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Abstract

This paper gives a general mating system for an autosomal locus with two alleles. The population reproduces in dis-
crete and non-overlapping generations. The parental population, the same in both sexes, is arbitrary as is that of the
offspring and the gene frequencies of the parents are maintained in the offspring. The system encompasses a num-
ber of special cases including the random mating model of Weinberg and Hardy. Thus it demonstrates, in the most
general way possible, how genetic variation can be conserved in an indefinitely large population without invoking
random mating or balancing selection. An important feature is that it provides a mating system which identifies when
mating does and does not produce Hardy-Weinberg proportions among offspring.
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Introduction

This paper gives a general mating system for an
autosomal locus with two alleles. The population repro-
duces in discrete and non-overlapping generations. The
system encompasses a number of special cases including
the random mating model of Weinberg (1908) and Hardy
(1908). It covers also the formulation of Li (1988) and Stark
(2005) who showed that Hardy-Weinberg (H-W) frequen-
cies can be maintained in large populations with non-ran-
dom mating. Furthermore it subsumes the system of Stark
(2006a) which demonstrates that Hardy-Weinberg propor-
tions (HWP) can be attained in one round of non-random
mating. It is more general than the last of these in that it pro-
duces an arbitrary distribution of genotypes in the offspring
from an arbitrary distribution in the parents while maintain-
ing the gene frequencies of the parents.

The next section defines the mating system. The fol-
lowing section demonstrates how it encompasses a number
of special cases. The last section discusses the canonical
representation of the model and includes some numerical
examples.

The general mating system

Consider a population with respect to a single locus
having alleles A and B with respective frequencies q and p,
the same in males and females. Denote frequencies of geno-
types AA, AB and BB among parents by f0 , f1 and f2 and
among offspring by g0 , g1 and g2. Table 1 gives a mating

system in which reciprocal crosses have the same fre-
quency so that the roles of males and females can be re-

versed without changing the model. The 3 × 3 matrix of cell
frequencies will be denoted by [fij] , i = 0, 1, 2; j = 0, 1, 2.
Without loss of generality q is taken in the interval

0 < q ≤ 1/2. Since the elements of [fij] are non-negative there
are constraints on the values of F, G, s and t.

Summing the elements of Table 1 by rows and col-
umns shows that the parental genotypic frequencies are:
f0 = q2 + Fpq, f1 = 2pq - 2Fpq, f2 = p2 + Fpq, F being Sewall
Wright’s fixation index Thus the parental frequencies are in
the most general form, defined by values of q and F.

Making the usual assumptions it can be seen that the distri-
bution of genotypes among offspring is g0 = q2 + Gpq,

g1 = 2pq - 2Gpq, and g2 = p2 + Gpq. Because matrix [fij] is
symmetric the distribution of genotypes among offspring
can be calculated from:

g0 = f00 + f01 + 1/4 f11

g1 = f01 + 2f02 + 1/2 f11 + f21

g2 = f22 + f21 + 1/4 f11
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Table 1 - General mating system.

M x F AA AB BB

AA q2 - s - t Gpq + t Fpq - Gpq + s

AB Gpq + t 4s 2pq - 2Fpq -
Gpq - 4s - t

BB Fpq - Gpq + s 2pq - 2Fpq -
Gpq - 4s - t

p2 - 2pq + 2Fpq

+ 2Gpq + 3s + t

M: male. F: female.



Note that the gene frequencies among the offspring
are identical to those of the parents. However the genotypic
distribution among the offspring is arbitrary being deter-
mined by G which plays the same role in offspring as F

does in parents. In particular, taking G = 0 gives Hardy-
Weinberg proportions (HWP) among the offspring. A nu-
merical illustration is given in Table 2 which is discussed in
the final section. It is specified by q = 0.4, F = 1/6, G = 0,
s = 0.05, t = 0.02 and f0 = 0.2, f1 = 0.4, f2 = 0.4. The
distribution among offspring is g0 = 0.16, g1 = 0.48, and
g2 = 0.36. Clearly mating is not random yet the offspring
proportions are Hardy-Weinberg.

Special cases

Random mating is defined in Table 1 by putting
s = 1/4 f1

2 and t = f0f1. The offspring are distributed in HWP
so that G = 0 completes the specification.

The mating system given by Li (1988) is reproduced
in Table 3. Since both parents and offspring are distributed
in HWP both F = 0 and G = 0. Li’s parameters and those of
Table 1 are related by a = pq2(1 + q) - (s + t) and b = s - p2q2.
In Li’s model random mating is defined by the pair of con-
ditions a = 0 and b = 0 so that s and t in Table 1 are then
s = p2q2 and t = 2pq3.

The model given by Stark (2006a) is obtained by tak-
ing G = 0. A particular case is obtained by taking
F = 1/2 (p - q)/p and forcing f00 = 0 and f11 = 0. This case is
given by Table 4 and considered further in the next section.

The canonical representation of Table 1

It is instructive to examine [fij] through its canonical
form

fij = fifj(1 + ρxixj + σyiyj), (i = 0, 1, 2; j = 0, 1, 2). (1)

Formula (1) is a particular example of the representa-
tion of a discrete bivariate probability distribution which
Lancaster (1969, p. 90) refers to as “Fisher’s Identity”. De-
note the vector of values {x0, x1, x2} by x and {y0, y1, y2} by
y. Vectors x and y attribute two sets of values to the geno-
types of the parents, the same for males and females. To
simplify the exposition it helps to define some expressions
involving the elements of [fij] and the parental genotypic
frequencies f0, f1 and f2:

W = f00 f11 f22 + 2f01 f02 f12 -
(f00 f12

2 + f11 f02
2 + f22 f01

2). (2)

X = f0 f12
2 + f1 f02

2 + f2 f01
2 -

(f0 f11 f22 + f1 f00 f22 + f2 f00 f11). (3)

Y = f0 f1 f22 + f0 f2 f11 + f1 f2 f00. (4)

Next form the following quadratic in ν:

(W + X + Y)ν2 + (W + X)ν + W = 0. (5)

Solve the quadratic and designate the two solutions of

ν as ρ and σ. Then ρ is the correlation of x in female parents

with x in male parents and σ is the correlation of y in fe-
males with y in males.

Finally the vector x can be calculated by solving the
set of equations

Σifixi = 0, Σifixi
2 = 1, ΣiΣjfijxixj = ρ, (6)

and the vector y from

Σifiyi = 0, Σifiyi
2 = 1, ΣiΣjfijyiyj = σ. (7)

Some modification of the solution to Eqs. (5) - (7) is
necessary for special cases. For example the formulation
given by Table 1 can include the cases f0 = 0 and f0 = f2 = 0.

The solution of Eqs. (5) - (7) involves rather unwieldy
algebraic expressions although solutions can be obtained
for particular numerical examples. One root of (5) is zero if

W = 0. Suppose this is ρ, then (1) reduces to

fij = fifj(1 + σyiyj), (i = 0, 1, 2; j = 0, 1, 2). (8)

However, even this may not yield simple expressions.
One case is that given by Stark (2006a) where the entries in
(8) are defined by

y0 = T -1/2p(F - 1)/(q + Fp),

y1 = T -1/2,

y2 = T -1/2q(F - 1)/(p + Fq),

and
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Table 2 - Mating scheme with q = 0.4, F = 1/6, G = 0, s = 0.05 and t = 0.02.

M x F AA AB BB

AA 0.09 0.02 0.09

AB 0.02 0.20 0.18

BB 0.09 0.18 0.13

M: male. F: female.

Table 3 - Li’s symmetric non-random mating model.

M x F AA AB BB

AA q4 + a 2pq3 - a - b p2q2 + b

AB 2pq3 - a - b 4p2q2 + 4b 2p3q + a - 3b

BB p2q2 + b 2p3q + a - 3b p4 - a + 2b

M: male. F: female.

Table 4 - Mating scheme with F = 1/2 (p - q)/p, G = 0, s = 0 and t = q2.

M x F AA AB BB

AA 0 q2 1/2q(p - q)

AB q2 0 pq

BB 1/2q(p - q) pq p(p - q)

M: male. F: female.



T = pq(1 - F2)/((q + Fp)(p + Fq)).

Then, in Table 1, G = 0, s = 1/4 f1
2(1 + σT-1) and

t = f0f1(1 + σT-1p(F - 1)/(q + Fp)).
A special case of the preceding example is given in

Table 4. The canonical form is expressed by ρ = 0,

σ = -q(3-4q)/(2-3q), y0 = - τ, y1 = τ , y2 = -τq/(2-3q), where

τ = 1/√(-σ). These terms satisfy Eqs. (5) and (7).
Simplifying Li’s model (Table 3) by putting b = a

yields another example: then F = 0, G = 0; also W = 0,
X = -2apq, Y = 2pq(a + p2q2), s = p2q2 + a, t = 2pq3 - 2a and

ρ = 0, σ = a/(p2q2),

x0 = -2p/√(2pq),

x1 = (q - p)/√(2pq),

x2 = 2q/√(2pq),

y0 = -p/q, y1 = 1, y2 = - q/p.

Note that in this case the vector x is a set of additive

values, that is with the property x2 - x1 = x1 - x0, as pointed
out by Stark (2006b), and the set y is that given by Stark

(2005). Since ρ = 0 the elements in [fij] are obtained from
Eq. (8).

Another system is defined by fij = fifj(1 + ρxixj), where
x0 = -2pV -1/2, x1 = (q - p)V -1/2, x2 = 2qV -1/2 and V = 2pq(1 +
F). This model was given by Stark (1976a, 1976b). It has

the property that if ρ is fixed at value 2F/(1 + F) then the pa-
rental distribution characterized by q and F is reproduced in
the offspring, that is G = F. Again x is additive and the cor-

relation between mates based on x is ρ = 2F/(1 + F). In the
notation of Table 1, s = 1/4f11 and t = f01 - Gpq = f01 - Fpq.

Table 2 was introduced earlier. Its canonical form is:

ρ = 2/5, σ = -1/8

x0 = -2√(5/6) = -1.826, x1 = √(5/6) = 0.913, x2 = 0,

y0 = y1 = √2/3 = 0.816, y2 = -√(3/2) = -1.225

Table 5 contains the numerical example defined by
q = 1/3, F = 1/4, G = -1/4, s = 1/18 and t = 1/18. The distri-
bution of parental types is f0 = 3/18, f1 = 6/18, f2 = 9/18 and
the distribution among offspring is g0 = 1/18, g1 = 10/18,
and g2 = 7/18. The terms to be substituted in formula (1) are
as follows:

ρ = (1 + √73)/18 = 0.530, σ = (1 - √73)/18 = -0.419

x0 = 2u - v = 1.074,

x1 = - (u + v) = -1.392,

x2 = v = 0.570,

y0 = u + 2v = 1.961,

y1 = u - v = 0.252,

y2 = - u = -0.822,

where u = √(73 + 3√73)/√146 and v = √(73-3√73)/√146.
The preceding examples show that the mating system

given in Table 1 is a general model which conserves genetic
variation but allows genotypic distributions which are not
exclusively in Hardy-Weinberg form. In fact it provides a
mating system which identifies when mating does and does
not produce Hardy-Weinberg proportions among off-
spring.
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Table 5 - Mating scheme with q = 1/3, F = 1/4, G = -1/4, s = 1/18 and
t = 1/18.

M x F AA AB BB

AA 0 0 3/18

AB 0 4/18 2/18

BB 3/18 2/18 4/18

M: male. F: female.


