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Abstract

The Hardy-Weinberg law has been used widely for about one hundred years with little question as to the foundations
laid down by its originators. The basic assumption of random mating, that is choice of mates by a process akin to that
of a lottery, was shown to produce genotypic proportions following the “binomial-square” rule, the so-called
Hardy-Weinberg proportions (HWP). It has been assumed by many that random mating was the only way of pairing
genes capable of producing HWP. However it has been shown that HWP can be obtained and maintained by
non-random mating. The steps along the way to this revelation and some implications are reviewed.
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It is a strange fact that the most basic law of popula-
tion genetics, which is attributed to Hardy (1908) and
Weinberg (1908), is poorly understood by many scientists
who use it routinely. Support for this apparently extrava-
gant statement can be found in numerous textbooks and
web sites. It is unfair to take Hancock (2004), which ap-
pears to be an excellent monograph on its topic - plant evo-
lution - to illustrate the point. But, because it is such an
admirable book, it does provide a good example. In the sec-
tion entitled “Random Mating and Hardy-Weinberg Equi-
librium” on page 24 is the following statement: “What
these two men [Hardy and Weinberg] discovered mathe-
matically is that genotype frequencies will reach an equilib-
rium in one generation of random mating in the absence of
any other evolutionary force. The frequencies of different
genotypes will then depend only upon the allele frequen-
cies of the previous generation. If gene frequencies do not
accurately predict genotype frequencies, then plants are
crossing in a non-random fashion or some other evolution-
ary force is operating”. While some of the quoted text is
valid, the overall impression that random mating and
Hardy-Weinberg proportions (HWP) are inextricably
linked is not correct. Stark (2006, in press) shows that, pro-
vided the population has discrete and non-overlapping gen-
erations, HWP can be attained in one round of non-random
mating and that random mating is a single point in a contin-
uum of such possibilities. Furthermore Li (1988) and Stark
(2005) give mating schemes which show that HWP can be
maintained by non-random mating.

To illustrate the problem further, Hancock (p. 35)
writes “While the Hardy-Weinberg formula is very useful
in describing the completely randomized situation, it is a
rare natural population that is in fact in Hardy-Weinberg
equilibrium. More commonly, mating is not random and
the populations are subjected to other evolutionary forces,
such as migration. genetic drift and natural selection”. As
noted above, HWP are consistent with (some) non-random
mating.

The object of this paper is to trace some of the history
of basic population genetics to see how this misunderstand-
ing has arisen and to point out some of the misconceptions.
In the proceedings of the Mendel Centennial Symposium
sponsored by the Genetics Society of America, which was
held in 1965, Wright (1967) wrote: “It is not surprising that
the first attempt to formulate the statistical properties of
Mendelian populations and to reconcile the views of Galton
with those of Mendel was made by a biometrician, Yule
(1902). He showed that the unselected, randomly bred de-
scendants of a cross would maintain indefinitely the 1:2:1
ratio of F2. Castle (1903), in the course of a criticism based
on a misunderstanding of Yule’s postulates, worked out for
the first time the effect of selection in a Mendelian popula-
tion He also showed that if selection ceases, the composi-
tion of the randomly bred descendants remains constant
thereafter, with genotypic frequencies according to the now
familiar binomial-square rule. Unfortunately, he did not
stress this as a basic principle of population genetics, and it
did not attract attention. It is now known as the Hardy-
Weinberg law because of independent restatements by
Hardy and by Weinberg in 1908”. We see here not only
mention of the fore-runners of Hardy and Weinberg but
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also the emphasis on random mating as recently as the cen-
tenary of Mendel’s work.

Cotterman (1940) wrote: “the fact first noted by
Hardy (1908), that random mating produces an equilibrium
in the distribution of the three genotypes, AA, Aa, aa, the
frequencies of which are then proportional to the terms of
the squared binomial of the gametic proportions of the two
genes. The derivation also reveals the additional fact, later
noted by Wentworth and Remick (1916), that such an equi-
librium is reached in a single generation of random mat-
ing”. This quotation appears on page 198 of the reproduc-
tion of Cotterman’s thesis in Ballonoff (1974). That
Hardy-Weinberg proportions were reached in one genera-
tion of random mating was first made explicit in 1916, ac-
cording to Cotterman. As noted above, this is possible with
non-random mating also.

Dobzhansky (1998) contributed to the workshops on
the “Evolutionary Synthesis” held in 1974. His submission,
along with those of other attendants was published in 1980
and again in 1998. In his paper, which dealt with scientists
from the Soviet Union, he wrote: “The personal back-
grounds and the scientific traditions of this Anglo-Ame-
rican trinity [Fisher, Wright, and Haldane] were quite
different from Chetverikov’s, as well as from each other. It
is well known that Mendelism and genetics in general were,
by a singular miscomprehension, regarded as contradictory
to Darwin’s theory of natural selection in the early decades
of the twentieth century. The short but important theoretical
paper by Hardy in 1908 should have dispelled this miscom-
prehension, and in fact it served as a point of departure for
Chetverikov as well as for the other founding fathers (the
parallel work of Weinberg was not then considered)”. This
quotation illustrates the significance of the H-W law and
also the fact that Weinberg’s independent contribution was
not recognized until Stern (1943) drew attention to it. Even
then it was not universally known for Schmalhausen (1986,
p. 98) cites Hardy (1908) as the originator of the formula.
Schmalhausen’s (1986) text was translated with minor
changes from the original Russian manuscript available
around 1947. Also Malécot (1948) refers to “loi de Hardy”.

Hardy’s (1908) paper contains some questionable
statements. For example he wrote “suppose that the num-
bers are fairly large, so that the mating may be regarded as
random”. There is no necessary relation between popula-
tion size and randomness of mating. Presumably Hardy
wished to exclude genetic drift as a mechanism capable of
changing the status of the population.The genesis of the fal-
lacy that random mating was a necessary requirement for
the production and maintenance of Hardy-Weinberg pro-
portions may be due to Hardy himself, for he wrote “I have,
of course, considered only the very simplest hypotheses
possible. Hypotheses other than that of purely random mat-
ing will give different results”. As will be seen, this state-
ment is not generally true.

Weinberg (1908) invoked random mating in his study
of the inheritance of twinning in humans. The translated
version of his paper includes the following: “I have there-
fore tried to construct a formula for the frequency of domi-
nant and recessive traits among the mothers, daughters, and
sibs of persons affected with such traits of the same charac-
ter, under the assumption that absolute panmixis is pres-
ent”. As will be shown later, the kind of inference that can
be made validly, using the data which Weinberg collated,
depends critically on what assumption is made as to the
mating system which generates HWP.

Li (1988) made a valuable contribution when he
showed that Hardy-Weinberg (H-W) frequencies can be
maintained in large populations with non-random mating.
Crow (1988) made the following comment on Li’s article:
“we are still learning things about the Hardy-Weinberg re-
lationship. C.C. Li shows that random mating is a suffi-
cient, not a necessary condition for H-W ratios”. This fact
was noted by Stark (1977a) and is implicit in Stark (1977b).
However, to add weight to his model, Li attributed additive
genotypic values to male and female parents from which he
calculated that the coefficient of correlation between mat-
ing pairs is zero. In this paper it is shown that this arbitrary
assignment of values is questionable.

The origin of the confounding of random mating and
HWP can be traced to the (correct) principle enunciated by
Mendel that, in the formation of gametes, the genetic mate-
rial is halved and then restored to its full complement in the
production of offspring. It is not immediately obvious that,
in this sequence of events, the pair of uniting gametes may
be independent in a probabilistic sense while the genotypes
of its parents not be independent. There are numerous ex-
amples in the genetics literature where random union of
gametes and random pairing of parents are taken to be
equivalent. As will be seen, this is not necessarily so.

The next section contains a description of Li’s model.
That is followed by an analysis of dependence and inde-
pendence, as mentioned in the previous paragraph. Then
Li’s model is expressed in a canonical form which allows
an analysis of the assignment of genotypic values. The final
section reviews Weinberg’s (1908) study of twinning.

Li’s parametrization of non-random mating

Consider a population with respect to a single locus
having alleles A and B with respective frequencies q and p,
the same in males and females. Denote frequencies of geno-
types AA, AB and BB by f0, f1 and f2. Table 1 gives Li’s
(1988) symmetrical mating model which he introduces
with the remark: “When reciprocal crosses have the same
frequency, the general pattern will be symmetrical”. Thus
the roles of males and females can be reversed without
changing the model. This case is simpler than Li’s more
general model but is suitable for the present purposes. The
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3 x 3 matrix of cell frequencies will be denoted by [fij], i = 0,
1, 2; j = 0, 1, 2.

Both row totals and column totals give Hardy-Wein-
berg proportions: f0 = q2, f1 = 2pq, f2 = p2. Thus the parental
population is in H-W form and it is simple to show that the
distribution of genotypes among offspring is the same.
Note that f11 = 4f02.

Parameters a and b are constrained by the require-
ment that the elements of [fij] be non-negative. Thus, for ex-
ample, a cannot be less than -q4. It is convenient to replace
the symbol b by k, defined as k = b/a, in the section in which

Li’s model is analysed. The introduction of k entails a 0.
However, this is not a practical constraint since |a| can be
made arbitrarily small.

Randomness and independence

There exist many examples where the derivation of
the H-W distribution appeals to a random union of egg and
sperm. In fact, this is correct but, as Li has shown, not nec-
essarily because of random pairing of mates. This may be
the basic cause of the invalid claim that random pairing of
mates is a necessary condition for the existence of H-W fre-
quencies. Suppose that a given zygote was derived from an
egg of type A, a meaningful question is: what is the proba-
bility that this egg was fertilised by a sperm of type A?
Using the mating matrix [fij] of Table 1, by application of
the probability calculus, the required probability is found to
be equal to q. The probability that an egg is of type A is q, so
the joint probability is q2, thus deriving the H-W frequency
of offspring of type AA. Corresponding calculations pro-
duce the remaining H-W zygotic frequencies.

The preceding paragraph may be summarized in an-
other way. But first it is necessary to recall the definitions
of conditional probability and independence. Two events X
and Y are said to be independent if the joint probability of X
and Y, denoted Pr(XY), is equal to the products of the prob-
abilities of the separate events, that is Pr(XY) = Pr(X).
Pr(Y). This property of independence can be described in
another way through the conditional probability of X, given
Y, denoted Pr(X|Y). By definition, Pr(XY) = Pr(Y).
Pr(X|Y), so that independence of X and Y requires the iden-
tity Pr(X|Y) = Pr(X). Relating this to the derivation of the
probability of genotype AA in the previous paragraph, it can
be said that the union of egg and sperm is the joint occur-
rence of independent events. In other terms, egg and sperm
are said to pair `randomly’.

However, pairing of mates in the scheme given by Ta-
ble 1 is not random. As can be seen by looking along the
rows of the matrix, the conditional probabilities relating to
male type, given the type of female, are not identical to the
unconditional probabilities relating to male types, that is
the types of female and male mates are not independent.

The canonical form of Li’s model

It is instructive to examine [fij] through its canonical
form

fij = fifj(1 + �xixj + �yiyj), (i = 0, 1, 2; j = 0, 1, 2) (1)

Formula (1) is a particular example of the representa-
tion of a discrete bivariate probability distribution which
Lancaster (1969, p. 90) refers to as “Fisher’s Identity”.
Some important properties of this representation are given
below. An example of its use in classifying mating systems
is Stark (1980).

Without loss of generality take q in the interval

0 < q 1/2. Putting k = b/a, some simplification is achieved
by introducing the following symbols:

n = 1 + p

d = 1 + p(p-q) - 2q2k

r = � (p2 + q2 - 4q2k + 2q(1 + q)k2).

Then the terms in (1) are obtained from:

= a(p - q + 2qk - r)/(2p2q2)

= a(p - q + 2qk + r)/(2p2q2)

x2 = � (1/2q(n + d/r))/p

y2 = � (1/2q(n - d/r))/p

x0 = -p� (1/2q(n + d/r))/(qn) - Ik� (p(n - d/r))/(qn)

x1 = -p� (1/2q(n + d/r))/(qn) + Ik� (p(n - d/r))/(2pn)

y0 = -p� (1/2q(n - d/r))/(qn) + Ik� (p(n + d/r))/(qn)

y1 = -p� (1/2q(n - d/r))/(qn) - Ik� (p(n + d/r))/(2pn).

Ik is an indicator function defined as:

Ik = 1, k > 0; Ik = -1, k 0.

The vector of values {x0, x1, x2} will be denoted by x

and {y0, y1, y2} by y.
The connection between Li’s formulation and the ca-

nonical form is complicated. Therefore there is some value
in considering some special cases in order to illustrate in a
simpler way the connection and to reveal key properties of
the canonical form. If k = -p/(1 + q), then

� = -2a/(p2q(1 + q)), � = a/(pq2(1 + q)),

x0 = 0, x1 = -1/� (2q(1 + q)), x2 = p-1� (2q/(1 + q)).
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Table 1 - Li’s symmetric non-random mating model.

Male vs. female AA AB BB

AA q4 + a 2pq3 - a - b p2q2 + b

AB 2pq3 - a - b 4p2q2 + 4b 2p3q + a - 3b

BB p2q2 + b 2p3q + a - 3b p4 - a + 2b



y0 = -q-1� (p(1 + q)), y1 = y2 = -y0
-1.

For this case, ��� = -2q/p. Calculation shows that,
with respect to the H-W distribution, the mean of x and the
mean of y are each zero and the standard deviation of each
is one. Furthermore, with respect to the mating matrix [fij],

the correlation of x in females and x in males is � and the

correlation of y in females and y in males is �. The correla-
tion of x in females and y in males is zero. These are proper-
ties of the general form of Fisher’s Identity.

Narrowing this example further, when q = 1/3,
a = 2pq3 and k = -p/(1 + q),

� = -1/2, � = 1/2,

x0 = 0, x1 = -3� 2/4, x2 = 3� 2/4,

y0 = -2� 2, y1 = � 2/4, y2 = � 2/4.

This case illustrates readily another property of
Fisher’s Identity, namely that the regression of x values in

females on that of males is linear with coefficient equal to �
and the regression of y values in females on that of males is

linear with coefficient �. This property was the condition
taken by Hirschfeld (1935) as the starting point for investi-
gating a two-way contingency table of frequencies. He
reached essentially the same representation as Fisher’s
Identity.

As has been noted already, the case of Fisher’s Iden-
tity used here is special in that it is being applied to a sym-
metric matrix, the roles of males and females being ex-
changeable without altering the properties. In an example
used by Fisher (1940) and later by Maung (1942), where
Fisher’s formula is given, the object was to study the con-
nection between eye colour and hair colour in Scottish chil-
dren. They calculated sets of numerical values to stand for
the grades of hair colour and eye colour, one set for each.
That is they were dealing with two different but supposedly
related characters. Here, given a symmetric mating table,
two sets of values, x and y, are calculated for each sex, but
the same for each sex. Thus there is a difference from the
analysis of Li who assumed one set of additive values for
each sex.

A natural question to ask is “What is gained by intro-
ducing Fisher’s Identity?”. On the face of it, Li’s model is
very simple and shows very easily and generally how H-W
proportions can be maintained with non-random mating.
But Li went further and stated that the correlation between
mates is zero. He did this by assigning additive values to
genotypes, that is essentially 0 to type AA, 1 to type AB, and
2 to type BB. This is intuitively plausible and was used fre-
quently by Sewall Wright. However, there is no compelling
reason to assign additive values. The important point is

that, using Fisher’s Identity, the pair of conditions � = 0 and
x be a vector of additive values is true if and only if b = a

(k = 1). Then (1) reduces to:

fij = fifj(1 + �yiyj), (i = 0, 1, 2; j = 0, 1, 2), (2)

where � = a/(p2q2), and y = {p/q, -1, q/p}. Taking q 1/2, �
can take values in the interval (-q2/p2, q/p), the correspond-
ing interval for a being (-q4, pq3), as noted by Stark (2005).

Li’s assignment of additive values is purely arbitrary,
except in the sense that they are the count of genes of type B

in the respective genotypes, whereas x and y are intrinsic to
the structure of (1).

Weinberg’s analysis of twin data

Crow (1999) discussed the reasons for the relative ne-
glect of Weinberg’s work, noting inter alia that Weinberg
(1908) concluded that dizygotic twinning was inherited. I
show here that Weinberg’s analysis, though ingenious, can
be questioned on the ground that HWP can be maintained
with non-random mating. As will be seen, the relative pro-
portions of a particular phenotype among different catego-
ries of relatives may be confounded with non-random
mating parameters.

Weinberg selected a single locus model with either
dominant or recessive propensity to produce twins at a
higher than normal rate, which for convenience is referred
to here as a high propensity phenotype, denoted by A. He
calculated the proportions of high propensity versus normal
groups (B) among three types of relatives of high propen-
sity women: parents, children and sibs. Following Wein-
berg’s reasoning, but using Li’s mating model rather than
random mating frequencies as the basic mating system, the
probabilities relating to high propensity trait being domi-
nant are as follows:

among parents and children (of A mothers):

(q(1 + pq) - 1/2(a - b))/(q(1 + p)); (3)

among sibs:

(4q(1 + pq) + p2q2 - (2a - 3b))/(4q(1 + p)). (4)

The probabilities relating to high propensity trait be-
ing recessive are as follows:

among parents and children:

(q3 + 1/2(a - b))/q2 ; (5)

among sibs:

(q2(1 + q)2 + 2a - b)/(4q2). (6)

Each of formulae (3) - (6) gives the conditional prob-
ability that the particular relative has higher propensity to
have twins, given that the index mother has higher propen-
sity (A).

Weinberg used the differences between observed and
hypothetical rates in sibs and the other two categories of
relatives to support his case. However, the hypothetical dif-
ferences may depend on the values of a and b. To illustrate
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this with admittedly extreme choices of a and b, the differ-
ence in hypothetical rates can even be zero.

Bulmer (1970) reviewed data relating to the inheri-
tance of twinning in humans. It is impossible, in a few sen-
tences, to do justice to the thorough treatment of this
question given by Bulmer. He compiled tables of twinning
rates per thousand maternities among mothers of twins and
first degree relatives of such mothers and in the general
population. He found, for example, that the repeat dizygotic
twinning rate of high propensity mothers is nearly four
times the dizygotic twinning rate in the general population.

Bulmer used data from various sources including his
own collection and tables published by Weinberg in 1901
and 1909 from family registers in Stuttgart relating to
Württemberg. However he did not refer to Weinberg
(1908) which gives twinning rates in various categories.
Some of these are given in Table 2 where they have been
converted to rates per thousand maternities. The hypotheti-
cal rates are for the model of recessive inheritance preferred
by Weinberg and can be obtained from formulae (5) and (6)
by setting a = 0 and b = 0 and inserting estimated values of q

and twinning rates from observed twinning rates. Weinberg
inferred q = 1/2. Twinning fractions of 1/32.5 for high pro-
pensity mothers and 1/130 for the remaining mothers pro-
duce hypothetical rates close to Weinberg’s values which
are given in the third column of Table 2.

The final paragraphs of the translation of Weinberg’s
(1908) paper are:

“The situation found in the inheritance of twinning
best finds its explanation in the assumption that the trait for
twinning is inherited according to the Mendelian rule and is
recessive.

This investigation (a more thorough presentation
based on a new collection of material that I have in the
meantime obtained from another source will follow) may
show that one can gain an insight into the nature of human
inheritance by suitable changes in the investigative meth-
ods”.

Weinberg’s analysis of twinning rates depended on
the assumption of random mating used to construct the mat-
ing matrix. Li’s model shows that HWP can be found in the
general population with non-random mating. Formulae (3)
- (6) show that the values of parameters a and b are required
to calculate hypothetical twinning rates, for comparison
with observed rates. Weinberg’s analysis exploited the fact

that sibs may have zero, one or two genes at a locus identi-
cal by descent whereas parent and child have one. However
the mating system has bearing on the probabilities of the re-
spective events. This needs to be taken into account when
making inferences about the mode of inheritance of a trait.
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