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Abstract

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 
(SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. 
The disease, which emerged in China’s Wuhan province, had its first reported case on December 29, 2019, and 
spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak 
a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new 
drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this 
pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and 
replication or interfere in the patients’ overreaction and immunopathology. Moreover, nanotechnology could be an 
approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use 
or full authorization in one or more countries, and others are being developed and tested. This review assesses the 
different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches 
by the human and viral genetic variability.

Keywords: COVID-19, therapeutic interventions, global health treat, virus diversity.
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Introduction
The scientific community considers the COVID-19 

caused by the new coronavirus SARS-CoV-2 as the deadliest 
pandemic in recent human history. SARS-CoV-2 is a virus of 
the family Coronaviridae of the genus Betacoronavirus, with 
the subgenus Sarbecovirus. Many coronaviruses have been 
identified in several animal species, of which six infect human 
hosts, including the severe acute respiratory syndrome-related 
coronavirus (SARS-CoV-1) and the Middle East respiratory 
syndrome coronavirus (MERS-CoV) (Dietz et al., 2020; 
Guo et al., 2020). The genome of the new coronavirus was 
fully sequenced (NCBI Reference Sequence: NC_045512.2) 
(Wang et al., 2020). Its sequence presents about 82% identity 
to the bat SARS-like coronavirus WIV1 (bat SL-CoV-WIV1, 
GenBank: KF367457.1), and more than 85% identity with 
the bat SARS-like coronavirus ZC45 (bat SL-CoV-ZC45, 
GenBank: MG772933.1) (Li X et al., 2020; Yu et al., 2020).

SARS-Cov-2 is an enveloped, non-segmented positive-
sense RNA virus with prominent stick-shaped protruding 
particles in their outer membrane (Peng et al., 2020; Yin 
et al., 2020). Similar to SARS-CoV-1 and MERS-CoV, 
the SARS-CoV-2 genome encodes nonstructural proteins 
(NSPs, such as 3-chymotrypsin-like protease, papain-like 
protease, helicase, and RNA-dependent RNA polymerase), 
structural and accessory proteins (Li Q et al., 2020). Among 
NSPs, NSP1 is the first protein of the polyprotein of SARS 
CoV-2 and a leader protein, which acts as a potent inhibitor 
of gene expression of the virus carrier (Huang et al., 2011). 
Nonstructural protein 2 (NSP2) binds two other host proteins, 
prohibitin 1 and prohibitin 2 (PHB1 and PHB2), disrupting 
the host cell environment (Cornillez-Ty et al., 2009). NSP3, 
the papain-like proteinase protein, has multiple functions 
and is considered the most important protease of the virus 
(Báez-Santos et al., 2015). 

This new coronavirus has four major structural proteins: 
the spike (S), small envelope (E), and membrane (M) 
glycoproteins, and nucleocapsid (N) protein, besides several 
accessory proteins. The trimeric S protein is indispensable for 
virus-cell receptor interactions during viral entry (Lu et al., 
2020; Walls et al., 2020). SARS-CoV-2 targets cells through 
the S protein, which binds to the human angiotensin-converting 
enzyme 2 (ACE2) receptor and employs the cellular serine 

protease TMPRSS2 for S protein priming (Datta et al., 2020; 
Hoffmann et al., 2020; Letko et al., 2020; Tai et al., 2020). 
Notably, the ACE2 receptor is expressed in various tissues 
and organ systems throughout the body, including the central 
nervous system, gastrointestinal system, heart, lung, testes, 
and kidney (Baig et al., 2020; Zhang et al., 2021). In fact, in 
addition to oropharyngeal swabs, the viral RNA has also been 
detected in blood, urine, facial/anal swabs, semen, and vaginal 
secretion, suggesting other potential means of transmission 
(Peng et al., 2020). Ultimately, the S protein binding to the 
ACE2 receptor triggers a cascade of events leading to the 
fusion and releasing of the viral RNA genome into the host 
cell. The nonstructural proteins are subsequently synthesized 
to encode the viral replicase-transcriptase complex. The viral 
RNA is then synthesized by RNA-dependent RNA polymerase 
(Chen Y et al., 2020; Letko et al., 2020). Further, when the 
virus is in the cytosol, the non-structural viral proteins (nsp) 
1-16 are produced and catalyze replication of the viral RNA 
genome, and inhibition of the host’s innate immune response 
(Thiel et al., 2003; Gildenhuys, 2020). The Mpro or NSP5 
protease mediates the cleavage of the viral replicative proteins, 
RNA-dependent RNA polymerase (RpRp) and helicase (HEL) 
(Ziebuhr et al., 2000).

SARS-CoV-2 has one of the hardest outer protective 
shells among all coronaviruses. This feature is believed 
to result in more stable viral particles, resulting in greater 
resilience in body fluids (Goh et al., 2020). Another relevant 
and recurrent challenge imposed by this pandemic, is the 
emergence of distinct new-high transmissible variants around 
the globe; so far, five variants of concern (VOC) have already 
been identified, B.1.1.7, detected first in the UK, B.1.351, 
initially detected in South Africa, B.1.1.28.1 (also known as 
P.1), first detected in Brazilian travellers in Japan, and more 
recently, B.1.427 and B.1.429, identified in USA (Centers 
for Disease Control and Prevention, CDC, 2021). These new 
variants prevent the body’s immune response by selecting and 
excluding pieces of the virus’s genetic sequence. In this sense, 
there was a need for further studies on the pathogenicity and 
replication of SARS-CoV-2. 

Regarding the diagnostic tools, the highly specific 
reverse-transcriptase polymerase-chain reaction (RT-PCR) 
technology is the gold standard test for COVID-19 and data 
from epidemiological evidence and clinical manifestations 



Figueiredo et al.4

﻿

combined with radiological images, such as computer 
tomography (CT), also have critical diagnostic value for 
COVID-19 (Li X et al., 2020). Clinically, COVID-19 
presents a myriad of possible symptoms and outcomes, 
from asymptomatic carriage, flu-like symptoms including 
cough, fever, general weakness, myalgia, pneumonia-like 
characteristics, and respiratory failure requiring mechanical 
ventilation (Itelman et al., 2020). Although there are studies that 
point out that COVID-19 manifests itself as a respiratory tract 
infection, rising data have been demonstrating that COVID-19 
should be treated as a systemic disease, involving the most 
diverse systems of the human body, such as gastrointestinal, 
cardiovascular, respiratory, renal, neurological, immunological 
and hematopoietic (Driggin et al., 2020; Mehta et al., 2020). 

The transmission patterns of SARS-CoV-2 and its 
pathogenicity motivates the scientific community to work 
against the clock to improve the diagnostic, preventive and 
therapeutic management of the disease, and to identify the 
genetic risk factors. There is no current evidence to recommend 
any specific anti-SARS-CoV-2 treatment for patients with 
suspected or confirmed COVID-19. Diverse therapeutic 
interventions are being evaluated in clinical trials, and new 
approaches are being proposed regarding pharmacological 
therapy for COVID-19 (Saber-Ayad et al., 2020). 

In the light of the actual scenario, the repurposing of 
drugs, the development of novel effective immunotherapies, 
and safe and effective long-lasting vaccines against the 
SARS-CoV-2 are essential strategies for coping with this 
pandemic. In this review, we aim to discuss the current status 
of therapeutic interventions against COVID-19 (Figure 1), 
highlighting them from a mechanistic point of view considering 
the role of microRNAs, viral characteristics, and host genetic 
determinants, as well as the feasibility of the available drugs. 
A review of the current research on these topics may help 
guide strategies to address the current COVID-19 pandemic 
and prepare us for future challenges.

Genetic basis of COVID-19 clinical phenotypes
The clinical heterogeneity observed in COVID-19 most 

likely results from the interaction of the immune responses and 
comorbidities presented by patients. The genetic background 
of patients certainly plays an essential role in this regard. 
Genetic variants of the cellular components that allow the 
interaction of the viral particle with the host cell and its 
entry are the most obvious candidates for investigation. 
Moreover, many of the components of the human innate and 
adaptive immune responses present genetic variants that 
may have functional impact. The genetic variability of the 
SARS-CoV-2 may provide additional factors modulating the 
disease manifestations (Hofmann et al., 2004; Li W et al., 
2005, 2007; Cao Y et al., 2020; Pinto et al., 2020). Besides, 
hormonal factors inherent to sex can influence the risk of 
mortality in cases positive for SARS-CoV-2. Karlberg et al. 
(2004) studied the mortality rate from the Hong Kong SARS 
epidemic and observed a significant difference between men 
(21.9%) and women (13.2%). Coincidence or not, the ACE2 
gene is located on the X chromosome (Xp22) (Li et al., 2003). 
Oophorectomy or treatment of mice with an estrogen receptor 
inhibitor resulted in increased mortality in females infected 
with SARS-CoV-1 (Channappanavar et al., 2017). The other 
research front has concentrated efforts on the characterization 
of the different strains of SARS-CoV-2 to establish the viral 
subtypes and analyze the genetic variants associated with the 
different clinical phenotypes of COVID-19. In this case, the 
genomic regions whose products are responsible for the entry 
of SARS-CoV-2 in the host cells have been considered the 
principal candidates (Channappanavar et al., 2017; Benvenuto 
et al., 2020; Bezerra et al., 2020; Coutard et al., 2020; Licastro 
et al., 2020; Lu et al., 2020; Rehman et al., 2020; Sah et al., 
2020; Shereen et al., 2020; Zhao et al., 2021). The analysis 
of a specific genomic signature of the SARS-CoV-2 strains 
can help in understanding the viral evolution since the first 

Figure 1 – Main routes for therapeutic intervention of the COVID-19. The article discusses four approaches that are being used in an attempt to treat 
patients with severe clinical evolution.
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case reported in China (Fan et al., 2020). A computational 
tool was applied to identify and track numerous strains of 
SARS-CoV-2 circulating on different continents, especially 
those isolated from hospitalized patients, whether or not they 
needed intensive care and pulmonary ventilation (Zhao et al., 
2021). The authors used a public database containing 4087 
SARS-CoV-2 sequences and were able to define at least ten 
strains that infected patients in the United States, realizing that 
some of them are the same found in Asia and Europe. Such 
reports can help projects aiming to correlate SARS-CoV-2 
strains with the clinical evolution of hospitalized patients. 

Genetic diversity of the SARS-CoV-2

RNA viruses present higher mutation rates than 
DNA viruses, especially the single-stranded RNA (ssRNA) 
viruses, such as the SARS-CoV-2 (Peck and Lauring, 2018), 
although the SARS-CoV-2 and other related viruses perform 
proofreading during RNA replication, differently from most 
other RNA viruses (Romano et al., 2020). Data from the Global 
Initiative on Sharing All Influenza Data (GISAID) (Elbe and 
Buckland-Merrett, 2017) have indicated that the SARS-CoV-2 
mutational rate (Shen Z et al., 2020) was similar to other 
coronaviruses (Eckerle et al., 2010; Son et al., 2020). The 
single nucleotide polymorphisms (SNPs) are the most frequent 
variants in the genome of the SARS-CoV-2 and are considered 
the leading cause of the genetic diversity and evolution of the 
virus, besides its virulence and transmissibility (Yin, 2020). 
The SNPs can be found in both coding and non-coding regions 
of the viral genome. SNPs located in coding regions have a 
high potential to contribute to the classification of new strains 
of SARS-CoV-2, calculate the rate of infection, and design 
vaccines and define effective doses for different population 
groups (Saha et al., 2020). One study carried out with virus 
isolates from Europe has shown that SNPs are more frequent 
in proteins related to viral replication (RNA polymerase) 
and ACE2 binding regions of the S protein. These genetic 
variants have been previously associated with the effectiveness 
of vaccines (Yin, 2020). Studies in other populations have 
described SNPs in the genes encoding NSP-2, and also RdRp 
and the S protein (Tabibzadeh et al., 2020).

The SARS-CoV-2 evolves in vivo after infection, which 
may affect its virulence, infectivity, and transmissibility (Shen Z 
et al., 2020). Indeed, several studies have analyzed the 
mutational profile of interhost and intrahost single nucleotide 
variants (iSNV). The analysis of large datasets has shown that 
SARS-CoV-2 presented a more significant proportion of G>T 
changes in both iSNVs and iSNPs compared to SARS-CoV-1 
and MERS. Interestingly, the mutational profile of the iSNVs 
was more similar among SARS-CoV-2 and MERS-CoV 
than SARS-CoV-1 (Sapoval et al., 2021). Altogether, the 
data presented above indicated that genetic variations in the 
SARS-CoV-2 genome sequence could be critical to assist in the 
definition of the virus transmission pattern and to control the 
infection outbreak, as well as for epidemiological monitoring 
and tracking of the virus. 

The ∆382 corresponds to the deletion of the nucleotide 
in the position 382 which truncates the ORF7b and removes 
the ORF8 transcription-regulatory sequence. This variant 
is associated with milder illness compared to the wild-type 

virus, probably due to reduced cytokine release during the 
acute phase of the disease. The mechanism of this attenuated 
variant suggests that ORF8 can be a target for therapeutic 
intervention (Young et al., 2020). Conversely, SARS-CoV-2 
that bears the D614G mutation in the S protein is associated 
with a higher case fatality rate (Becerra-Flores and Cardozo, 
2020), a fact that should be considered for design of therapeutic 
antibodies and prognosis. 

Genetic diversity of the human host

Viral targets in the host cells, such as the ACE2 and 
TMPRSS2, have been considered molecular markers to 
determine the genetic susceptibility or resistance to COVID-19 
(Mohammadpour et al., 2021). Several studies have shown 
that the presence of polymorphisms in the ACE2 gene can 
affect: (i) the modulation of intermolecular interactions with 
the SARS-CoV-2 S protein (Benetti et al., 2020; Gibson et al., 
2020; Hussain et al., 2020; Lippi et al., 2020); (ii) the binding 
to the viral S protein (Li, Q et al., 2020; Stawiski et al., 2020); 
(iii) the structure and stabilization (Benetti et al., 2020), and 
the expression of the ACE2 receptors (Badawi, 2020; Cao Y  
et al., 2020; Delanghe et al., 2020). ACE2 variants usually 
alter the interaction between host cells and SARS-CoV-2 by 
showing lower affinity to the virus proteins that bind host 
cells’ surface, thus conferring decreased susceptibility to 
COVID-19 (Stawiski et al., 2020).

ACE2 expression differs on the basis of the biological age 
and sex of each individual (Goren et al., 2020; Ovsyannikova 
et al., 2020), and also according to the different geographic 
and ethnic distribution of the COVID-19 patients (McCoy et 
al.,2020; Sun et al., 2020). A large number of studies have 
described SNPs in patients of distinct countries affecting the 
molecular mechanisms cited above (Badawi, 2020; Benetti et 
al., 2020; Cao Y et al., 2020; Delanghe et al., 2020; Gibson 
et al., 2020; Hatami et al., 2020; Hussain et al., 2020; Lippi 
et al., 2020; Stawiski et al., 2020; Yamamoto N et al., 2020). 
According to Alifano et al. (2020), these polymorphisms could 
explain in part the differences currently observed in COVID-19 
incidence between countries around the world, despite the 
globalization of exchanges and travels. A gene homologous to 
ACE2, the human ACE1 gene that is mapped on chromosome 
17, presents a polymorphic insertion (I) or deletion (D) of a 
287-base pair (bp) Alu repeat sequence in intron 16 (Rieder 
et al.,1999), that has been shown to impact susceptibility to 
the disease as well as the frequency of recoveries and deaths 
(Delanghe et al., 2020; Hatami et al., 2020; Yamamoto N et 
al., 2020; Calabrese et al., 2021). 

Other studies have reported the association of 
polymorphisms in other protein cell receptors, such as the 
TMPRSS2 receptor (Asselta et al., 2020; Hou et al., 2020; 
Russo et al., 2020; Senapati et al., 2020; Torre-Fuentes et 
al., 2021), as well as in the HLA genes (Nguyen et al., 2020; 
Lorente et al., 2021; Amoroso et al., 2021; Warren and Birol, 
2021) and ABO blood group locus (Ellinghaus et al., 2020; 
Amoroso et al., 2021; Zhao et al., 2021), with the risk of 
acquiring COVID-19. These results suggest that HLA antigens 
may influence SARS-CoV-2 infection and clinical evolution 
of COVID-19, and confirm that blood group A individuals 
are at greater risk of infection. In most of these studies, the 
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variants observed were associated with the susceptibility 
to SARS-CoV-2 infection, as well as with the severity of 
the disease, such as the development of cardiovascular and 
respiratory complications (Ellinghaus et al., 2020; Hou et al., 
2020; Amoroso et al., 2021; Lorente et al., 2021;). A review of 
the possible impact of genetic factors involved in the immune 
responses on COVID-19 can be found in Anastassopoulou et 
al. (2020). 

Variability in the human and viral miRNA network and the 
control of host response to SARS-CoV-2 

MicroRNAs (miRNAs), a class of non-coding small 
RNA molecules, are important post-transcriptional regulators 
that have been associated with the development of several 
pathologies, including the ones caused by viral infections 
(Maltby et al., 2016; Trobaugh and Klimstra, 2017; Girardi 
et al., 2018; Stolzenburg and Harris, 2018; Dutta et al., 
2019; Tribolet et al., 2020). Human (host) and viral miRNAs 
interact with each other and although these interactions are 
not yet completely elucidated, it is very likely to involve the 
regulation of cellular processes that affect virus pathogenicity 
and cellular response (Totura and Baric, 2012; Bruscella et 
al., 2017). The gene network associated with host responses 
can result from miRNA transcriptional regulation of a subset 
of mRNA targets that are critical components of signaling 
pathways, including the WNT, INF, PIK3/AKT, MAPK, and 
NOTCH pathways (Barbu et al., 2020; Khan M et al., 2020). 
On the other hand, miRNAs from the virus can deregulate host 
miRNAs and facilitate the viral replication, induce the latency, 
prevent apoptosis, and/or cause immune evasion (Salmena et 
al., 2011; Scheel et al., 2016; Trobaugh and Klimstra, 2017; 
Damas et al., 2019; Mishra et al., 2020). SARS-CoV-2 genome 
mutations have also been reported to disrupt the binding sites 
of miRNAs and negatively impact the modulation of anti-
virus host defenses (Rad and McLellan, 2020), as well as 
viral miRNA sponges that can deplete specific host miRNAs 
(Bartoszewski et al., 2020; Srivastava et al., 2020). 

In the infection by SARS-CoV-2, the identification of 
the potential virus-human miRNA-based interactions have 
been mostly conducted on computational miRNA prediction 
analysis (Arisan et al., 2020; Khan  M et al., 2020; Nersisyan 
et al., 2020; Saçar and Adan, 2020; Sarma et al., 2020; 
Marchi et al., 2021). Based on the seed region specificity, 
Arisan et al. (2020) have compared SARS-CoV-2 sequences 
from different geographical regions to those from other 
viruses, such as SARS and MERS. Although the analyses 
revealed shared human miRNAs targeting the genome of 
these viruses, unique miRNAs were observed for SARS-
CoV-2. The prediction analysis conducted by Sarma et al. 
(2020), identified 22 potential miRNAs from five genomes 
of SARS-CoV-2 linked with 12 human miRNAs. Finally, a 
comparison between the host miRNA binding profiles on 67 
different SARS-CoV-2 genomes from 24 different countries 
revealed miRNAs associated with increased death rates of 
COVID-19. Recently, Centa et al. (2021) reported a significant 
association in the experimental expression analysis of two 
miRNAs, miR-26a-5p and miR-29b-3p, with the expression 
levels of inflammatory markers, such as IL-4, IL-6 and IL-
8, in post-mortem lung cells of COVID-19 patients (Centa 

et al., 2021). These results showed the direct impact of miR 
deregulation in the endothelial dysfunction and inflammatory 
response in patients with SARS-CoV-2 infection and acute 
respiratory injuries.

Among the most common pathways and gene networks 
affected by the human-virus miRNA interactions are the ones 
associated with the ACE2 and TMPRSS2 genes (Arisan et 
al., 2020; Ghafouri-Fard et al., 2020; Hoffmann et al., 2020; 
Lukassen et al., 2020; Nersisyan et al., 2020; Paniri et al., 
2021). The miRNAs that regulate the expression of these genes 
were deregulated in several cardiovascular and pulmonary 
diseases (Kohlstedt et al., 2013; Hu et al., 2014; Bao et al., 
2015; Chen et al., 2015), such as the ones developed by many 
COVID-19 patients. These findings support miRNAs’ role in 
the development and progression of endothelial and vascular 
diseases (Ovchinnikova et al., 2015; Vegter et al., 2017). Taken 
together, the data presented above show the role of miRNAs 
in modulating the immune- and other host response-related 
processes of SARS-CoV-2 infection, suggesting that they can 
be considered genetic factors for the observed differences in 
the response of the patients to the infection and in the severity 
of the disease. As the rich and valuable information obtained 
through in silico analysis becomes increasingly available, 
additional predictive viral-host miRNAs interactions are 
expected to be identified, which can lead to the potential 
identification of miRNAs as therapeutic targets for COVID-19 
(Fernández-Hernando and Suárez, 2018; Prestes et al., 2020).

In the context of a pandemic, the polymorphisms as 
well as rare variants that impact disease susceptibility become 
quantitatively important since millions of people may be 
infected. Therefore, the knowledge of the genetic variation, 
at both individual and population levels, may further improve 
our understanding of the SARS-CoV-2 transmission and 
pathogenesis, enabling the identification of individuals at 
high risk of infection and subsequent disease sequelae. More 
broadly, this may provide valuable information for drug design 
and vaccine development (Sironi et al., 2020).

Molecular approaches for therapeutic 
interventions

The use of molecular tools, such as RNA interference 
(RNAi) is being considered in the search for treatment of 
COVID-19. The RNAi can directly disrupt the production of 
viral and/or host proteins involved in SARS-CoV-2 infection, 
therefore allowing the development of challenging but 
promising novel therapeutic approaches, which potentially 
result in specific depletion of key proteins involved in 
COVID-19 pathogenesis. The RNAi technology itself is 
simple; it consists of the use of synthetic short interfering 
RNAs (siRNAs), which can be directly introduced into the 
cell cytoplasm where they will trigger the degradation of 
specific mRNA targets. The FDA approval of the first drug 
based on siRNA (Patisiran), used to treat nerve damage 
caused by a genetic disease, is encouraging (Uludağ et al., 
2020). The former studies focused on SARS-CoV-1 infection 
may guide the work in the current SARS-CoV-2 pandemic. 
Although RNAi can be directed against any protein, targeting 
essential viral proteins, such as S, E, M, and N proteins might 
represent more specific and efficient strategies. In the initial 
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studies applying RNAi against SARS-Co-1, many efforts were 
performed with the use of siRNAs directed to the S-protein 
(Qin et al., 2004; Zhang et al., 2004; Wu et al., 2005), the 
Leader sequence (Li W et al., 2005), the non-structural protein 
1 (Ni et al., 2005), the nucleocapsid N-protein (Zhao et al., 
2005), the RpRp (He et al., 2003; Lu et al., 2004) and the 
E-protein (Meng et al., 2006) among others, and obtained 
considerable success in reducing viral load. Thus, RNAi 
technology warrants further exploration in order to verify its 
potential as an alternative strategy for SARS-CoV-2 infection 
treatment. Recently, several investigators suggested resume 
efforts focused on this direction (Asha et al., 2018; Ghosh 
et al., 2020).

Pharmacological interventions in cellular and 
animal models

In order to evaluate potential therapeutic intervention 
approaches, some strategies focused on ACE2, TMPRSS22, 
and S protein will be reported. Most of them use inhibitors 
to reduce the infection rate and the hypertensive and pro-
inflammatory effects of Angiotensin II.

Angiotensin II-converting enzyme (ACE2) receptor 
inhibitors

ACE2 inhibition has been suggested as a promising 
approach to attenuate the damage in lung cells caused by SARS-
CoV-2 infection (Lopes et al., 2020). Captopril, enalapril, 
losartan and valsartan, which are all ACE2 antagonists, seem 
to inhibit the receptor and were able to avoid pneumonia 
caused by SARS-CoV-2 infection (Zhou et al., 2020). Further, 
docking assays and crystallography analysis of virus’ receptor 
(Benítez-Cardoza and Vique-Sánchez et al., 2020; Xia et al., 
2020) are being explored to support the development of new 
inhibitory compounds (Tai et al., 2020; Yan et al., 2020) and 
small peptides that potentially prevent the interaction between 
the SARS-CoV-2 S protein and ACE2 (Xiu et al., 2020).

Subunit protein TMPRSS2 Inhibitors

Nafamostat and camostat are serine proteases inhibitors 
proved to interfere in vitro with protein-mediated fusion of 
SARS-CoV-2 and the host cell (Kang et al., 2015; Yamamoto M 
et al., 2020). Camostat can also inhibit TMPRSS2 in the 
human lung cells infected with SARS-CoV-2 (Hoffmann et 
al., 2020). Clinical trials have been conducted to evaluate the 
efficacy and safety of camostat mesilate in treating COVID-19. 
Among those trials is possible to highlight some examples in 
which the drug was used alone NCT04583592 (CAMELOT, 
USA); NCT04608266 (CAMOVID, France); NCT04625114 
(Belgium); NCT04321096 (Denmark); NCT04470544 
(RECOVER, USA) or in association with other drugs 
NCT04652765 (USA); NCT04750759 (NICCAM; Germany); 
NCT04355052 (Israel); NCT04662086 (USA); NCT04644705 
(Germany) and NCT04518410 (USA). Camostat mesilate 
are also being studied in several others intervention 
protocols (NCT04455815, England); NCT04662073 (USA); 
NCT04530617 (Mexico); NCT04662086 (COPPS study, 
USA); NCT04374019 (USA) and NCT04518410 (ACTIV-2 
study, USA). However, results from all those trials have not 
been published yet.

VeroE6 cells are a well-known in vitro model system that 
produces high virus titers and displays visual cytopathic effects 
associated with viral infections. These cells are commonly 
used in in vitro antiviral assays, including for coronavirus 
(Matsuyama et al., 2010, 2020; Fintelman-Rodrigues et al., 
2020; Unal et al., 2021). Past studies demonstrated that the 
messenger RNA expression level of TMPRSS2 in VeroE6/
TMPRSS2 cells is ∼10-fold higher than in normal human lung 
tissue and other human cell lines. SARS-CoV-2 uses the same 
receptor, ACE2, as SARS-CoV, and ACE2 expression is very 
high in VeroE6 cells (Matsuyama et al., 2020). In addition, 
recent studies verified that human Caco-2 colon epithelial cells 
as well as the lung cell line A549 stably expressing ACE2 
and TMPRSS2 (Grobe et al., 2021).

Bromhexine and its metabolite ambroxol are mucolytic 
drugs that inhibit TMPRSS2, frequently used as a mucolytic 
agent in respiratory diseases. In vitro studies have shown that 
these drugs hamper the TMPRSS2 effect to activate a zymogen 
precursor of tissue plasminogen activator and ameliorate the 
cytokine storm induced by SARS-CoV-2 (Beeh et al., 2008; 
Furgała-Wojas et al., 2020). Clinical studies have been carried 
out using bromhexine (NCT04273763; NCT04355026 and 
NCT04340349), and preliminary results from NCT04405999 
demonstrated that prophylaxis using this drug reduced the 
rate of symptomatic COVID-19. Aprotinin, enzalutamide, 
genistein, and estradiol are examples of others TMPRSS2 
inhibitors, which were active in vitro using different cell 
types, however, informations about such effect in vivo are still 
missing (Royston, 2015; Bestle et al., 2020; Wang et al., 2020). 

Furin protease inhibitors

After binding to the ACE2 receptor, the S-protein must 
be cleaved by the host protease furin for priming the S2 
fusion machinery for triggering the fusion of viral and host 
cell membranes (Bosch et al., 2004). Once furin processing 
is a required step for membrane fusion, furin inhibition 
could effectively reduce SARS-CoV-2 cell entrance in host 
cells (Shang et al., 2020). Darinaparsin, a currently used 
anticancer drug, showed a high binding-affinity to furin 
and could be a hopeful therapy approach for SARS-CoV-2 
infection (Chowdhury et al., 2020). Estradiol and vitamin 
D were also able to affect furin’s activity in rat, mouse, and 
human cells (Glinsky, 2020). The treatment with Vitamin D 
is still controversial, while some studies have found negative 
correlation between vitamin D levels and COVID-19 cases 
(Ilie et al., 2020) other hypothesis an alleviation on lung 
inflammation caused by SARS-CoV-2 because vitamin D 
seems upregulating ACE2 human receptor and decreasing 
inflammatory cytokines (Xiao et al., 2021).Since, Vitamin D 
is known to enhance the rate of melanin synthesis; and this 
may concurrently regulate the expression of furin expression 
both vitamin D and melanin may have significant impact in 
management of COVID-19 (Paria et al., 2020). Additionally 
irisin, luteolin, and nafamostat have demonstrated inhibitory 
activity against furin (Peng et al., 2017; de Oliveira et al., 2020; 
Yamamoto M et al., 2020). Thus, several known compounds 
have shown a favorable potential to attack this critical step 
of SARS-CoV-2 entrance in host cells and reduce infection 
effectiveness.
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Fusion proteins inhibitors

The development of membrane fusion inhibitors prevents 
the specific fusion of the viral S2 protein domain, blocking 
the delivery of viral genetic material into the host cell (Yan et 
al., 2020). The EK1 peptide was able to inhibit SARS-CoV-2 
fusion and a novel modified peptide (EK1C4) showed an even 
higher inhibitory activity against the viral membrane fusion 
pathway (Xia et al., 2020). Lipopeptides (IPB01 and IPB02), 
designed on the basis of the S-protein S2 fusion domain, 
demonstrated the ability to inhibit SARS-CoV-2 fusion to host 
cells (Zhu Y et al., 2020). Imatinib might also be involved in 
the blockage of membrane fusion during coronavirus infection 
(Sisk et al., 2018). 

Main protease inhibitors

More than four thousand approved commercial drugs 
were screened in silico as potential main protease (Mpro) 
inhibitors of SARS-CoV-2 infection (Biembengut and de Souza, 
2020; Jiménez-Alberto et al., 2020). The results evidenced 
the potential use of several of them in COVID-19 treatment. 
Drug design recognized the Michael acceptor inhibitor N3 
as a potent and irreversible inhibitor of SARS-CoV-1 Mpro 
(Yang et al., 2005). In vitro experiments verified that it also 
inhibited SARS-CoV-2 replication in Vero cells (Jin et al., 
2020). Furthermore, chemical modifications of Mpro inhibitory 
groups caused a pronounced lung tropism in mice (Khan S et 
al., 2021, Zhang et al., 2021). Peptidomimetic aldehydes also 
inhibited SARS-CoV-2 replication in Vero E6 cells and showed 
low toxicity in Sprague-Dawley rats and Beagle dogs (Dai et 
al., 2020). Several natural compounds were also identified as 
inhibitor candidates of Mpro (Gentile et al., 2020; Gurung et 
al., 2020; Khan S et al., 2021; Olubiyi et al., 2020).

RNA-dependent RNA polymerase (RpRp) inhibitors 

The RDPD can also be a target for pharmacological 
intervention directed to specifically hinder the function of this 
enzyme complex (Zhu W et al., 2020). A known candidate 
is favipiravir, which binds to the catalytic domain of RDPR 
hindering nucleotide inclusion during RNA synthesis (Furuta 
et al., 2017). Some drugs such as ribavirin, remdesivir, 
sofosbuvir, galidesivir and tenofovir are good candidates as 
inhibitors of the RNA-polymerase mediated replication (Elfiky, 
2020; Soufi and Iravani, 2021). Ribavirin and favipiravir were 
able to restrain the SARS-CoV-2 RpRp enzymes (Huang 
et al., 2020). Buonaguro et al. (2020) described that some 
commercial drugs with inhibitory activity against the RpRp, 
including NHC EIDD1931, have suppressed SARS-CoV-2 
replication in vitro and a preclinical animal model, revealing 
this pathway as a promising target for therapeutic intervention. 

Nanotechnology to boost pharmacological therapy

Nanotechnology-based approaches can provide specific 
drug delivery, enhanced drug bioavailability, low toxicity and 
improved antiviral activity. Carbon quantum dots inhibited 
the replication of the human coronavirus (Łoczechin et al., 
2019). Diphyllin loaded polymeric nanoparticles demonstrated 
targeted inhibition of the S protein from the feline coronavirus 
(Hu et al., 2017). Glutathione-capped Ag2S nanoclusters also 
showed antiviral properties by obstructing viral RNA synthesis 

and budding of porcine epidemic diarrhea virus (PEDV) as a 
model of coronavirus (Du et al., 2018).

Clinical trials for drug repurposing
Drug repurposing or repositioning is a strategy for 

identifying new applications for approved or investigational 
drugs outside the first medical indication (Ashburn and Thor, 
2004). Given the high decline rates, high costs, and slow new 
drug discovery and development’s timeframe, repurposing 
drugs is frequently becoming an attractive proposition. The 
rationale is that most of the process includes preclinical tests, 
safety assessment, and, in some cases, the development of the 
formulation has already been achieved. Besides, the risk of 
failure and the timeframe for drug development are almost 
non-existent (Pushpakom et al., 2019).

Until April 2021, more than 5,000 clinical trials were being 
performed worldwide, evaluating antivirals, corticosteroids, 
antibiotics, among other drugs against COVID-19 as summarized 
in Table 1. In the present review, we focus on studies published 
in journals where publication only occurs after the peer-review 
process. Here, we emphasize hydroxychloroquine (HCQ), 
chloroquine, and dexamethasone clinical trials.

Hydroxychloroquine is used to treat malaria, rheumatoid 
arthritis, and lupus. Some studies point to its antiviral activity 
against the human immunodeficiency virus (HIV), inhibiting 
the entry of the virus in host cells and promoting post-translation 
alteration of newly synthesized proteins via glycosylation 
inhibition (Rosa and Santos, 2020). Hydroxychloroquine 
was tested in a retrospective multicenter cohort study of 
1438 patients with laboratory confirmation of SARS-CoV-2 
infection admitted to 25 hospitals. Four different treatments 
were evaluated, (1) hydroxychloroquine and azithromycin, 
(2) hydroxychloroquine, (3) azithromycin, and (4) neither 
of these drugs. Initially, this study showed that patients who 
received hydroxychloroquine and azithromycin had a higher 
incidence of heart failure than the group without treatment. 
Furthermore, no significant reduction of mortality in the groups 
of patients receiving any of the treatments compared with the 
non-treated group (Rosenberg et al., 2020).

A randomized multicenter study involving 150 patients 
with moderate-stage COVID-19 in two arms, with or without 
hydroxychloroquine treatment, found no difference in the 
evolution of patients who used this drug or not. However, 
adverse effects related to the use of hydroxychloroquine were 
reported (Tang W et al., 2020). Corroborating this result, 
Mercuro et al. (2020) showed, in a cohort study of 90 patients 
with COVID-19, that individuals using hydroxychloroquine 
had an increased risk QT interval prolongation. Also, in a 
randomized study of patients with severe COVID-19, a high 
dose of chloroquine alone or with azithromycin/oseltamivir 
was not recommended due to potential safety hazards related 
to QT prolongation and increased lethality (Borba et al., 
2020). A randomized, double-blind, placebo-controlled study 
tested hydroxychloroquine as post-exposure prophylaxis and 
concluded that it did not significantly reduce the severity of 
symptoms in outpatients presenting mild and early COVID-19 
(Boulware et al., 2020).

The RECOVERY study compared a variety of possible 
treatments with the usual care in patients hospitalized with 
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COVID-19. The authors examined the daily use of 6 mg of 
dexamethasone for ten days (2104 patients) versus usual care 
alone (4321 patients). The preliminary results indicated lower 
28-day mortality among patients receiving invasive mechanical 
ventilation or oxygen alone, but not among those who did not 
receive respiratory support at randomization (RECOVERY 
Collaborative Group, 2021).

Ivermectin has been recently proved, in an in vitro 
experiment, to produce reduction in the RNA of SARS CoV-2 
at 48 h of its single addition (Caly et al., 2020). Among patients 
with non-severe COVID-19 and no risk factors for severe 
disease receiving a single 400 mcg/kg dose of ivermectin, 
Chaccour and colleagues (2021) have found no difference in 
the proportion of PCR positives. There was however a marked 
reduction of self-reported anosmia/hyposmia, a reduction of 
cough and a tendency to lower viral loads and lower IgG titers 
which warrants assessment in larger trials.

Nitazoxanide, a clinically approved and commercially 
available antiparasitic drug, has been found to have broad-
spectrum antiviral activity, including against coronaviruses, 
influenza viruses, and hepatitis B and C viruses (Amadi et al., 
2002). In patients with mild Covid-19, symptom resolution 
did not differ between nitazoxanide and placebo groups after 
5 days of therapy. However, early nitazoxanide therapy was 
safe and reduced viral load significantly (Rocco et al., 2021).

Besides inflammation, COVID-19 patients may 
present hypercoagulability, characterized by elevation of 
fibrinogen levels and D-dimers, and may develop disseminated 
intravascular coagulation (DIC) (Helms et al., 2020; Tang 
N et al., 2020). Evidence confirms that thrombotic events 
are associated with higher mortality (Helms et al., 2020). 
Therefore, the Brazilian Society of Thrombosis and Hemostasis 
(BSTH) and the Thrombosis and Hemostasis Committee 
of the Brazilian Association of Hematology, Hemotherapy, 
and Cellular Therapy (ABHH) recommend that all patients 
hospitalized for suspected or confirmed COVID-19 should 
receive pharmacologic thromboprophylaxis in the absence 
of absolute contraindications.

Immunotherapies: driving the immune response 
against SARS-CoV2

Anti-Interleukin 6

Considered one of the most potent cytokines of the 
inflammatory response, and due to its pleiotropic activity, 
IL-6 mediates a series of physiological functions, including 
proliferation, differentiation, activation, and survival of 
immune response cells (Scheller et al., 2011; Tanaka and 
Kishimoto, 2014; Schaper et al., 2015; Murakami et al., 
2019). Synthesized mainly by lymphocytes, monocytes, and 
macrophages (Scheller et al., 2011; Schaper and Rose-John, 
2015), as well as stimulated by other cytokines, especially IL-1 
and TNF-α (Garbers et al., 2012), IL-6 is directly involved in 
the exacerbation of inflammation (Scheller et al., 2011), known 
as a “hyper-inflammatory state”, which causes intense acute 
lung injury in severe COVID-19 patients, which can progress 
to acute respiratory distress syndrome (ARDS) (Swaroopa 

et al., 2016). In an attempt to eliminate SARS-COV-2, this 
exacerbated and continuous inflammatory reaction, also named 
“cytokine storm”, essentially has a positive feedback between 
proinflammatory molecules (mainly IL-6 and TNF-α) and 
lymphocytes, and also natural killer cells and macrophages 
(Huang et al.,2020; McGonagle et al., 2020; Mehta et al., 
2020; Pedersen and Ho, 2020).

To stop this inflammatory process that is harmful to 
the patient, some studies (Wu R et al., 2020; Xu et al., 2020; 
REMAP‑CAP Investigators, 2021) have shown that blocking 
(tocilizumab or sarilumab) of IL-6 functions promotes a 
significant clinical improvement and better prognosis for 
COVID-19 patients with ARDS. Among the main benefits of this 
treatment, stand out: the reappearance of normal temperature, 
improvement of oxygenation, reduction of lung injuries, and 
the return of a healthy percentage of peripheral lymphocytes 
(Zhang et al., 2021). Although basic science suggests rationale 
for administration of IL-6 receptor antagonists to patients with 
COVID-19, the clinical evidence regarding the efficacy and 
safety of tocilizumab remains observational only, according to 
Cortegiani et al. (2021), who investigated 3 indirect pre-clinical 
and 28 clinical studies. Another difficulty for developing 
countries is the high cost of this drug.

Convalescent plasma and neutralizing antibodies-based 
therapies

Neutralizing antibodies (Nabs) represent an immediate 
possibility to solve SARS-CoV-2 infection. Therefore, therapy-
based studies have also focused on this approach. Nabs target 
the proteins of the viral surface, impairing its attachment to 
host cells. Therefore, the ACE2 receptor-binding domain S1 
of the SARS-CoV-2 S protein has been pointed out as a major 
target for Nabs-based strategies by several in vitro and in vivo 
models (Duan et al., 2020; Wang et al., 2020; Wrapp et al., 
2020; Wu R et al., 2020; Zeng et al., 2020). 

In this context, convalescent plasma-based therapies 
are potential strategies to treat SARS-CoV-2 infection, 
since patients recovered from COVID-19 can present high 
levels of Nabs (Chen L et al., 2020). Historically, passive 
immunotherapy through the collection and transfusion of 
convalescent plasma, was first used in the late 19th century 
(Simon, 2007; Marano et al., 2016). During the Spanish flu, 
the use of these immune derivatives showed effective clinical 
potential (Bogardus, 1919), reducing the mortality (Luke et al., 
2006). More recently, convalescent plasma was used during 
the H1N1 influenza pandemic in 2009 and 2013 during the 
Ebola outbreak in West Africa. However, the antibody levels 
in COVID-19 convalescent plasma are highly variable, and 
assays to determine the effective antibody titers remain limited 
(Brown and McCullough, 2020).

Some studies have demonstrated a reduction in viral 
load in COVID-19 patients treated with convalescent plasma 
(Ahn et al., 2020; Duan et al., 2020; Shen C et al., 2020; 
Ye et al., 2020; Zhang et al., 2021). Almost all patients 
showed improvement in the clinical, laboratory and imaging 
parameters. However, it was not possible to attribute the 
favorable clinical response to convalescent plasma, as the 
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multiplicity of drugs used and the lack of controls prevented 
this conclusion (Ye et al., 2020).

Anti-complement approaches

The inhibition of critical inflammatory components of 
the complement cascade seems to be very useful because, at 
the same time that it blocks the adaptive immune response, 
it can control the tissue damage associated with the cytokine 
storm in severe cases of COVID-19 (Chauhan et al., 2020). 
This strategy was recently tested during three weeks in 
ten patients treated with a combination of ruxolitinib, a 
JAK1/2 inhibitor, and eculizumab, an anti-C5a complement 
monoclonal antibody. The results showed improved lung 
function and decreased circulating D-dimer levels (Giudice 
et al., 2020). Interestingly, some studies have proposed that 
complement blockade might be of benefit in severe COVID-19; 
however, several risk factors for such infections were related 
following eculizumab administration (Diurno et al.,2020; 
Laurence et al., 2020). This medicine is still being investigated 
in clinical trials (NCT number: 04288713 and NCT number: 
04346797) for the treatment of moderate to severe pneumonia 
related to COVID-19.

Main vaccines against Sars-CoV-2 available

CoronaVac is produced by the Chinese company Sinovac 
Biotech. The vaccine uses the inactivated Sars-CoV-2 virus 
in its formulation as well as other vaccines that are under 
development, such as BBIBP-CorV and BBV152 (Zang et al., 
2021). The vaccine passed Phase III clinical trials in Brazil, 
Chile, Indonesia, the Philippines, and Turkey. CoronaVac 
does not need to be frozen, and both the vaccine and raw 
material for formulating the new doses could be transported 
and refrigerated at 2–8 ° C, temperatures at which flu vaccines 
are kept (Sinovac Biotech). 

Several results from CoronaVac’s Phase III demonstrate 
positive results regarding its effectiveness. A study in 
Chile found it 67% effective against symptoms, reduced 
hospitalizations by 85%, intensive care visits by 89%, and 
deaths by 80%. In Brazil, it showed 50.7% effectiveness at 
preventing symptomatic infections and 83.7% effective in 
preventing mild cases needing treatment. Effectiveness against 
symptomatic infections increased to 62.3% with an interval 
of 21 days or more between the doses (Mallapaty, 2021). 
Final Phase III results from Turkey announced on 3 March 
2021 showed an effectiveness of 83.5% (Riad et al., 2021).

On January 22, 2021 the Brazil’s health regulatory 
agency (Anvisa) granted the first CoronaVac vaccine 
registration against COVID-19, for emergencial use in Brazil. 
The immunizer from the Sinovac/Butantan Laboratory had 
its safety, quality and effectiveness checked and attested by 
Anvisa’s technical team (https://vacinacovid.butantan.gov.br/). 

The vaccine produced by the pharmaceutical company 
AstraZeneca in conjunction with the University of Oxford has 
become a wide option in the fight against SARS-CoV-2. It uses 
a chimpanzee common cold viral vector known as ChAdOx1, 
which expresses the gene that allows human cells to produce 
the SARS-CoV-2 spike protein (AstraZeneca). Between April 
23 and Nov 4, 2020, 11 636 participants from UK and Brazil 
were included in the interim primary effectiveness analysis. 

In participants who received two standard doses, vaccine 
effectiveness was 62.1% and in participants who received 
a low dose followed by a standard dose, effectiveness was 
90,0%. Overall vaccine effectiveness across both groups was 
70,4% (Voysey et al., 2021). 

On March 12, 2021 the Anvisa authorized the distribution 
of the AstraZeneca / Oxford vaccine in Brazil. The immunizer 
produced in Brazil within Fiocruz Institute had its safety, 
quality and effectiveness checked and attested by Anvisa’s 
technical team (Ministério da Saúde, 2021c).

Another vaccine against COVID-19 similar to 
AstraZeneca’s is produced by the pharmaceutical company 
Janssen. It is known as JNJ-78436735 or Ad26.COV2.S. The 
viral agent used as a vector is adenovirus 26. Initially, the 
Janssen vaccine was shown to induce antibodies against SARS-
CoV-2 in 90% of people after the first dose. Just one dose of 
vaccine was 66% effective in preventing moderate to severe 
COVID-19 and 100% effective in preventing COVID-19–
related hospitalization and death (Livingston et al., 2021).

The Pfizer/BioNTech Vaccine is a lipid nanoparticle-
formulated, nucleoside-modified mRNA encoding the 
prefusion spike glycoprotein of SARS-CoV-2. This vaccine 
has been recommended to people 16 years of age and older, 
with a dose of 30 μg (0.3 mL) IM. The vaccination requires 
two shots given 21 or more days apart. Anti-SARS-CoV-2 
antibodies persist for at least 119 days after the first vaccination 
and prevention of the SARS-COV-2 infection is 95% effective 
(Oliver et al., 2020; Meo et al., 2021). On December 11, 2020, 
the US Food and Drug Administration (FDA) authorized the 
emergency use of the Pfizer-BioNTech COVID-19 vaccine 
(FDA, 2020).

On February 23, 2021 the Anvisa granted the first 
registration of the Pfizer/BioNtech vaccine for widespread 
use in the Americas. The vaccine had its safety, quality and 
effectiveness checked and attested by Anvisa’s technical team 
of servers (Ministério da Saúde, 2021a).

The Russian Institute Gamaleya developed Sputnik V 
(Gam-COVID-Vac), an adenovirus-based candidate vaccine 
against COVID-19e The Sputnik V vaccine consists of two 
replication-defective recombinant adenoviruses: type 26 
(rAd26-S) and type 5 (rAd5-S), both carrying the gene for the 
SARS-CoV-2) spike glycoprotein (Logunov et al., 2020). The 
results of phase I-II studies indicated good immunogenicity 
and safety, however, only 38 volunteers were enrolled for each 
of the two formulations (frozen and lyophilized) (Logunov 
et al., 2020). Recent interim results of a Sputnik V phase 3 
trial in a large cohort indicated 91.6% effectiveness against 
COVID-19 and lack of adverse vaccination-related adverse 
effects (Logunov et al., 2021).

However, the development of the Sputnik V vaccine 
has been criticized for unseemly haste, corner cutting, and an 
absence of transparency (Balakrishnan, 2020; Cohen, 2020; 
Bucci et al., 2021). Serious concerns regarding interim results 
from the phase III trial were also raised (Bucci et al., 2021). 
Data sharing is one of the cornerstones of research integrity, 
yet Logunov et al. (2021) stated that raw data will not be 
shared before the trial is completed. Among the concerns 
raised are: the full study protocol has not been made publicly 
available; the clinical and laboratory criteria used to determine 

https://vacinacovid.butantan.gov.br/
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suspected COVID-19 were not informed; the data, numerical, 
and statistical significance results reported showed major 
inconsistencies (Bucci et al., 2021).

On April 27, 2021 the Anvisa announced that the 
import of the Sputnik V vaccine was not approved for use 
in Brazil. According to the agency, after evaluation, flaws in 
the development and production of the immunizing agent 
would have been found (Ministério da Saúde, 2021b). The 
concerns are similar to those now reported in May 2021 by 
Bucci et al. (2021).

Final considerations
Twenty months after the first Covid-19 notifications, 

more than 170 million individuals were infected worldwide 
with SARS-CoV-2, and around 3.5 million deaths occurred. 
Unlike the period of the last great pandemic that occurred at 
the beginning of the past century, the COVID-19 pandemic 
occurs at a time of significant scientific and technological 
advances in biomedical sciences, which, in theory, could be 
applied immediately in the control and treatment of patients. 
However, no drug or vaccine has yet been specifically approved 
for COVID-19. Therapeutic intervention approaches used 
successfully in other infectious agents need an in-deep 
investigation directed to the specific infection mechanism of 
the SARS-CoV-2 and the unique COVID-19 physiopathology. 
Among the available therapeutic approaches, such as vaccines, 
target inhibitors, and new drugs, the drug repurposing already 
approved by the FDA has been shown to be an efficient 
short-term alternative, mainly due to its low cost and prompt 
application to patients. This strategy considers the knowledge 
of the molecular basis of the disease. As a result of the 
global task force to control the COVID-19 pandemic, a new 
intervention was introduced by Garvin et al. (2020), who 
blamed the bradykinin storm for the most severe symptoms of 
COVID-19. The authors point out that many of the symptoms 
manifested by patients with COVID-19 are similar to other 
clinical conditions caused by the increase in bradykinin. The 
strategy would be pharmacologic intervention targeting the 
renin-angiotensin system to reduce bradykinin levels. In this 
sense, there exist at least ten approved drugs that might be 
used to control the severe symptoms of COVID-19.

The genetic variability of molecules that participate in the 
entry of SARS-CoV-2 into the host cells and, especially, of the 
numerous molecules involved in the immune responses should 
be considered for the development of effective therapeutic 
interventions. Because the frequencies of genetic variants 
influencing the response to drugs, as well as COVID-19 
susceptibility and severity may differ widely among world 
populations, knowing their distribution is a critical element 
in seeking strategies to respond to the pandemic. Moreover, 
understanding the repertoire of viral epitopes that specific 
HLA allotypes can bind is of great importance for the 
development of vaccines that can provide protection for 
most individuals.

Computational modeling and simulations with toxicity 
analysis scenarios are needed to boost pharmacological 
interventions and drug repurposing, aiming at potential drugs to 

reduce viral load, viral clearance, and morbidity and mortality 
in clinical outcomes (Al-Kofahi et al., 2020). New therapeutic 
agents can be developed by analyzing theoretical structure-
activity data in a three-dimensional approach, obtained by 
recent molecular modeling techniques. Choosing the right 
dose for a clinical trial requires considering the risk of 
toxicity and ensuring the best chance of successfully reaching 
therapeutic targets (Al-Kofahi et al., 2020; Dong et al., 2020). 
It is noteworthy that in vitro to in vivo extrapolations can 
underestimate or overestimate the real needs of medicines, 
but it is considered an initial advance.
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