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Abstract

Understanding the mechanism(s) by which dopaminergic (DAergic) neurons are eroded in Parkinson’s disease (PD)
is critical for effective therapeutic strategies. By using the binary tyrosine hydroxylase (TH)-Gal4/UAS-X RNAi
Drosophila melanogaster system, we report that Dmp53, basket and drICE gene knockdown in dopaminergic neu-
rons prolong life span (p < 0.05; log-rank test) and locomotor activity (p < 0.05; �

2 test) in D. melanogaster lines chron-
ically exposed to (1 mM) paraquat (PQ, oxidative stress (OS) generator) compared to untreated transgenic fly lines.
Likewise, knockdown flies displayed higher climbing performance than control flies. Amazingly, gallic acid (GA) sig-
nificantly protected DAergic neurons, ameliorated life span, and climbing abilities in knockdown fly lines treated with
PQ compared to flies treated with PQ only. Therefore, silencing specific gene(s) involved in neuronal death might
constitute an excellent tool to study the response of DAergic neurons to OS stimuli. We propose that a therapy with
antioxidants and selectively “switching off” death genes in DAergic neurons could provide a means for pre-clinical PD
individuals to significantly ameliorate their disease condition.
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Introduction

Parkinson’s disease (PD) is a common progressive
neurodegenerative disorder affecting millions of people
worldwide (Alves et al., 2008). This neurological condition
is clinically characterized by motor disorders (Jankovic,
2008). Pathologically it is prominently characterized by
progressive loss of 50-70% of dopaminergic (DAergic)
neurons located in the substantia nigra, abnormal protein
aggregation, oxidative stress (OS) and mitochondrial dys-
function (Zhou et al., 2008; Cuervo et al., 2010; Xie et al.,
2010). Despite intense investigation, the molecular mecha-
nism(s) of cell loss is not yet fully established for target
therapeutic strategies (Dexter and Jenner, 2013). This un-
met need might partially explain the failure to establish de-
finitive anti-Parkinson drugs (Rodnitzky, 2012). Since
replacement of deficient dopamine constitutes a first-line
symptomatic treatment (Gazewood et al., 2013), there is an
urgent need to identify the molecular components involved
in the DAergic neuronal demise.

Paraquat (PQ, methyl viologen dichloride; or 1,10-
dimethyl-4,40-bipyridinium dichloride) is among the most
consistently associated environmental risk factors for PD
(Tanner et al., 2011; Wang et al., 2011). PQ might cause
neuronal deterioration via OS and mitochondrial damage
(Franco et al., 2010). Because ethical and policy issues lim-
itation in human research, most of the PQ toxic effects have
been studied in in vitro and in vivo models of PD. Spe-
cifically, our research group has shown that PQ induces
apoptosis - a type of programed cell death - by an OS-
mediated mechanism (Jimenez-Del-Rio and Velez-Pardo,
2008). The major molecular events involve generation of
O2

.-/ H2O2, activation of the transcription factor p53, JNK
(c-Jun N-terminal) kinase, mitochondria depolarization,
caspase-3 activation and chromatin condensation/DNA
fragmentation. Drosophila melanogaster has been used as
biological tool to inquire on PD process (for a review see
Muñoz-Soriano et al., 2011). Remarkably, PQ selectively
destroys DAergic neurons in the fly (Chaudhuri et al.,
2007), via OS and mitochondrial damage (Bonilla et al.,
2006; Hosamani and Muralidhara, 2013). In agreement
with this data, Vrailas-Mortimer et al. (2012) have shown
that some commercially available antioxidant supplements
confer significant protection to D. melanogaster against PQ
and H2O2. Furthermore, we have recently shown that
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polyphenols [e.g., gallic acid (GA), propyl gallate (PG),
epicatechin (EC)], which are well-known antioxidant and
gene modulators, were able to protect, rescue and restore
impaired movement activity in Drosophila induced by
acute (Jimenez-Del-Rio et al., 2010) or chronic (Ortega-
Arellano et al., 2011) PQ exposure. It has also been shown
that pharmacological inhibition of JNK increased life span
and locomotor activity (i.e., climbing) compared to flies
treated with PQ (Jimenez-Del-Rio et al., 2008). Taken to-
gether, these findings suggest that polyphenols might mod-
ulate life span and movement capabilities in D.

melanogaster exposed to PQ, and that JNK signalling
might be involved in those effects. Since there is compel-
ling evidence that the apoptosis pathway is conserved be-
tween Drosophila and mammalian cells (Oberst et al.,
2008; O’Riordan et al., 2008; Mollereau, 2009), and essen-
tial signalling molecules involved in the OS response in
mammalian cells, such as p53, JNK and caspase-3 are
highly similar to Drosophila Dmp53 (43%), basket (87%)
and drICE (61%), respectively (Reiter et al., 2001; Chien et

al., 2002), our hypothesis is that a decreased gene expres-
sion of Dmp53, basket and drICE in DAergic neurons
might have a beneficial impact on flies exposed to PQ in
terms of DAergic neurons survival, life span and climbing
capabilities. Moreover, transgenic flies treated with antiox-
idants might show even longer life span and functionality
than transgenic flies treated with PQ alone.

To evaluate this premise, a genetically amenable bi-
nary tyrosine hydroxylase (TH)-Gal4/upstream activator
sequences (UAS-X) RNA interference (RNAi) D.

melanogaster system was used, wherein each gene/protein
(X) can be silenced by RNAi (Kennerdell and Carthew,
2000) in DAergic neurons. RNAi provides an easy and
powerful technique to suppress gene expression by specific
removal of mRNA molecules transcribed from endogenous
genes (Dietzl et al., 2007). Therefore, RNAi could result in
a potent targeted therapeutic strategy in PD (Gavrilov and
Saltzman, 2012). Although systematic RNAi analyses have
revealed the role of cell death machinery components (e.g.,
caspases, and caspase-adaptors) in Drosophila eye devel-
opment (Leulier et al., 2006), and JNK and caspase-3 RNAi
experiments were done in wing imaginal discs (Umemori et

al., 2009), no data is yet available to determine whether
Dmp53, basket or drICE RNAi have any impact on life span
or movement activity in the fly.

The aims of the present investigation were to study
the life span and locomotor activity of Dmp53, basket and

drICE gene knockdown in D. melanogaster (e.g.,
TH-Gal4+/-, UAS-Dmp53 RNAi+/-; TH-Gal4+/-,UAS-basket

RNAi+/-; TH-Gal4+/-, UAS-drICE RNAi+/-) chronically ex-
posed to 1 mM PQ added to a 1% glucose feeding regimen
for 15 days, and to determine whether polyphenols such as
GA affect life span and locomotor activity of transgenic
flies exposed to PQ for 15 days. GA was selected based on
its effectiveness against PQ toxicity (Jimenez-Del-Rio et

al., 2010; Ortega-Arellano et al., 2011). Taken together,
our findings suggest that PQ induces DAergic neuronal de-
terioration in Drosophila by a p53-, JNK- and caspase-
3-dependent mechanism similar to that seen in human cells
(Jimenez-Del-Rio and Velez-Pardo, 2012). It is inferred
that silencing specific gene(s) involved in neuronal cell
death might constitute an excellent tool to study the re-
sponse of DAergic neurons to OS stimuli. Given that GA
proved to be an effective antioxidant against PQ, poly-
phenols therefore become an important source for long-
term prophylactic applications. Understanding the relevant
events of cell death in DAergic neurons is a necessary step
to better establish genetic and/or antioxidant therapy ap-
proaches in PD. Consequently, we proposed that a therapy
with antioxidants and selectively “switching off” of death
genes in DAergic neurons should provide a means for
pre-clinical PD individuals to significantly ameliorate their
disease condition.

Materials and Methods

Fly stocks and culture

Wild type Canton-S and fly lines were cultured under
standard conditions, as described elsewhere (Ortega-Arel-
lano et al., 2011). The genotypes were established by stan-
dard genetics. Fly Stocks obtained from the Bloomington
Stock Center (BSC) were: TH-Gal4 (#8848), and UAS-

GFP (#1521). UAS-dsRNAi (double-stranded RNA inter-
ference) lines obtained from the Vienna Drosophila RNAi
stock center (VDRC) were: UAS-drICE RNAi (#28006),
UAS-basket RNAi (#34138), and UAS-Dmp53 RNAi

(#10692). Male TH-GAL4+/+ flies were crossed with wild
type Canton-S females to obtain heterozygous female flies
(fF1, TH-GAL4+/-, Figure 1A). Male TH-GAL4+/+ flies
were crossed with UAS-X RNAi females (Figure 1B) to ob-
tain heterozygous female flies (fF1) (TH-GAL4+/-, UAS-

Dmp53 RNAi+/-). Since female flies were shown to be par-
ticularly sensible to PQ (Jimenez-Del-Rio et al., 2008), the
fF1 generation was collected under brief CO2 anesthesia
within 2 to 3 days after eclosion for further experiments.

Paraquat toxicity assay

The paraquat toxicity assay was performed on virgin
2- to 3-day-old fF1 flies collected overnight and kept on
regular food medium. Subsequently, 50 separated adult fF1
flies were starved in empty vials for 3 h at 25 °C. Then,
groups of five flies were placed in ten vials containing a fil-
ter paper (Bio Rad Mini Trans-Blot 1703932) saturated
with 1% glucose (55.5 mM glucose, Gluc) in distilled water
(dW) for 24 h. After this time, flies were starved in empty
vials for 3 h at 25 °C and transferred to vials with a filter pa-

per saturated with 200 �L (1 mM) PQ in Gluc for 15 days.

Filters were changed daily. Red food dye (8 �L/mL) (Red
food colour McCormick) was added to ensure homogeneity
and food intake. Living flies were counted daily.
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Antioxidant assay

The antioxidant assay was also performed on virgin
2- to 3- day-old fF1 flies collected overnight and kept on
regular food medium. Subsequently, 50 adult fF1 flies were
starved as described above and groups of five flies were
placed in ten vials containing a filter paper saturated with
1G in dW for 24 h. Then, flies were fed for 15 days with

200 �L Gluc solution containing 0.1 mM fresh polyphenol
solution (e.g., GA) and 1 mM PQ. Filters were changed
daily. Red food dye was added as described and survival
proportion and locomotion assay (%) were rated at each in-
terval of time.

Locomotion assay

The movement deficit assay was performed on
treated and untreated flies according to Ortega-Arellano et

al. (2011). Briefly, untreated or treated fF1 flies were
placed in empty plastic vials. After a 10 min resting period,
the flies were tapped to the bottom of the vials and the num-
ber of flies able to climb 5 cm in 6 s was recorded at each
time interval. The assays were repeated three times at 1 min
intervals. For each experiment, a climbing percent (%) was
calculated, defined as 1/2[(ntot + ntop - nbot)/ntot] x 100. Data

were shown as mean � standard deviation of the mean (SD).

A Chi Square (�2) test was performed to compare the
proportion of percentage between independent groups. Dif-
ferences were considered statistically significant at
p < 0.05.

Survival test

fF1 flies were treated chronically with PQ and poly-
phenol (GA) as described above for 15 days. Live flies were
counted daily in groups of five flies per vial. 50 flies per
treatment were used. Survival curves were plotted using the
Kaplan-Meier estimator. The statistical significance was
calculated using the log rank test implemented in the porta-
ble IBM SPSS statistics 19 package program. The null hy-
pothesis in all survival assays was that the exposure of
genetically modified Drosophila to PQ and/or GA made no
difference to the survival of the flies in the absence of these
reagents. Differences were considered statistically signifi-
cant at p < 0.05.

Results

The knockdown of Dmp53, basket and drICE genes
in dopaminergic neurons increases life span and
locomotor activity in Drosophila melanogaster
exposed to paraquat

We initially wanted to evaluate life span and locomo-
tor activity in D. melanogaster TH-Gal4+/-, (Figure 1A,
control) resulting from the cross between wild type Canton

S and homozygous TH-Gal4+/+, exposed to 1 mM PQ in the
experimental design (Figure 1C). As shown in Figure 2A,
the proportion of surviving TH-Gal4+/- flies treated with
PQ was significantly diminished compared to TH-Gal4+/-

flies. Indeed, while 50% of the TH-Gal4+/- flies perished by
day 14, theTH-Gal4+/- plus PQ group did so at day 5. The
percentage of locomotor activity (i.e., > 75% climbing per-
formance) remained normal in TH-Gal4+/- flies until day
15, whereas climbing performance was drastically dimin-
ished already by day 5 when they were exposed to PQ (Fig-
ure 2B). Interestingly, knockdown flies TH-Gal4+/-,
UAS-Dmp53 RNAi +/+ (Figure 2 A,B); TH-Gal4+/-, UAS-

bsk RNAi+/- (Figure 3 A,B), and TH-Gal4+/-, UAS- drICE

RNAi+/- (Figure 4 A,B) displayed survival percentages and
climbing capabilities comparable to control flies (TH-

Gal4+/-). However, in 50% of the transgenic flies treated
with PQ the percentage of survival slightly increased (by 2
days) and climbing performance moderately augmented
(by 3-5 days) compared to the control group (Figures 2, 3
and 4A,B).

Gallic acid (GA) increases life span and locomotor
activity in RNAi fly lines

Polyphenols have shown a high protective effect
against PQ in Drosophila (Jimenez-Del-Rio et al., 2010).
We, thus, investigated herein whether GA also had an effect
in genetically modified flies when exposed to 1 mM PQ for
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Figure 1 - Scheme for basic fly cross and selection. (A) TH-Gal4+/- flies
were obtained by crossing TH-Gal4+/+ (males, n = 10) and wild type Can-
ton S Drosophila melanogaster (females, n = 10). After five days of hus-
bandry, parental flies were discarded from the mating tubes. F1 flies were
then reared according to standard procedures. (B) TH-Gal4+/-, UAS-X

RNAi+/- flies, where X represent either Dmp53, basket or drICE gene, were
obtained by crossing TH-Gal4+/+(males, n = 10) and UAS-X RNAi+/+ (fe-
males, n = 10). For the sake of clarity, TH-Gal4+/- UAS-Dmp53 RNAi+/-

transgenic is shown as representative sample. (C) Schematic representa-
tion of feeding schedule, paraquat (PQ), and/or polyphenol (gallic acid,
GA) treatments in Drosophila melanogaster.



15 days. As shown in Figure 5, the presence of GA in the diet

of TH-Gal4+/-, UAS-Dmp53 RNAi+/- fly lines treated with PQ

increased the proportion of survival (Figure 5A) and climb-

ing performance (Figure 5B) compared to flies treated with

PQ alone. Noticeably, while 50% of the Dmp53 RNAi+/- flies

treated with PQ and GA survived when scored on days 10

and 13, respectively, 50% survival in the Dmp53 RNAi+/- fly

line treated with PQ alone could only be scored until day 7

and 10, respectively. Similar results were obtained with the
other RNAi transgenic flies (Table 1).

Discussion

By using a GAL4/UAS-X RNAi system, we could
show that Dmp53, basket and drICE gene knockdown pro-
longed life span (p < 0.05, log rank test) and locomotor ac-

tivity (i.e. climbing capability, p < 0.05, �2 test) in D.
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Figure 2 - Dmp53 gene knockdown increases life span and locomotor activity in Drosophila melanogaster exposed to paraquat. Female flies (n = 50 per
treatment) were treated as described in Materials and Methods. The graphs show that the proportion of survival (A) and climbing performance (B) were
significantly increased in TH-Gal4+/-, UAS-Dmp53 RNAi+/- gene knockdown flies compared to the TH-Gal4+/- fly line (control). Statistical comparisons

between untreated and treated flies showed: (A) a p < 0.05 by log-rank test and (B) a p < 0.05 by �2 test. Comparisons between treated gene knockdown
flies and the TH-Gal4+/- fly line showed statistical significance.

Table 1 - Dmp53, bsk and drICE gene knockdown increase the life span and locomotor activity of Drosophila melanogaster chronically exposed to
paraquat.

Line Noxious/
antioxidant

Treatment Concentration
(mM)

Effect on

Survival
(50%)a

K-M, p Climbing
(50%)b

�2, p

TH -GAL4+/-
PQ 1 0 14 � 0.6 1 vs. 2, p < 0.005 > 15 1 vs. 2, p < 0.05

PQ 2 1 5 � 0.3 2 vs. 4, p < 0.005 5 2 vs. 4, p < 0.05

GA 3 0.1 15 3 vs. 4, p < 0.005 > 15 3 vs. 4, p < 0.05

GA + PQ 4 0.1 + 1 11 � 0.4 4 vs. 8 12 16, n.s. 13 4 vs. 8 12 16, n.s.

UAS~Dmp53(RNAi)+/-

TH-Gal4+/-

PQ 5 0 15 � 0.4 1 vs. 5, n.s. > 15 1 vs. 5, n.s

PQ 6 1 7 � 0.4 2 vs. 6, p < 0.005 10 2 vs. 6, p < 0.05

GA 7 0.1 15 6 vs. 8, p < 0.005 > 15 6 vs. 8, p < 0.05

GA + PQ 8 0.1 + 1 10 � 0.5 7 vs. 8, p < 0.005 13 7 vs. 8, p < 0.05

UAS~ bsk(RNAi)+/-

TH-Gal4+/-

PQ 9 0 15 � 0.4 1 vs. 9, n.s. > 15 1 vs. 9, n.s.

PQ 10 1 7 � 0.5 2 vs. 10, p < 0.005 9 2 vs. 10, p < 0.05

GA 11 0.1 15 10 vs. 12, p < 0.005 > 15 10 vs. 12, p < 0.05

GA + PQ 12 0.1 + 1 10 � 0.5 11 vs. 12, p < 0.005 13 11 vs. 12, p < 0.05

UAS~drICE (RNAi)+/-

TH-Gal4+/-

PQ 13 0 15 1 vs. 13, n.s. > 15 1 vs. 13, n.s.

PQ 14 1 7 � 0.5 2 vs. 14, p < 0.005 8 2 vs. 14, p < 0.05

GA 15 0.1 15 14 vs. 16, p < 0.005 > 15 14 vs. 16, p < 0.05

GA + PQ 16 0.1 + 1 11 � 0.4 15 vs. 16, p < 0.005 13 15 vs. 16, p < 0.05

arepresents number of days at which 50% of total flies have been killed.
brepresents number of days at which 50% of climbing ability is impaired.

Abbreviations: Paraquat, PQ; Galic Acid, GA; K-M, Kaplan-Meier test; n.s., no significance; �2, Chi-square test.



melanogaster lines chronically exposed to PQ compared to
controls. These findings comply with the notion that altered
gene function, either by mutation or knockdown can modu-
late the susceptibility to a known environmental PD risk
factor such as PQ (Goldman et al., 2012). However, the PQ
toxic effect was dependent on the genetic background of
the exposed flies. One possible explanation for this finding
is that while some DAergic neurons can cope with a rise in
OS, others are more vulnerable (Wang and Michaelis,
2010). Because of such selective vulnerability, these neu-
rons are usually the first to exhibit cell death and functional
decline (i.e. climbing performance).

A second possibility is that some mutated (Goldman
et al., 2012) or experimentally knocked down gene(s) may
confer resistance to DAergic neurons against PQ-driven
OS, thereby increasing life span and locomotor activity.
Our data support the latter hypothesis. In fact, Dmp53, bas-

ket and drICE RNAi described herein in an in vivo system
appears to mirror the pharmacological inhibition of p53,

JNK, caspase-3 and cell survival previously seen in vitro

(Jimenez-Del-Rio and Velez-Pardo, 2008). Therefore,
these data suggest that PQ induces a molecular mechanism
of cell death in DAergic neurons that is similar in
Drosophila melanogaster, mice (Peng et al., 2004) and pri-
mary human cells (Jimenez-Del-Rio and Velez-Pardo,
2008, 2012).

This conclusion is strongly supported by several ob-
servations. First, the Drosophila genome contains all the
genes encoding canonical mitochondrial (Miwa et al.,
2003; Oberst et al., 2008) and cell death proteins (Shi,
2004; O’Riordan et al., 2008; Steller, 2008), suggesting
that they function in a similar manner as in mammalian
cells (see O’Riordan et al., 2008). Indeed, the Drosophila

Apaf-1 related killer (Dark) assembles in an apoptosome
that functions within the intrinsic cell death pathway simi-
lar to that seen in mammals (Yuan et al., 2011). During
apoptosis, the initiator caspase Dronc (ortholog of the
mammalian pro-caspase-9) is activated by the Dark

612 Gene knockdown affects Drosophila behaviour

Figure 3 - Basket gene knockdown increases life span and locomotor ac-
tivity in Drosophila melanogaster exposed to paraquat. Female flies (n =
50 per treatment) were treated as described in Materials and Methods. The
graphs show that the proportion of survival and climbing performance
were significantly increased in TH-Gal4+/-, UAS-bsk RNAi+/- gene knock-
down flies compared to the TH-Gal4+/- fly line (control). Statistical com-
parisons between untreated and treated flies showed: (A) a p < 0.05 by

log-rank test and (B) a p < 0.05 by �2 test. Comparisons between treated
gene knockdown flies and the TH-Gal4+/- fly line showed statistical signif-
icance.

Figure 4 - DrICE gene knockdown increases life span and locomotor ac-
tivity in Drosophila melanogaster exposed to paraquat. Female flies (n =
50 per treatment) were treated as described in Materials and Methods. The
graphs show that the proportion of survival and climbing performance
were significantly increased in TH-Gal4+/-, UAS-drICE RNAi+/- gene
knockdown flies compared to the TH-Gal4+/- fly line (control). Statistical
comparisons between untreated and treated flies showed: (A) a p < 0.05 by

log-rank test and (B) a p < 0.05 by �2 test. Comparisons between treated
gene knockdown flies and the TH-Gal4+/- fly line showed statistical signif-
icance.



apoptosome. This allows Dronc to cleave the execution
caspase DrICE (ortholog of the mammalian caspase-3),
which, via proteolytic cleavage of the Drosophila inhibitor
of caspase-activated DNase (dICAD, Mukae et al., 2000)
or caspase-activated DNase (CAD, Yokoyama et al.,
2000)), culminates in cell death. Second, stress-activated
intracellular response signaling molecules (e.g. MAP
kinase kinase kinase family proteins) are evolutionary con-
served and appears to mirror their mammalian counter-
parts. Indeed, TAK1 (transforming growth factor

�-activated kinase-1) activates JNK (Silverman et al.,
2003) probably via D-MEKK1, the Drosophila ortholog of
mammalian MEKK4/MTK1 (Ryabinina et al., 2006).
Third, pharmacological treatment with the JNK inhibitor
SP600125 has been demonstrated to protect and rescue
flies against acute PQ intoxication (Jimenez-Del-Rio et al.,
2008).

Interestingly, it has been shown that a Dmp53/JNK
(basket)-dependent feedback amplification loop is essential
for the apoptotic response to stress in Drosophila

(Shlevkov and Morata, 2012). It is therefore reasonable to
think that PQ might be able to trigger activation of Dmp53,
basket and drICE via O2

.-/ H2O2 signaling and cell death
(Steller, 2008) in a similar fashion as proposed in mamma-
lian cells (Jimenez-Del-Rio and Velez-Pardo, 2012). In ac-
cordance with this view, several reports have shown that
PQ induces activation of JNK associated with OS and cell
death in vitro and in vivo in mammalian DAergic neurons
(Chun et al., 2001; Peng et al., 2004; Klintworth et al.,
2007; Ramachandiran et al., 2007; Choi et al., 2010; Niso-
Santano et al., 2010). But these observations stand in con-
tradiction with others that have shown that overexpression
of JNK (Wang et al., 2003; Inamdar et al., 2012) or overex-
pression of JNK target genes, such as human peroxiredoxin
II (hPrxII) and Jafrac1 (a Drosophila homolog of hPrxII)
(Lee et al., 2009) confer protection against PQ-induced
toxicity in DAergic neurons of the fly. The reason for these
contradictory observations is not yet known. Therefore,
further research will be required to clarify this issue.

Finally, PQ induces PD-like clinical features in
Drosophila, including resting tremor, bradykinesis, and
postural instability with or without neuronal damage. A
similar PD-like phenotype can be generated by pharmaco-
logical inhibition of the tyrosine hydroxylase enzyme with

�-MT (alpha-methyl-tyrosine). In these experiments no
neuronal damage was observed, but functional impairment
(climbing performance) was evident (Bonilla-Ramirez et

al., 2011).

In conclusion, these data suggest that the knockdown
of specific gene(s) in the Drosophila brain may provide ba-
sic information about the mechanism(s) of cell death/sur-
vival and clinical behavior in human PD.

Polyphenols have been postulated as potential neuro-
protectant molecules in neurodegenerative disorders in-
cluding PD (Albarracin et al., 2012). In agreement with
others (Long et al., 2009; Peng et al., 2011) and our previ-
ous investigations (Jimenez-Del-Rio et al., 2010; Ortega-
Arellano et al., 2011), we found that GA prolongs life span
and climbing activity in wild type or knocked down D.

melanogaster. These data suggest that GA (and probably
other polyphenols) may protect DAergic neurons inde-
pendently of the genetic background of the fly, either via di-
rect interaction with ROS, enzymes, receptors and/or tran-
scription factors (Fraga et al., 2010), or through antioxidant
gene regulatory mechanisms (Kim et al., 1997; Peng et al.,
2011). Our findings suggest that GA can protect DAergic
neurons against PQ. Consequently, this polyphenol is capa-
ble of modifying the life span and locomotor capabilities of
flies exposed to OS stimuli.

In summary, induced RNAi of specific pro-apoptotic
genes in DAergic neurons in D. melanogaster increased
survival and climbing performance under PQ treatment.
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Figure 5 - Gallic acid (GA) increases survival (A) and locomotor activity
(B) in gene knockdown Drosophila melanogaster lines exposed to
paraquat. Female flies (n = 50 per treatment) were treated as described in
Materials and Methods. The graphs show that the proportion of survival
(A) and climbing performance (B) were significantly increased in
TH-Gal4+/-,UAS-Dmp53 RNAi+/- flies treated with (1 mM) PQ and
(0.1 mM) GA. Similar results were obtained with TH-Gal4+/-, UAS-bsk

RNAi+/- and TH-Gal4+/-, UAS-drICE RNAi+/- flies (Table 1). Statistical
comparisons between untreated and treated flies showed: (A) a p < 0.05 by

log-rank test and (B) a p < 0.05 by �2 test. Comparisons between gene
knockdown flies treated with GA plus PQ, and those treated with PQ alone
showed statistical significance.



Since polyphenols such as GA displayed antioxidant ca-
pacity, they may certainly contribute to develop nutritional
strategies oriented towards preventing PD. Our data sug-
gest that pharmacologically targeted proteins or knock-
down of critical death signaling genes, such p53, JNK and
caspase-3 in DAergic neurons, together with antioxidant
exposure, may retard neural deterioration or neuronal loss,
thereby, restoring or prolonging locomotor activity in PD
patients. In addition, our in vivo data on flies link directly to
in vitro work done on OS-induced cell death in mammalian
cells (Shi, 2004; O’Riordan et al., 2008; Steller, 2008;
Jimenez-Del-Rio and Velez-Pardo, 2012). Understanding
the mechanism(s) by which dopaminergic neurons are
eroded in PD is critical for the development of effective
therapeutic strategies.
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