genetic components of variation

Analysis of the diallel table allows the definition
of the following second degree statistics:
(1) Variance of the genotypic means of the n parents

V0L0(1) = V(pr) =  Σ  d2 (1 - w2) = 4  Σ  ua va d2 = D
(1)

(2) Variance of the genotypic means of the n’ parents

V0L0(2) = V(ps) =  Σ  d2 (1 - w’2) = 4  Σ  u’ v’ d2 = D
(2)

(3) Variance of the genotypic means of the N parents

V0L0 = V(pt) =  Σ  d2 (1 - w2) = D = p2D(1) + q2D(2) + 2pqD(3),

D(3) =  Σ  d2 (1 - wa - w’)

(4) Covariance between genotypic mean of rth parent hy-
brid and the mean of the nonrecurrent parent (covariance
in the rth array)

W01(r)L01 = Wr 
 = Cov(frs, ps) =    D(2) -    Fr

Fr = 2  Σ  dahaθra (1 - w’2)

(5) Variance of the genotypic means of the rth parent hy-
brids (variance in the rth array)

V1(r)L1 = Vr 
 = V(frs) =    D(2) -    Fr

 +    H1(2),

H1(2) =  Σ  h2 (1 - w’2) = 4  Σ  u’v’h2

(6) Covariance in the sth array

W01(s)L01 = Ws 
 = Cov(frs, pr) =    D(1) -    Fs,

Fs = 2  Σ  dahaθsa (1 - w2)

(7) Variance in the sth array

V1(s)L1 = Vs = V(frs) =    D
(1)

 -    Fs +    H
1(1)

,

H1(1) =  Σ  h2 (1 - w2) = 4 Σ uavah2

(8) Covariance between genotypic mean of rth parent hy-
brid and the mean of the nonrecurrent parent array

W01(r)L1 = Cov(frs, fs) =    D
(2)

 -    F
r
 -    F

(1)
 +    H

1(2)
 -    H

2r
,

F(1) = E(Fr) = 2  Σ  dahawa (1 - w’2) = 8  Σ  u’v’ (ua - va)daha

H2r =  Σ  h2 (1 - waθra) (1 - w’2)

(9) Covariance between genotypic mean of sth parent hy-
brid and the mean of the nonrecurrent parent array

W01(s)L1 = Cov(frs, fr) =    D(1) -    Fs -    F(2) +    H1(1) -    H2s,

F(2) = E(Fs) = 2  Σ  dahaw’ (1 - w2) = 8  Σ  uava (u’ - v’)daha

H2s =  Σ  h2 (1 - w’θsa) (1 - w2)

(10) Variance of the genotypic means of the F
1
 hybrids

V(f rs) = VF1 =    [D(1) + D(2) - F(1) - F(2) + H1(1) 
+ H1(2) - H2],

H2 = E(H2r) = E(H2s) =  Σ  h2 (1 - w2) (1 - w’2) =

= 16  Σ  uava u’v’h2

Analysis of the magnitude and significance of the
additive components D(1) and D(2) 

allows establishment of
several inferences about genetic variability of each paren-
tal group. If the additive component of a group is nil, the
parents have the same genotype (w2 = 1 or w’2 = 1, for
every a) and, therefore, there is no genetic variability. When
nonfixed genes are involved, the parents have distinct geno-
types and the additive component is different from zero.
Its value is largest when alleles are equally frequent.

The following differences are also useful:

D(1) - D(2) =  Σ  d2 (w’2 - w2) and 2D(3) - D(1) - D(2) =

=  Σ  d2 (wa - w’)2
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If the differences are nil, the genes are equally fre-
quent in the two parental groups. If not, it can be con-
cluded that the genes do not have the same frequency in
the two groups. When D(1) - D(2) < 0, the n’ parental group
is more variable. If genetic variation is greater in the n
parental group, then D(1) - D(2) > 0.

The F component of a parent can be negative, nil
or positive. When negative, it indicates that the parent has
more recessive than dominant genes (haθa < 0). If positive,
the parent has more dominant genes (haθa > 0). If there is
no dominance, F values of the parents are nil. When domi-
nance exists, F = 0 indicates that the parent carries ap-
proximately the same number of dominant and recessive
genes. For any parental group, the F value of one parent is
directly proportional to the number of dominant genes it
carries that are not fixed in the other group of parents.
Therefore, the F value of a parent is largest when it carries
all the dominant genes that are not fixed in the other group.
The average F value of a parental group indicates the fre-
quencies of dominant and recessive allelic genes. When it
is positive, it indicates that dominant genes are more fre-
quent than recessive alleles in that group (hawa > 0 or
haw’ > 0). If recessive genes are more frequent in the
group, its value is negative (hawa < 0 or haw’ < 0). If
there is dominance and the average F value is nil, the alleles
are equally frequent.

Given the presence of genetic variability among
parents in a group, the H1 component of the group will
be nil in the absence of dominance and positive in the
presence of dominance. The difference H1(1) 

- H1(2) pro-
vides the same information as D(1) 

- D(2). If there is ge-
netic variability in the two parental groups, components
H2r, H2s and H2 

will be positive in the presence of domi-
nance and nil in its absence. Absence of variability in a
parental group makes components F and H2 of parents
from the other group, and their respective average val-
ues, to be nil. Dominance components H1(1), H1(2) 

and H2

have the same magnitude when allelic genes have the
same frequency in the two parent groups (ua 

= u’ = 1/2,
for every a).

In the presence of dominance, the relative mag-
nitude of H2 components of parents in a group supplies
important information. The H2 component of a parent
is largest when it carries the least frequent genes of the
group to which it belongs (waθra or w’ θsa < 0, for every
a), and smallest when it carries the most frequent genes
(waθra or w’θsa > 0, for every a). Generally, the value of
the H2 component of a parent is inversely proportional
to the concentration of the most frequent genes of its
group, that are nonfixed in the other group. The differ-
ence between H2 components of two parents from the
same group can be nil, if the parents have the same geno-
type or if the most frequent genes in the parents are
different. If all H2 components of parents in a group
have the same magnitude, allelic genes are equally fre-
quent in the group.

Genetic parameters

Average values of uv and u’v’

If ua = u, H2/4H1(2) = uv. If u’ = u’, then H2/4H1(1) =
u’v’. If u a = u’ = u, the two ratios are equal to uv. Thus H2/
4H1(2) and H2/4H1(1) express the average value of the al-
lelic frequency products in groups with n and n’ parents,
respectively.

Average degree of dominance (h/d)

If ha = h and da = d, then   H1(1)/D(1) and   H1(2)/D(2)

are equal to h/d. Therefore,   H1(1)/D(1) 
and   H1(2)/D(2) ex-

press the average degree of dominance in the polygenic
systems defined by the n and n’ parental groups, respec-
tively.

Proportion between dominant and recessive
genes in parents of the same group

Following Hayman’s approach, it can be demon-
strated that the ratios

4D(2) H1(2) + F(1) 4D(1) H1(1) + F(2)

4D(2) H1(2) - F(1) 4D(1) H1(1) - F(2)

reflect the average value of the proportion between the
number of dominant and recessive genes in the n and n’
parental groups, respectively. A ratio close to zero indi-
cates that parents in the group have few dominant genes
and many recessive ones. A ratio near one indicates that
parents in the group have the same number of dominant
and recessive genes. A ratio larger than one indicates that
parents in the group have many dominant genes and few
recessive ones.

Direction of dominance

Defining k+ and k- as the number of dominant genes
which increase and decrease trait expression, respectively,
average heterosis can be expressed in the following way:

h =  Σ  ha (1 - wa w’) -  Σ  ha (1 - wa w’), k+ + k- ≤ k,

If ha = h, da = d, wa = w and w’ = w’, then:

h2 D(1)D(2) / H2D2
 
  =

If ha = h, da = d and wa = w’ = w, then h2/H2 = (k+ -
k-)2/k. Therefore, if dominance exists in the polygenic sys-
tem under study, but the above ratio is nil, the number of
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dominant genes with a positive effect is the same as the
number of dominant genes with a negative effect. In other
words, dominance is bi-directional. If the ratio is positive,
the numbers of dominant genes which increase and de-
crease trait expression are unequal, that is, dominance is
predominantly unidirectional.

The relationship between variance and
covariance in the arrays

Considering the additive-dominant model the dif-
ferences Wr - Vr = (1/4)(D(2) - H1(2)) and Ws - Vs = (1/4)(D(1)

- H1(1)) are constant for every r and s. Thus, the coeffi-
cients of the regressions of Wr as a function of Vr (Wr = β0

+ β1Vr) and Ws as a function of Vs (Ws = β0 + β1Vs) are
equal to 1. Intercepts of the regressions of Wr on Vr as
well as Ws on Vs are, respectively:

β0 = E(Wr - Vr) =    (D(2) - H1(2))

β0 = E(Ws - Vs) =    (D(1) - H1(1))

Similarly to Hayman (1954), it can be shown that
(Wr, Vr) and (Ws, Vs) values occur on the straight line de-
limited by the parabola W2 = V

0L0(2)
Vr and W2 = V

0L0(1)
Vs,

respectively. If analysis of variance of the differences Wt -
V

t
 indicates that Wr - Vr and Ws - Vs are constants and/or,

if the regression analyses of Wr on Vr and Ws on Vs show
that β1 = 1, the additive-dominant model adequately de-
scribes the observed results. When, β1 ≠ 1, the additive-
dominant model is inadequate. Hayman (1954, 1958) and
Mather and Jinks (1974) presented detailed discussions
about the causes of inadequacy of the additive-dominant
model, including the presence of extranuclear gene effects,
non-allelic interaction, multiple allelism, correlation in the
distribution of non-allelic genes and heterozygosis in the
parents. Hayman (1954, 1958) also discussed how to pro-
ceed with diallel analysis when one or more of the addi-
tive-dominant genetic model restrictions are not fulfilled.

Absence of a relationship between Wr and Vr and
between Ws and Vs (β1 = 0) indicates the absence of domi-
nance in the polygenic system under study, since, when ha

= 0, Wr = (1/2)D(2), Vr = (1/4)D(2), Ws = (1/2)D(1) and Vs =
(1/4)D(1). Thus, when W is plotted against V for each group,
all points occur at the ((1/2)D, (1/4)D) position. When the
additive-dominant model is adequate, the constant of the
regression of Wr on Vr indicates the average degree of
dominance in the polygenic system defined by the n’ pa-
rental group. The intercept of the regression of Ws on Vs

expresses the average degree of dominance in the poly-
genic system defined by the n parental group. If β0 < 0,
there is evidence of overdominance. When β0 = 0, there is
complete dominance. Partial dominance exists when β0 >
0. If the genes are equally frequent in the two parental
groups, then:

D(1) = D(2) = D(3) = D

F(1) = F(2) = F

H1(1) = H1(2) = H1

Wr - Vr = Ws - Vs = Wt - Vt =    (D - H1)

Thus, the coefficient of the regression of Wt on Vt

(Wt = β0 + β1Vt) is equal to one, and the intercept is (1/
4)(D - H1), if the additive-dominant genetic model is ad-
equate. The straight line is delimited by the parabola W2 =
DVt.

The relationship between the sum of the variance
and covariance in the arrays and the genotypic
value of the common parent

It has already been demonstrated that variance and
covariance in an array are smallest when the common par-
ent is a carrier of dominant genes and largest when it is a
carrier of recessive genes. Thus, the relationship between
the genotypic value of the common parent and the sum
between the variance and covariance in the parent array
(pr = β0 + β1(Wr + Vr) or ps = β0 + β1(Ws + Vs)) defines the
presence and direction of dominance. The regression co-
efficient of pr on Wr + Vr is:

- Σ  d2ha (1 - w2) (1 - w’2)

Σ  d2 h2 (1 - w2) (1 - w’2)2

The coefficient of the regression of ps as a function
of Ws + Vs is:

- Σ  d2ha (1 - w2) (1 - w’2)

Σ  d2 h2 (1 - w2)2 (1 - w’2)

The existence of a relationship between the ge-
notypic value of the common parent and the sum between
variance and covariance in its array indicates the pres-
ence of unidirectional dominance. If the regression coef-
ficient is positive, deviations due to dominance are pre-
dominantly negative, contributing to a decrease in trait
expression. If the coefficient is negative, the deviations
of dominance contribute, exclusively or mostly, to an in-
crease in trait expression. If there is no dominance, the
graphic points of pr over Wr + Vr and ps over Ws + Vs are
(pr, (3/4)D(2)) and (Ps, (3/4)D(1)), respectively. When there
is dominance, but β1 = 0, dominance is bi-directional.
Points are randomly distributed on the p over W + V
graph.
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Nongenetic components of variation

Let yt be the average phenotypic value of a parent
and yrs the average phenotypic value of the hybrid be-
tween the rth and sth parents. Then,

yt = pt + et (et ∼ (0, E), independents)

yrs = frs + ers (ers ∼ (0, E’), independents)

pt and frs are genotypic values, and et and ers are
non-genetic effects. Letting et and ers be independent of
the genotypic values as well as between themselves,
then:

V(yr) = V(pr + er) = V0L0(1) + E

V(ys) = V0L0(2) + E

V(yt) = V0L0 + E

Cov(yrs’
 ys) = Cov(frs + ers’

 ps + es) = Wr

Cov(yrs’
 yr) = Ws

V(yrs) = Vr + E’

V(yrs) = Vs + E’

Cov(yrs’
 y.s) = Cov[frs + ers’

     Σ  (Frs + ers)] = W01(r)L1 + E’/n

Cov(yrs’
 yr.) = W01(s)L1 + E’/n’

And also,

E{[y .. -    (y. + y’)]2} = [mL1 -    (mL0 + m’
 
 )]2 +

+ E{[e.. -    (e. + e’)]2} = (1/4)h2 +      [(N / 4)E + E’],

with y.. =  Σ    Σ   yrs / nn’, y. =  Σ   yr / n and y’ =  Σ   ys / n’

If the phenotypic values of the parents and their
hybrids in the diallel table are averages of b replications,
the error mean square of the analysis of variance consider-
ing N parents, divided by b, is an estimator of E. The error
mean square of the analysis of variance of the nn’ hybrids,
divided by b, is an estimator of E’. If the parent and hybrid
means have the same precision, then Ê = Ê’, and both are
equal to the error mean square of the analysis of variance
of parents and F1 hybrids, divided by b.

Estimation of genetic and nongenetic
components of variation

This is carried out based on fitting the linear model
Y = Xβ + ε (ε ∼ (Φ,Cov(ε))), where:

Y’ = [V 0L0(1) V0L0(2) 
V0L0       W01(r = 1)L01 … W01(r = n)L01

V1(r = 1)L1 
…

 
V1(r = n)L1     W01(s = 1)L01 … W01(s = n’)L01

V1(s = 1)L1 
…V1(s = n’)L1     W01(r = 1)L1 … W01(r = n)L1

W01(s = 1)L1 … W01(s = n’)L1   [mL1 -    (mL0 + m’
  
)]2 E E’]

W01(r)L1 = (1/4)D(2) - [(n + 1) / 8n]Fr -

- (1/8n)   Σ   Fr’ + (1/4)H1(2) - (1/4)H2r + E’/n

W01(s)L1 = (1/4)D(1) - [(n’ + 1) / 8n’]Fs -

- (1/8n’)   Σ   Fs’ + (1/4)H1(1) - (1/4)H2s + E’/n’

β’= [D (1) D(2) D(3)    Fr = 1 … Fr = n     Fs = 1 … Fs = n’    H1(1) H1(2)

H2r = 1 … H2r = n    H2s = 1 … H2s = n’    h2 E E’]

For estimation purposes the ordinary (Cov(ε) = σ2I),
weighted or generalized least squares methods can be used
(Hayman, 1954; Mather and Jinks, 1974). Alternatively,
the maximum likelihood method (Hayman, 1960) can also
be used.

APPLICATION

In Table I is presented the grain yield per plant, in
grams, of nine common bean lines (Phaseolus vulgaris
L.) and 18 F1 hybrids. Six parent lines belong to one group
(group 1) and three to the other (group 2). The former group
includes cultivars with good performance in low tempera-
ture conditions. Parents and their hybrids were assessed
during fall-winter of 1992 at the Federal University of
Viçosa, in Viçosa, State of Minas Gerais, Brazil, using a
completely randomized design, with four replications. The
results of the regression analyses of Wr on Vr (r = 1, 2, ...,
6) and Ws on Vs (s = 1, 2 and 3) are in Table II. The exist-
ence of a relationship between covariance and variance in
the arrays shows that the yield per plant depends on non-
additive gene effects. As the regression coefficients are
statistically equal to one, the additive-dominant model is
suitable to describe the results. Tests of the hypothesis H0:
β0 = 0 indicate that, in the polygenic systems defined by
the two parent groups, dominance between nonfixed al-
lelic genes is, on average, complete.

r fixed

s fixed

r fixed

s fixed

r fixed

 1
 n

 n

r = 1

s fixed

 n

r’ = 1
r’ = r

L0

^ ^ ^ ^ ^

^ ^ ^ ^

^ ^ ^ ^

^ ^ ^ ^ ^ ^ ^ 1
 2

 n’

s’ = 1
s’ = s

.

 1
 2

. L0

 1
 2

 1
nn’.
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s = 1

 n

r = 1
.

 1
 2
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Estimation of genetic and nongenetic components
of variation was carried out considering two nongenetic
components and the ordinary least squares method. The
error mean squares of the analyses of variance consider-
ing only parents and only F1 hybrids were 8.79 and 19.20,
respectively. The estimates are presented in Table III. Di-
allel analysis indicated the presence of variability in the
two parent groups, with type I error probability of approxi-
mately 0.056 for group 2. Since D(1) - D(2) is positive (P =
0.09815), the genes that determine yield per plant are not
equally frequent in the two parent groups. Genetic vari-
ability is greater in group 1. Estimates of the mean values
of the allelic gene frequency products, in the two groups,
favor the previous inference. In group 1, there is evidence
that allelic gene frequencies are close to 1/2 (uv = 0.24).
In group 2, allelic genes have unequal frequencies (u’v’ =
0.17). Considering that mL0 - m’

  
 = 3.32 (0.01 < P < 0.05),

it can be concluded that yield-increasing genes have a fre-
quency less than 1/2 in the second parental group. In short,
the frequency of genes which increase trait expression is
approximately 1/2 in group 1 and less in group 2, which
explains the greater genetic variability found in the former.

Parent F values from one group allow parents to
be ranked according to the number of dominant genes they
carry, not fixed in the other parental set. Ranking group 1

parents, according to an increasing concentration of domi-
nant genes not fixed in group 2, the following order is
obtained: Ricopardo 896, Ouro, DOR. 241, Ouro Negro,
RAB 94 and Antioquia 8. Ricopardo 896, Ouro and DOR.
241 should have more recessive than dominant genes. Ouro
Negro should have, approximately, similar numbers of
dominant and recessive genes. RAB 94 and Antioquia 8
have more dominant than recessive genes. In group 2, the
variety Batatinha carries the largest number of dominant
genes, not fixed in group 1. Both BAT-304 and FT-84-
835 should have dominant and recessive genes in approxi-
mately equal numbers. Data indicate that recessive genes

Table III  - Estimates of the genetic and non-genetic components of
variation and of genetic parameters, in relation to grain yield of common

bean plants, in grams.

Parametera Estimate Standard deviation Probabilityb

D
(1)

9.53 2.47 0.00310
D

(2)
4.48 2.47 0.05630

D
(3)

10.82 4.66 0.02665
F

r = 1
-45.06 7.27 0.00040

F
r = 2

-11.39 7.27 0.16150
F

r = 3
25.97 7.27 0.00910

F
r = 4

-28.75 7.27 0.00550
F

r = 5
21.37 7.27 0.02170

F
r = 6

-30.87 7.27 0.00380
F

s = 1
-10.56 7.54 0.20420

F
s = 2

-8.11 7.54 0.31720
F

s = 3
17.31 7.54 0.05550

H
1(1)

18.94 9.35 0.04125
H

1(2)
13.56 8.43 0.07615

H
2r = 1

11.95 9.79 0.13085
H

2r = 2
5.10 9.79 0.30970

H
2r = 3

28.27 9.79 0.01170
H

2r = 4
5.89 9.79 0.28370

H
2r = 5

25.09 9.79 0.01870
H

2r = 6
6.49 9.79 0.26420

H
2s = 1

9.34 9.53 0.17990
H

2s = 2
4.23 9.53 0.33410

H
2s = 3

19.55 9.53 0.03965
h2 62.41 7.05 0.00005
E 2.20 1.75 0.12455
E’ 4.80 1.75 0.01425
F

(1)
-11.45 5.70 0.08470

F
(2)

-0.46 6.37 0.94560
H

2
12.88 6.35 0.04110

uv 0.24 - -
u’v’ 0.17 - -
h/d(1) 1.41 - -
h/d(2) 1.74 - -
k

D
/k

R
(1) 0.15 - -

k
D
/k

R
(2) 0.97 - -

(k+ - k-
-
)2/k 1.77 - -

R2 0.99 - -

auv: Average value of the allelic frequency products in group 1. u’v’: Aver-
age value of the allelic frequency products in group 2. h/d(1): Average
degree of dominance in group 1. h/d(2): Average degree of dominance in
group 2. k

D
/k

R
 (1): Proportion between dominant and recessive genes in

group 1. k
D
/k

R
 (2): Proportion between dominant and recessive genes in

group 2. (k+ - k-)2/k: Indicator of the direction of dominance. R2: Determi-
nation coefficient. bBased on the t-test with seven degrees of freedom.

Table II  - Summary of the regression analyses of W
r
 on V

r
 and of W

s
 on

V
s
, regression coefficient estimates and significance level of the test

of the hypothesis H
0
: β

1
 = 1a, in relation to grain yield of common

bean plants, in grams.

Mean square

Source of variation d.f. Group 1 Group 2

Intercept 1 25.26+ 6.51+

Regression 1 189.51** 25.34*

Errorb 4.42 0.06
Coefficient 0.74+ 0.86++

aUsing the t statistic, with four and one degrees of freedom (d.f.) for the
error in the analyses considering groups 1 and 2, respectively. bWith four
and one degrees of freedom in the analyses for groups 1 and 2, respec-
tively. ** P < 0.01; *0.01 < P < 0.05; +0.05 < P < 0.10; ++P > 0.10.

Table I - Grain yield per plant, in grams, of nine common bean
lines and their hybrids.

Parent

Parent BAT-304 FT-84-835 Batatinha
(1) (2)  (3)

6.10 4.48 9.54
Ricopardo 896 (1) 9.26 10.11 7.46 16.57
Ouro Negro (2) 8.23 9.48 11.67 15.89
Antioquia 8 (3) 14.77 17.96 18.45 15.29
DOR. 241 (4) 13.55 7.79 9.58 15.62
RAB 94 (5) 8.41 12.16 9.85 9.46
Ouro (6) 5.87 7.82 11.23 16.39

L0
^ ^
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generally act to decrease plant yield, while dominant ones
increase yield. This fact, established in the analysis of vari-
ance (not presented), seems to be corroborated by the esti-
mate of h2D(1)D(2)/H2D2

  
, which indicates unidirectional

dominance, despite its small magnitude. The regression
analyses of pr on (Wr + Vr) and ps on (Ws + Vs), however,
do not confirm the above information. The results of these
regression analyses, using the observed parent means as
the genotypic values, are in Table IV.

Estimates of the regression coefficients show the
presence of statistically nonsignificant positive unidirec-
tional dominance. This seems to indicate that many non-
fixed dominant genes act to decrease yield, although the
majority of them increase it. Estimates of the average de-
gree of dominance are larger than one, although previous
results indicate complete dominance. It is reasonable, there-
fore, to admit that they are statistically equal to one. As
there is evidence of complete dominance, estimates of the
proportion among dominant and recessive genes suggest
that the parents in group 1 have, on average, more reces-
sive than dominant genes, while in group 2 the parents
have, on average, the same number of recessive and domi-
nant genes. These results agree with those from the analy-
ses of the parent F values, as the majority of the parents in
group 1 have more recessive than dominant genes, while
in group 2 the majority have equal numbers of dominant
and recessive genes.

The estimated F value for group 1 indicates that
recessive genes, not fixed in group 2, are more frequent
than dominant alleles. Taking the previous results into
consideration, it can be concluded that this superiority is
small. The estimate of F(2) suggests that dominant and re-
cessive alleles, not fixed in group 1, are equally frequent
in group 2, which is inconsistent with previous results.
The presence of bi-directional dominance and fixed genes
in the two parent groups may cause conflicting results in
the genetic analysis. Many dominance component estimates
show, as expected, the presence of dominance in the poly-
genic system under study. H2 values of RAB 94, Antioquia
8 and Batatinha show that these genotypes are rare in their
respective groups. They carry the least frequent genes in

their respective groups which are not fixed in the other
group of parents. As already seen, they have more domi-
nant genes than other parents in their group.

The difference between H2 values of RAB 94 and
Antioquia 8 is nil (P = 0.30045), indicating that they have
similar genotypes, in regard to yield determining genes.
The cross between them should not result in relevant het-
erosis, although it may be carried out to combine its
nonfixed desirable genes in a single variety. As they have
many dominant genes, which are rare in their group and
not fixed in group 2, both can be used in crosses with the
Batatinha variety, of group 2, which also has many domi-
nant genes, rare in its group and not fixed in group 1. Es-
timates of specific heteroses show that RAB 94 and
Antioquia 8 genotypes are not completely distinct from
that of the variety Batatinha (not presented). The small
magnitude of the two specific heteroses, nil from a statis-
tical point of view, is not surprising, since these varieties
have more dominant than recessive genes. Values of the
varietal heteroses indicate that RAB 94 has more frequent
genes of group 2 than Antioquia 8, while Batatinha has
less frequent genes in group 1 than FT-84-835 and BAT-
304 (not presented).

Use of RAB 94 and Batatinha and/or Antioquia 8
and Batatinha as parents is justifiable if the objective of
the program is to obtain pure lines. This objective would
combine, in a single line, the favorable dominant genes
which are not fixed in the parents. The smaller variability
expected in the segregant generations derived from crosses
between Antioquia 8 and RAB 94 and, preferably, between
Antioquia 8 and RAB 94 with Batatinha could favor se-
lection of a line with superior gene combination, contain-
ing the favorable dominant and recessive nonfixed genes
from both parents. Crosses of RAB 94, Antioquia 8 and
Batatinha, with parents with many recessive genes, even
in the same group, should show high levels of heterosis,
due to their genotypic differences. If the objective is pro-
duction of hybrids, several crosses, such as Antioquia 8
with FT-84-835 or BAT-304 and Batatinha with Ouro or
Ricopardo 896 or Ouro Negro, may be considered. These
crosses could also be considered in programs for pure lines,
as there are various recessive genes that increase yield.
Due to the accentuated genetic variability expected in the
segregant generations of these crosses, it is necessary to
use large number of plants and/or families to increase the
probability of selecting a variety with a superior combina-
tion of genes.

RESUMO

Neste trabalho são apresentadas teoria e análise de
dialelos parciais, com base nos métodos propostos por Hayman
em 1954 e 1958. A análise dialélica com os dados dos pais e de
seus híbridos F

1
 possibilita uma caracterização detalhada dos

sistemas poligênicos sob estudo e a escolha de progenitores para
hibridação. A partir da estimativa de componentes genéticos e
não genéticos da variação e de parâmetros genéticos, a análise

(3)

Table IV - Summary, for each group of common bean lines, of the
regression analyses of the parent genotypic value on the sum of the

variance and covariance in its array, in relation to grain yield
per plant, in grams.

Mean square

Source of variation d.f. Group 1 Group 2

Regression 1 6.73++ 11.35++

Errora 12.97 2.00
Coefficient -0.10 -0.31

aWith four and one degrees of freedom (d.f.) in the analyses of group 1 and
2, respectively. ++P > 0.10.
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dialélica permite avaliar: a variabilidade genética em cada grupo;
as diferenças genotípicas entre pais de grupos distintos; se um
genitor tem genótipo comum ou raro no grupo ao qual não
pertence; se há dominância; a direção de dominância; o grau
médio de dominância em cada grupo; a importância relativa dos
efeitos médios dos genes e dos desvios de dominância em
determinar a característica; as freqüências de genes alélicos em
cada grupo; se os genes são igualmente freqüentes nos dois
grupos; o grupo em que os genes favoráveis estão em maior
freqüência; o grupo em que os genes dominantes são mais
freqüentes; o número relativo de genes dominantes e recessivos
em cada pai; se um genitor tem genótipo comum ou raro em
seu grupo, e as diferenças genotípicas entre os pais de um
mesmo grupo.
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