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Abstract

We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO), named
Ant-Based Phylogenetic Reconstruction (ABPR). ABPR joins two taxa iteratively based on evolutionary distance
among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of
the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger
set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging
from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to or-
ders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when se-
quences are too closely related (e.g., population-level sequences). The phylogenetic relationships recovered at and
above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estima-
tion, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of
evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based al-
gorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.
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Introduction

Phylogenetic estimation from protein or nucleic acid

sequences can be performed using optimization and dis-

tance algorithms. Optimization algorithms using parsi-

mony, likelihood and Bayesian (BA) inference deal with

discrete characters and evaluate the fit of phylogenetic trees

under a specific optimization criterion. For example, Maxi-

mum Parsimony (MP) algorithms search for the tree that

minimizes the number of substitutions to explain the varia-

tion observed in the aligned sequences (Camin and Sokal,

1965; Eck and Dayhoff, 1966; Cavalli-Sforza and

Edwards, 1967; Fitch, 1971). Maximum Likelihood (ML)

algorithms search for the tree or set of trees (H) that maxi-

mizes the likelihood of generating the observed data (D)

given a model (θ) of nucleotide substitution or amino acid

replacement (Felsenstein, 1973, 1981; Felsenstein and

Churchill, 1996), or formally, P [D,θ⎪H]. BA inference, a

criterion used by ML algorithms, evaluates P[H ⎪D,θ], i.e.,

the probability of the hypothesis being correct, given the

data and model of substitution (Huelsenbeck et al., 2001).

Moreover, BA inference algorithms incorporate prior in-

formation regarding model parameters (such as tree topol-

ogy, rates of substitution, base frequency, among other) to

estimate P[H ⎪D,θ] (Huelsenbeck et al., 2001).

These optimization criteria have their own limita-

tions. Parsimony can be severely biased if homoplasies

(i.e., identical character states that do not share a common

ancestor) in the data set are common, leading to the “long

branch attraction” effect in which long, unrelated branches

tend to attract each other (Felsenstein, 1978). Likelihood

and BA inference, on the other hand, deal well with

homoplastic characters, however, they are computationally

expensive and the final outcome can be influenced by the

evolutionary model of DNA or amino acid substitution

used in tree searching (e.g., Posada and Buckley, 2004).

Additionally, choice of priors for BA inference (e.g.,

Alfaro and Holder, 2006) is a problem in itself; however, if

no prior knowledge is available for certain parameters, the

use of flat priors (e.g., all trees are equally likely a priori) is

always advised (Huelsenbeck et al., 2001).

Distance algorithms, such as Neighbor-Joining (NJ)

and Unweighted Pair Grouping Method with Arithmetic

means (UPGMA), convert aligned sequences into evolu-

tionary distances and search for a tree that best fits these

distances. These algorithms have been largely used for

phylogenetic estimation since they are computationally
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easy to implement and fast in building a tree. In contrast to

optimization algorithms for phylogenetic estimation that

evaluate several trees, distance algorithms only evaluate a

single tree. The computational efficiency and the adequate

phylogenetic trees produced by distance algorithms have

kept these algorithms in vogue, particularly for problems

including a large number of sequences or genomic data. If

distances can be estimated exactly (Saitou and Nei, 1987)

or if they harbor very small errors (Atteson, 1997), the cor-

rect phylogenetic tree (which would be obtained under a set

of assumptions if all the molecular data from the set of taxa

were available) can be obtained. However, the performance

of distance algorithms can be affected by the model chosen

for estimating distances.

Here, we propose a new distance algorithm, named

Ant-Based Phylogenetic Reconstruction (ABPR) that uses

the Ant Colony Optimization (ACO) metaheuristic (Dori-

go, 1992; Dorigo et al., 1996, 1999; Dorigo and Stützle,

2004). The ABPR algorithm combines aspects of the NJ al-

gorithm, parsimony and likelihood criteria to overcome the

limitations cited above. Briefly, the ABPR algorithm esti-

mates a phylogenetic tree based on pairwise distance, while

also taking into account the quality of the phylogenetic tree

according to the total length of multiple trees generated

concomitantly. We applied the ABPR algorithm to four

data sets of mitochondrial DNA varying in size and taxo-

nomic coverage, and compared its performance with that of

the NJ algorithm in terms of the total length of the produced

trees, and the parsimony and likelihood scores.

Ant Colony Optimization

Most of the ideas behind ACO come from the foraging

behavior observed in real ant colonies (Hölldobler and Wil-

son, 1990). When an ant moves through the environment and

discovers a food source, it deposits a chemical substance on

the ground, named trail pheromone. The pheromone leads

other ants from the nest to the food source. Other ants follow

the first ant’s pheromone trail and reinforce it by deposition

of additional pheromone. If there are several pheromone

trails leading to the same food source, ants will choose

probabilistically the path to follow, based on the pheromone

concentrations on the existing paths. Ants that traverse the

shortest path between a nest and a food source return to the

nest sooner than ants that choose longer paths. Thus, after

multiple traverses involving nest and food source, the short-

est path will have a stronger pheromone concentration than

longer paths. Consequently, ants will concentrate on this

path determining cooperatively the optimal path to the food

source. Ants operate under stigmergy (Grassé, 1959), a

mechanism of indirect communication that coordinates the

work of independent entities which have access only to local

information about the environment.

In ACO, “artificial” ants cooperate in finding “opti-

mal” solutions to relatively difficult discrete optimization

problems (Dorigo, 1992; Dorigo et al., 1996, 1999; Dorigo

and Stützle, 2004). These problems are represented as a set

of points (named states) and ants move through adjacent

states. Exact definitions of state and adjacency are prob-

lem-specific. As applied to phylogenetics, a state is defined

as the node visited by the ant and adjacency as the nodes

connected by branches.

The original ACO approach has additional features

that help to obtain satisfactory solutions to complex optimi-

zation problems. (1) Colony of cooperating ants: ants coop-

erate to find a good solution to the problem, sharing infor-

mation about the environment, which is read/written in the

local states as they visit them; (2) Pheromone trail and

stigmergy: while real ants change the environment when

depositing pheromone on the localities they visit, artificial

ants change some numerical information about current en-

vironmental conditions, which is stored locally in the prob-

lem states they visit; (3) Shortest path searching and local

moves: ants move through adjacent states of the environ-

ment, searching for the shortest paths joining the nest to the

food source; (4) Probabilistic transition policy: the ants’

actions are selected probabilistically based on local infor-

mation about the environment and its pheromone concen-

tration; (5) Discrete world: the ants’ moves consist of tran-

sitions between discrete states of the environment; (6)

Internal state: ants remember past actions; (7) Pheromone

laying: the amount of pheromone deposited by ants is a

function of the quality of the solution found, and the timing

of pheromone laying is problem-dependent; and (8) Extra

search capabilities: ants can use extra mechanisms, such as

local optimization (Gambardella and Dorigo, 1997), back-

tracking (Di Caro and Dorigo, 1997) and look-ahead ap-

proaches (Michel and Middendorf, 1998).

The ABPR Algorithm of Phylogenetic
Estimation

The algorithm we present here combines some char-

acteristics of conventional algorithms to improve the prob-

lem of phylogenetic estimation. The ABPR algorithm eval-

uates multiple trees as required by parsimony and

likelihood criteria. The metrics used to build a phylogenetic

tree is based on the evolutionary distance between each pair

of sequences and the pheromone concentration between

them. As in distance algorithms under the minimum evolu-

tion criterion, the best tree is the one with the shortest sum-

mation of branch lengths. The ABPR algorithm is com-

posed of a set of ants, moving independently and

concurrently, searching for the best tree. Similarly to the NJ

algorithm, ants join two species i and j in each movement

through the environment. Clusters can consist of two input

species (i and j), an input species (k) plus a newly merged

ancestor (i - j), or two newly merged ancestors (i - j, k - l).

The ABPR algorithm runs for a given number of iterations.

For each iteration, a fixed number of ants is generated, and

each ant builds a tree.
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Selection of the species and parameter values of the
ABPR algorithm

Input sequences or newly merged ancestors are con-

sidered as cities for the journey of ants. The problem is di-

vided into (n - 2) zones, where n is the number of species.

The first zone visited by the ants is named the entrance zone

and the last one, the end zone. Each zone consists of

(q (q - 1)/2) cities. At the entrance zone, q = n, and q is re-

duced to 1 at the end zone (q = n, n - 1, , 1) (Kumnorkaew et

al., 2004). For example, in a data set of 20 sequences, there

are 190 initial cities to start tree searching.

The ant chooses two species to be joined based on the

evolutionary distance and the pheromone concentration be-

tween them, regarding all pairwise comparisons. The num-

ber of candidate species joined in each iteration is

calculated as in Foulds and Graham (1982) based on the

Steiner’s problem (Kumnorkaew et al. 2004). The proba-

bility Pm(i,j) of the ant m to join the species i and j is calcu-

lated as:

P i j
i j d i j

u j d u j
m ( , )

[ ( , )] [ / ( , )]

{[ ( , )] [ / ( , )] }
=

τ
τ

α β

α β

1

1
u

∑ , (1)

where τ(i, j) is the pheromone trail between i and j; d(i, j) is

the evolutionary distance between i and j; α and β are con-

stants with limits (1 < α, β < 10), and u represents other spe-

cies of the environment. The constants α and β in Eq. (1)

represent the weight of the pheromone concentration and

the evolutionary distance, respectively, on the choice made

by ant m. We experimentally tested the best value for α and

β, which should provide the shortest tree, fixing one param-

eter while changing the other. We observed that this is

achieved when α = β = 2.0, (Figure 1).

Calculation of branch lengths

After species i and j are joined, the ABPR algorithm

creates a new node A, the common ancestor of i and j. The

lengths of the branches Ai and Aj, i.e., the branch length

from each species to the ancestral node, are calculated as in

the NJ algorithm. This calculation allows a direct compari-

son between the estimated tree length obtained by the

ABPR algorithm and the widely used NJ algorithm. Other

metrics could also be implemented if desired (Perretto and

Lopes, 2005). When using the equations applied by the NJ

algorithm to calculate branch lengths, the ABPR algorithm

recovers some negative branch lengths, which is biologi-

cally not plausible. This happens because the equations

used by the NJ algorithm are developed to deal with deter-

ministic choices; while the ABPR algorithm uses a proba-

bilistic model. Likewise, the NJ algorithm can also produce

negative branch lengths, which are usually set to zero, and

the difference is transferred to the length of the adjacent

branch. This procedure does not alter the phylogenetic tree

(Kuhner and Felsenstein, 1994).

Allowing the ABPR algorithm to recover negative

branch lengths can improve the searching of the space pa-

rameter by ants (Kumnorkaew et al., 2004). However, we

impose that positive branch lengths only would be esti-

mated in the ABPR algorithm. Hence, the lengths of

branches Ai and Aj, represented by CAi
and CAj

, respec-

tively, are calculated as:

C d
R

R RA ij

i

i j
i

=
+

* (2a)

976 Ant colony optimization in phylogenetics

Figure 1 - Tree lengths and standard deviations produced by the ABPR al-

gorithm for ϕ = 0.005, and varying α (top graphic), β (middle) and ρ (bot-

tom).



C d
R
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j

i j
j
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+
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where dij is the evolutionary distance between species i and

j and Ri is the sum of the evolutionary distances between i

and the other species; R di ik= ∑ and 0 < k < n. Similar to

the condition found in the NJ algorithm, if Ri > Rj, the

length CAi
will be higher than CAj

.

Distances and pheromone updating

When two species are merged into one, the distances

from others species to the newly merged cluster change.

Similar to the NJ algorithm, the ABPR algorithm estimates

the new distance as:

d
d d d

Ak

ik jk ij

=
+ −

2
, (3)

where dAk is the distance between the new node A and spe-

cies k.

If a negative branch length is produced for an ant m

using Eq. (3), the ant is eliminated from the environment

and its solution is not considered in the final decision to

choose the shortest phylogenetic tree. Only about 0.5% of

the generated ants had negative branch length, showing that

Eq. (3) is adequate for our purpose.

After calculating the new distance between each pair

of species, ant m selects two new species and/or clusters to

be merged following Eq. (1). These steps are repeated until

all ants have traversed all the (n - 2) zones of the environ-

ment, and each ant has built one phylogenetic tree. So, the

algorithm evaluates all trees generated and stores the value

of shortest total branch length in Lbest. Then, the pheromone

concentration over the pairs of species selected by ant m is

updated as:

τ τ( , ) ( , ) ( , )i j i j i j= + Δ (4)

and

Δ ϕ( , )i j
L

L

m

best

= , (5)

where Δ(i, j) is the pheromone increment between species i

and j; ϕ is an empirical proportionality constant (0 < ϕ < 1),

and Lm is the total length of the tree built by ant m. A small

value for ϕ avoids ants to be trapped in local minimum due

to high values of pheromone concentration over some pairs

of species (Figure 1). The pheromone evaporation rate ρ is

calculated as:

τ ρ τ( , ) ( )* ( , )i j i j= −1 , (6)

where 0 < ρ < 1 is the pheromone decay rate. The pheromo-

ne evaporation reduces stagnation of ants over a solution

that can be a local optimum. Solutions with negative branch

lengths are also considered in updating the pheromone con-

centration, since they are important for algorithm conver-

gence. Parameter ρ is tested for values between 0 and 1

(Figure 1). The results show that a high rate of evaporation

(0.9 or larger) largely reduced the pheromone concentra-

tion over the pairs of species, generating loss of information

acquired by the ants. On the other hand, a low rate of evapo-

ration (0.1 or smaller) does not reduce significantly the

pheromone trail and does not guarantee the exploration of a

wider range of solutions by the ants. When the algorithm

reaches the maximum number of iteration sets, the shortest

unrooted phylogenetic tree found, including its branch la-

bels and branch lengths, is presented.

Empirical Data Sets

We inferred the phylogenetic relationships using the

ABPR algorithm for: (a) a short fragment of 898 bp from

the mitochondrial genome of 12 species of primates

(Hayasaka et al., 1988); (b) 1757 bp for 19 almost-

complete mitochondrial genomes of birds (Pereira and

Baker, 2006); (c) 18,748 bp for 20 complete mitochon-

drial genomes of mammals (Cao et al., 1998; Perretto and

Lopes, 2005); and (d) 16,608 bp from 186 human mito-

chondrial genomes (Ingman and Gyllensten, 2006). The

phylogenetic relationships among the sequences included

in these data sets are relatively well known, which facili-

tates the evaluation of the APBR algorithm in recovering

“known” phylogenetic trees. Additionally, these data sets

cover a taxonomic range from population to ordinal lev-

els, allowing us to evaluate the utility of the ABPR algo-

rithm at various taxonomic levels and different degrees of

sequence divergence.

We retrieved sequences from the GenBank, in

FASTA format, and aligned them in ClustalX 1.83

(Thompson et al., 1997). Alignments were visually in-

spected for misaligned positions. We chose the best evolu-

tionary model of DNA substitution for each data set in

PAUP 4.0 (Swofford, 2001) and Modeltest 3.7 (Posada and

Crandall, 1998). For all datasets, the best fitting model is

GTR+I+G (general time-reversible model), assuming a

proportion of invariable sites (I), and gamma distributed

rate-variation across sites (G). The parameters of the model

were used to estimate evolutionary distances.

For each data set, we run the ABPR algorithm 30

times, each time starting with a random seed number to

avoid being locally trapped in the parameter space. We also

set 150 ants for 100 iterations per run. Number of runs, ants

and iterations were obtained empirically. We did not find

shorter trees by using a greater number of iterations or ants,

in agreement with results from a previous report applying

ACO under the minimum evolution principle for phylogen-

etic reconstruction (Catanzaro et al., 2007). In all runs of

the ABPR algorithm, the parameters were set to α = 2.0,

β = 2.0, ϕ = 0.005 and ρ = 0.8, as determined previously

(Figure 1).
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Performance Comparison Between ABPR and
the NJ Algorithms

Total tree length: the ABPR algorithm produced the

shortest tree for all data sets at or above the species level

(Table 1). For the 186-sequence data set representing hu-

man populations, the NJ algorithm produced the shortest

trees, and some branches had negative length. This happens

because distances (or branch lengths) are imposed to be

perfectly additive, i.e., they reflect the exact amount of

changes observed in nucleotide sequences (Felsenstein,

1988; Swofford et al., 1996). Although additive distances

have peculiar mathematical properties, they can be biologi-

cally unrealistic because branch lengths are usually un-

known parameters and need to be estimated from the data

(Swofford et al., 1996). Genetic distances represent the

number of substitutions (differences) between nucleotide

sequences, hence they cannot be negative. Further inspec-

tion of the distance matrix generated for each data set re-

vealed that the distances for the 186-sequence data set are

very similar to each other. Similar sequences may prevent

the ABPR algorithm to converge properly. Moreover, the

ABPR algorithm eliminates biological inconsistencies, by

imposing branch lengths to be positive following Eq. (2).

Therefore, this procedure can generate a tree longer than

that generated by the NJ algorithm.

Parsimony and likelihood scores

We also compared the trees produced by the ABPR

and the NJ algorithms according to their parsimony (num-

ber of steps) and likelihood (logarithmic scale) scores to

evaluate if their differences are statistically significant us-

ing the Kishino-Hasegawa (Kishino and Hasegawa, 1989)

test as implemented in PAUP. The parsimony and likeli-

hood scores for all 30 trees generated by the ABPR algo-

rithm and the tree produced by the NJ algorithm are calcu-

lated using PAUP 4.0 using the commands pscores and

lscores, respectively. The smaller the value of this score,

the more parsimonious/likely the tree is. Figure 2 summa-

rizes the results. The population data set including 186 hu-

man sequences are statistically more parsimonious and

more likely than any of the 30 produced by the ABPR algo-

rithm. For the primate data set, the NJ algorithm is statisti-

cally worse than 22 of the obtained by the ABPR algorithm.

For birds and mammals, the differences between some of

the trees produced by the ABPR and NJ algorithms cannot

be considered statistically significant. Yet, for the mammal

data set, the tree obtained by the NJ algorithm and one of

the trees produced by the ABPR algorithm had similar par-

simony scores. For the primate, bird and mammal data sets,

the likelihood score for the NJ tree is larger than the best

scores estimated for some of the trees produced by the

ABPR algorithm, however, the differences are not statisti-

cally significant according to the Kishino-Hasegawa test.

Phylogenetic Estimation

The shortest unrooted trees inferred by the ABPR al-

gorithm are shown in Figure 3. In general, the phylogenetic

relationships recovered by the ABPR algorithm are similar

to those relationships inferred based on optimization crite-

ria such as parsimony, likelihood and BA inference. How-

ever, as expected for a distance algorithm that converts

978 Ant colony optimization in phylogenetics

Table 1 - Total length of the trees produced by the ABPR and NJ algo-

rithms.

Data set NJ ABPR

Mean SD Median Min Max

12 primates 3.287 3.215 0.005 3.212 3.212 3.233

19 birds 2.949 2.960 0.008 2.959 2.940 2.974

20 mammals 4.564 4.580 0.007 4.579 4.559 4.593

186 humans -0.128 0.136 0.0004 0.135 0.135 0.136

Min and Max = the minimum and the maximum tree length found among

30 trees produced by the ABPR algorithm.

Figure 2 - Comparison of parsimony (leftmost column) and likelihood

(rightmost column) scores. Trees are ranked by increasing order of scores.

Filled circles are scores for each one of the 30 trees obtained by the ABPR

algorithm. Triangle represents score for the tree produced by the NJ algo-

rithm. Trees with score differences that are statistically worse according to

the Kishino-Hasegawa test are colored in grey and non-significant differ-

ences in black.



discrete character data to genetic distances, some unusual

relationships emerge (Nodes marked A-E in Figure 3). Op-

timization algorithms also fail to recover these same rela-

tionships with high bootstrap or posterior probabilities. For

the primate data set, both the ABPR and NJ algorithms re-

cover the same topology as in the original study (Hayasaka

et al., 1988), which used only the NJ algorithm. The sister

relationship between lemurs and tarsiers (Node A in Figu-

re 3) is still debated. Analysis of nuclear and mitochondrial

sequence data by distance and optimization algorithms

have also recovered lemurs and tarsiers as sister groups

(e.g., Eizirik et al., 2001), however, analysis of rare geno-

mic events such as insertion of Short Interspersed Elements

(SINEs) suggest a closer relationship between tarsiers and

other primates, in exclusion to lemurs (e.g., Schmitz et al.,

2005).

The data set for birds includes 19 species, most of

them belonging to the order Galliformes (chicken, turkeys,

and allies). The unrooted tree recovers the expected rela-

tionships at the ordinal level, and for most of basal relation-

ships within Galliformes (e.g. Groth and Barrowclough,

1999; Pereira and Baker, 2006; Crowe et al., 2006). How-

ever, the relationships among New World quails, guinea-

fowl and Phasianidae (pheasants, turkeys, grouse and

allies; Node B in Figure 3) are not concordant among the

ABPR (this study) and optimization algorithms (Pereira

and Baker, 2006; Crowe et al., 2006). Moreover, the ABPR

algorithm is not able to recover curassows as a sister group

to all other galliforms in exclusion to megapodes (Node C

in Figure 3), as expected based on mitochondrial and/or nu-

clear sequences (Groth and Barrowclough, 1999; Pereira

and Baker, 2006; Crowe et al., 2006). Optimization algo-

rithms have also had problems to solve the above men-

tioned relationships confidently, which are assumed to

have occurred in a short period.

Among mammals, the ABPR algorithm recovers

most of the expected ordinal relationships (Springer et al.,

2004; Murphy et al. 2007), with two exceptions. First,

Cetacea is placed as a sister group to Primates instead of

composing a monophyletic clade with Artiodactyla (Node

D in Figure 3), and second, Rodentia is positioned outside

placental mammals instead of being a sister group to Pri-

mates (Node E in Figure 3). These unexpected relationships

have proved hard to resolve with sequence data, likely due

to varying rates of evolution and short radiation time that

confound phylogenetic estimation (Springer et al., 2004).

Rare genomic events or complete genomes may be able to

solve these issues (Kriegs et al., 2006; Wildman et al.,

2007).

The tree produced by the ABPR algorithm recovered

for human sequences has too many terminals to be shown

here. However, the sequences are mostly grouped by geo-

graphic groups. Unfortunately, these sequences have not

been placed in a phylogenetic framework before, and hence

it is difficult to evaluate the performance of the ABPR algo-
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rithm in recovering a “known” phylogenetic tree in this

case. Additionally, as mentioned above, the ABPR algo-

rithm may not be appropriate for building phylogenetic

trees at the population level.

Conclusions and Future Research

Phylogenetic estimation is a major feature of evolu-

tionary biology, leading to the development of multiple

methods of tree reconstruction and more realistic models of

DNA evolution. As computer technology advances, phylo-

genetic trees are built for an ever increasing number of taxa,

longer sequences and even complete genomes. Because the

number of possible topologies increases exponentially with

the increase in number of sequences, the use of exhaustive

and even heuristic algorithms to search the parameter and

tree space becomes computationally intractable for optimi-

zation algorithms. Hence, distance algorithms are the strat-

egy of choice at the moment when dealing with large data

sets because a phylogenetic tree can be obtained within

minutes or hours.

Here, we present a promising distance algorithm of

phylogenetic estimation named Ant-Based Phylogenetic

Reconstruction (ABPR). This algorithm combines proper-

ties commonly used by distance and optimization algo-

rithms for phylogenetic estimation, allowing suboptimal

solutions to be evaluated before a final phylogenetic tree is

presented. As applied to the four data sets chosen for this

study, which are evolving under the GTR+I+G model of

substitution, it seems that the ABPR algorithm may be af-

fected by disparate rates of evolution, rapid radiation at

high-taxonomic levels, and by incomplete lineage sorting

due to genetic polymorphisms at the population level.

Although all these issues are known to reduce the phylo-

genetic signal and confound algorithms of phylogenetic es-

timation, the generalities of our findings need to be tested

for other sequences evolving under simpler models of sub-

stitutions. Additionally, low sequence divergence is

expected at the population level, and it seems to have pre-

vented the ABPR algorithm to converge to a single answer

because the distance matrix contains many cells that are too

similar and, therefore, uninformative regarding the rela-

tionships among members of the same population.

On the other hand, the ABPR algorithm performed

better than the NJ algorithm for phylogenetic estimation of

DNA sequences at or above the species level. The phylo-

genetic relationships recovered for primates, birds and

mammals are similar to those obtained by optimization al-

gorithms using parsimony, likelihood and BA inference.

The ABPR algorithm has the advantage over conventional

distance algorithms of evaluating multiple trees during tree

search. These positive results are in agreement with recent

findings that ACO-based algorithms are potentially com-

petitive with conventional distance algorithms (Perretto

and Lopes, 2005; Qin et al., 2006; Catanzaro et al., 2007).

In the future, ABPR and other ACO-based algorithms

can be improved to include, among others, measures of

clade support, such as bootstrap or jackknife values, use of

non-homogeneous models of DNA substitution, and con-

comitant tree search under multiple models of DNA substi-

tutions. Also, networks may be a better representation of

population-level relationships compared to phylogenetic

trees. Thus, an ACO-based algorithm to build genetic net-

works should be implemented to deal with incomplete lin-

eage sorting that affects the evolutionary relationships of

populations, subspecies and incipient species.
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