
A parallel algorithm for finding small sets of genes that are enough to
distinguish two biological states

Martha Torres and Junior Barrera

Universidade de São Paulo, Instituto de Matemática e Estatística, São Paulo, SP, Brazil.

Abstract

GCLASS is an algorithm which explores small samples of two distinct biological states for finding small sets of genes,
which form a feature vector that is enough to separate these two states. A typical sample is a set of 60 microarrays,
30 for each biological state, with several thousand genes. The technique consists of the following: a spreading model
defined in the space of small sets of genes studied and centered in each feature vector considered; the designing of
optimal linear classifiers under this spreading model; and ranking the designed classifiers, based on their error and
robustness relative to the spreading. The feature vectors used in the best classifiers are considered the best feature
vectors.

Due to the great number of potential feature sets, a parallel implementation is a good option for reducing the
procedure execution time. This paper presents a parallel solution of GCLASS and shows some performance results.
The experimental results show that the proposed solution provides quasi linear speedup if compared to the
sequential implementation. For example, using 60 genes as the complete feature space and 6 genes as the small
feature space, our parallel version with 11 processors is approximately 10.98 times faster than the sequential
version.

Key words: gene expression, classification, parallel processing.

Received: September 30, 2003; Accepted: September 21, 2004.

Introduction

A key goal for the use of expression data is to perform

classification via different expression patterns. A success-

ful classifier provides a list of genes whose product abun-

dance is indicative of important differences in cell state,

such as healthy or diseased, or one particular type of cancer

or another.

Classifiers are designed from a sample of expression

vectors. This requires assessing expression levels from

RNA obtained from the different tissues with microarrays,

determining genes whose expression levels can be used as

classifier variables, and then applying some rule to design

the classifier from the sample microarray data.

The problem at this stage is that there is a very large

set of gene-expression profiles (features) and typically a

small number of microarrays (sample points), making it

difficult to find the best features from which to construct a

classifier.

GCLASS is an algorithm which explores small sam-

ples of two distinct biological states for finding small sets

of genes, which form a feature vector that is enough to sep-

arate these two states (Kim et al., 2002a). A typical sample

is a set of 60 microarrays, 30 for each biological state, with

several thousand genes.

This procedure has been applied to cancer classifica-

tion via cDNA microarrays. In particular, the genes

BRCA1 and BRCA2 are associated with a hereditary dis-

position to breast cancer, and the algorithm is used to find

genes sets whose expression can be used to classify

BRCA1 and BRCA2 tumors (Kim et al., 2002a). Also, it

was used in order to find sets of genes that separate two dif-

ferent types of gliomas (Kim et al., 2002b).

The technique consists of the following: a spreading

model defined in the space of small sets of genes studied

and centered in each feature vector considered; the design-

ing of optimal linear classifiers, under this spreading

model; and ranking the designed classifiers, based on their

error and robustness relative to the spreading. The feature

vectors used in the best classifiers are considered the best

feature vectors.

Due to the great number of potential feature sets, a

parallel implementation is a good option for reducing the

procedure execution time. This paper presents a parallel so-

lution of GCLASS and shows some performance results.

Genetics and Molecular Biology, 27, 4, 686-690 (2004)

Copyright by the Brazilian Society of Genetics. Printed in Brazil

www.sbg.org.br

Send correspondence to Martha Torres. Rua 8 n. 7 apto 103,
45654010 Ilhéus, BA, Brazil. E-mail: mxtd2000@yahoo.com.br.

Research Article



Algorithm for finding strong feature (gene) sets

This algorithm designs classifiers that categorize

sample tissues based on gene expression values. Given a set

of features on which to base a classifier, two issues must be

addressed: (a) the design of a classifier from sample data;

and (b) the estimation of its error. When selecting features

from a large class of potential features, the key issue is

whether a particular feature set provides good classifica-

tion. A key concern is the precision with which error of the

designed classifier estimates the error of the optimal classi-

fier. When data are limited, an error estimator may be unbi-

ased but may have a large variance and therefore may often

be low. This can produce many feature sets and classifiers

with low error estimates. This algorithm mitigates this

problem by designing classifiers from a probability distri-

bution resulting from spreading the mass of the sample

points. It is parameterized by the variance of the distribu-

tion. The error gives a measure of the strength of the feature

set as function of the variance.

When the data are limited, and all of it is used to de-

sign the classifier, there are several ways to estimate the

classifier error. We comment on two of these. The

resubstitution estimate for a sample of size n is the fraction

of errors made by the designed classifier on the sample. For

LOO estimation, n classifiers are designed from samples

subsets formed by leaving out one data point at a time. Each

is applied to the left-out point, and the estimator is 1/n times

the number of errors made by n classifiers.

This algorithm constructs, from the sample data, a

linear classifier ψσ, in which σ2 gives the variance of the

distribution used to spread the data. It generates class distri-

butions from the sample data and then finds both the classi-

fier and its error analytically via simple matrix operations

(Kim et al., 2002a). To standardize the interpretation of the

results, σ is normalized relative to the variance of the data.

In order to find strong feature sets for increasing the

values of σ, a combinatorial search is necessary, when all

possible feature sets are considered. There are C(n, m) (the

number of combinations of size m that can be formed from

a set of size n) feature vectors of size m that can be con-

structed from n available features.

The algorithm exploits the full set of combinations

for large n and small m. If n is quite large, m can be even

equal to 2. In other situations, an algorithm of suboptimal

search is employed. It is a heuristic search algorithm that

utilizes some probabilistic information constructed from a

previous search and error evaluation, using a less or equal

m. There are quite a few algorithms available, perhaps the

most famous being the stochastic-based search algorithms

(Hogg, 1996) (Mohan and Nguyen, 1999) and genetic

search (Goldberg, 1989) (Srinivais and Patnaik, 1994).

For any feature set, ∈σ denotes the error of the opti-

mal classifier for the feature set and ∆(∈σ) denotes the larg-

est decrease in error for the full feature set relative to all of

its subsets. The feature sets are first ranked based on ∈σ,

and they are ranked again based on the improvement,

∆(∈σ).

In other words, the output of GCLASS program is a

table with m-gene classifiers ranked high in both ∈σ and

∆(∈σ).

GCLASS has been effective in its present form and

useful results have been obtained. For example, it was

tested on a published data set (Hedenfalk et al., 2001) com-

paring the expression profiles of breast tumors from pa-

tients carrying mutations in the predisposing genes,

BRCA1 or BRCA2, or from patients not expected to carry a

hereditary predisposing mutation. Starting with 3226

genes, this algorithm was applied to subsets of size m equal

to 1 through 10 to find classification between BRCA1 tu-

mors and the collection of both BRCA2 and sporadic tu-

mors. Various values of σ between 0.2 and 0.9 were used.

The full search space for m = 1 and 2 was exploited and

more than 10,000,000 features vectors for each m > 2 were

looked at. Figure 1 shows the hyperplane constructed with a

spread of σ = 0.8 to classify BRCA1 from BRCA2 and spo-

radic tissues using the two genes named on the axes (KRT8

and DRPLA). This classifier yields a very small σ-error and

no misclassifications.

Figure 2 shows the pseudo-code of sequential version

of GCLASS.

Parallel Solution

The overhead main of GCLASS is the number of

combinations being considered; therefore, the parallel pro-

cessing technique used for this application is divide and

conquer. In this parallel version, each processor executes in

parallel the gene selection part for a different combinations

group; this stage is called the calculation part. Next, the par-

Torres and Barrera 687

Figure 1 - Linear classifier constructed with a spreading. This figure was

borrowed from Kim et al. (2002a).



tial results are sent to a processor. This processor joins the

information and generates the results; this stage is called

the communication part.

Calculation part

In order for each processor to execute the gene selec-

tion part on a different combinations group, it is necessary

to use a parallel algorithm for generating combinations. We

chose our parallel solution described in (Torres et al., 2003)

because it is simple and efficient.

Each processor generates a set of C(n,m) combina-

tions (where, C(n,m) is the number of combinations of size

m that can be formed from a set of size n). Therefore, each

processor designs and ranks classifiers for a specific set of

potential features vectors of size m. Each processor pro-

vides gene subsets that can be used as classifiers and their

error.

The parallel algorithm for generating combinations

consists in dividing all combinations in groups and to at-

tribute these groups to the processors for generating the

combinations belonging to each group. Each processor

knows which are the groups that belong to it. It does not

generate any communication among processors. For in-

stance, the combinations of C(5,3) are: 012, 013, 014, 023,

024, 034, 123, 124, 134 and 234. These combinations can

be divided into three groups: “group0”, which is composed

of the combinations whose “prefix” (the number with

which an m-combination begins) is 0 (012, 013, 014, 023,

034); “group1”, which is constituted by the combinations

whose “prefix” is 1 (123, 124, 134); and “group2”, which is

formed with the combinations whose “prefix” is 2 (234).

The total number of groups of all combinations of C(n,m) is

n-m+1.

In order to balance load, we chose the static schedul-

ing algorithm called reflexive wrap allocation

(Hendrickson, 1999) because the distribution of groups is

directly done without any additional calculations.

Our solution using reflexive wrap allocation consists

first of attributing the correspondent group to the myid of

each processor. Example: If we have a machine with two

processors, the myid of processor 1 is 0 and the myid of pro-

cessor 2 is 1. Therefore, processor 1 (myid=0) will generate

the combinations of “group0” and processor 2 (myid = 1),

those of “group1”.

It is important to point out that the number of combi-

nations of “groupi” is larger than the number of combina-

tions of “groupi+1”. Therefore, due to initial distribution,

the processors with the lower myid will have to generate

combinations of the larger prefix group. In order to com-

pensate the load imbalance, in the following distribution,

the subsequent groups with smaller “prefixes” will be as-

signed to processors with the larger myid and, in the follow-

ing distribution, the subsequent groups with smaller

“prefixes” will be assigned to processors with the smaller

myid, and so forth. Each processor stops generating combi-

nations when the following group is larger than n-m+1.

The sequential combinations algorithm used in this

solution is based on the Algorithm 154 (Misfud, 1963),

whose running time is O(mC(n,m)), which corresponds to

an optimal algorithm (Akl et al., 1989).

Communication part

Each processor calculates the corresponding classifi-

ers and generates a sorted error list; next, each processor

sends its error list to a central processor. This processor

combines these data and computes the average perfor-

mance of each feature. In this implementation, this commu-

nication part is produced by the collective operation:

gather. In this operation, each processor sends the informa-

tion to a central processor. This central processor receives

the messages and stores them in identification order.

Figure 3 shows the parallel pseudo-code.

Material and Methods

Our solution was implemented in a Beowulf-style

cluster of 11 PCs. Each one of these machines has a 1.2GHz

AMD Athlon K-7 processor, 768 MB of RAM, 2 MB CPU

cache, and 30 GB hard disk space. The machines are inter-

connected with a 100 Mbps FastEthernet switch. The oper-

ating system is Linux 2.4.20 and we used C language and

MPICH 1.2.4 library. We measured the execution time by

MPI_Wtime. Figure 4 shows our parallel platform.

Performance Results

In order to show the performance evaluation of the

proposed solution, we present the speedup based on the se-

quential solution. We consider two classifications: first, us-

688 A parallel solution for GCLASS

Figure 2 - Pseudo-code of GCLASS sequential version.



ing 3226 genes as the complete feature space and 2 genes as

the small feature space and second, using 50 genes as the

complete feature space and 6 genes as the small feature

space.

Figures 5 and 6 show the speedup of our parallel solu-

tion for the first classification. Figure 5 considers only the

computation time. This graph shows that we obtained a

quasi linear speedup. The minimum execution time is lim-

ited by the communication overhead. If the computation

time in each processor is smaller than the communication

time, then the speedup can saturate. As in this case, the exe-

cution time for 10 and 11 processors is very close because

the computation time is very small. The sequential time is

2.77 s and the parallel time for 2 processors is 1.4 s. The

parallel time for 3 processors is 0.95 s, for 4 processors is

0.7 s, for 5 processors is 0.57 s, for 6 processors is 0.47 s,

for 7 processors is 0.42 s, for 8 processors is 0.35 s, for 9

processors is 0.32 s, for 10 processors is 0.28 s and for 11

processors is 0.27 s.

Figure 6 shows the speedup including the I/O over-

head. In this case, the speedup is reduced because there are

I/O operations executed only by the central processor. So,

this constant overhead increases the total execution time,

which is more critical when the processors number in-

creases. The sequential time is 167.92 s and the parallel

time for 2 processors is 23.78 s. The parallel time for 3 pro-

cessors is 15.97 s, for 4 processors is 12 s, for 5 processors

is 9.67 s, for 6 processors is 8.14 s, for 7 processors is 7.05

s, for 8 processors is 6.25 s, for 9 processors is 5.64 s, for 10

processors is 5.16 s and for 11 processors is 4.78 s.

Figures 7 and 8 show the speedup of our parallel solu-

tion for the second classification. Figure 7 considers only

the computation time, and shows that, in this case, the cal-

culation part is increased by each processor; therefore, the

communication overhead practically does not affect the

computation time and we obtained an almost linear

speedup. The sequential time is 13.25 s and the parallel

time for 2 processors is 6.63 s. The parallel time for 3 pro-

cessors is 4.43 s, for 4 processors is 3.32 s, for 5 processors

is 2.67 s, for 6 processors is 2.23 s, for 7 processors is 1.9 s,

Torres and Barrera 689

Figure 3 - Pseudo-code of GCLASS parallel version.

Figure 4 - Parallel platform.

Figure 5 - Speedup based in computation time for 3226 genes as complete

feature space and 2 genes as small feature space.

Figure 6 - Speedup based in computation time + I/O for 3226 genes as

complete feature space and 2 genes as small feature space.



for 8 processors is 1.67 s, for 9 processors is 1.48 s, for 10

processors is 1.35 s and for 11 processors is 1.22 s.

Figure 8 shows the speedup including the I/O over-

head. Also in this case the speedup is reduced. But the I/O

overhead is smaller than in the preceding case, since the

complete feature set is reduced. The sequential time is

793.13 s and the parallel time for 2 processors is 399.25 s.

The parallel time for 3 processors is 267.69 s, for 4 proces-

sors is 200.88 s, for 5 processors is 161.82 s, for 6 proces-

sors is 136.23 s, for 7 processors is 117.16 s, for 8

processors is 102.89 s, for 9 processors is 92.6 s, for 10 pro-

cessors is 84.36 s and for 11 processors is 77.07 s.

Conclusion

GCLASS is an important procedure for gene classifi-

cation and it has been used in many classification problems.

In this paper, we present a parallel version of GCLASS that

considers all possible combinations of the complete feature

space. As mentioned before, the strong-feature algorithm is

applied to various subsets of size m and various values of σ.

The performance results show that a parallel solution is

profitable because the execution time is reduced.

Acknowledgments

The authors would like to thank FAPESP (process

number 00/10660-8) and CAPES for the support of this re-

search. Also, we would like to thank Dr. Edward Dougherty

and his staff for providing the GCLASS code.

References

Akl SG, Gries D and Stojmenovic I (1989) An optimal parallel al-

gorithm for generating combinations. Information Pro-

cessing Letters 33:135-139.

Goldberg DE (1989) Genetic Algorithms in Search, Optimiza-

tions and Machine Learning. 1st edition. Addison-Wesley

Longman Publishing Co., Boston, 372 pp.

Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon

R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP,

Wilfond B and Trent J (2001) Gene expression profiles in

hereditary breast cancer. New England Journal of Medicine

244:539-548.

Hendrickson B (1999) Parallel QR factorization using the torus

wrap mapping. Parallel Computing 19(11):1259-1271.

Hogg T (1996) Quantum computing and phase transition in com-

binatorial search. Journal Artificial Intelligence Research

4:91-128.

Kim S, Dougherty E, Junior B, Chen Y, Bittner M and Trent J

(2002a) Strong features sets from small samples. Journal of

Computational Biology 9:129-148.

Kim S, Dougherty ER, Shmulevich L, Hess KR, Hamilton SR,

Trent JM, Fuller GN and Zhang W (2002b) Identification of

combination gene sets of glioma classifications. Mol Cancer

Therapeutics 1:1229-1236.

Misfud CS (1963) Combination in lexicographic order (Algo-

rithm 154). Communications of the ACM 6:3-103.

Mohan C and Nguyen HT (1999) Controlled random search

tecnique incorporating the simulated annealing concept for

solving integer and mixed integer global optimization prob-

lems. Computational Optimization and Applications an In-

ternational Journal 14:103-132.

Srinivais M and Patnaik LM (1994) Genetic algorithms: A survey.

Computer 27:17-26.

Torres M, Gold A and Barrera J (2003) A parallel algorithm for

numerating combinations. In: The 2003 International Con-

ference on Parallel Processing Proceedings, IEEE Computer

Society Press, Taiwan, pp 1:581-588

690 A parallel solution for GCLASS

Figure 7 - Speedup based in computation time for 50 genes as complete

feature space and 6 genes as small feature space.

Figure 8 - Speedup based in computation time + I/O for 50 genes as com-

plete feature space and 6 genes as small feature space.


